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Motivation

* Design and performance of particle colliders depend crucially
on their long-term dynamics

 Beam-beam effect has been particularly limiting to the long-
term stability and high luminosity reach

* Extracting long-term behavior from a short-term simulation
does not provide the necessary level of confidence

* Need to simulate the dynamics for intervals which are

comparable to the beam lifetime
e Hundreds of millions to billions of turns

Until recently such long-term simulations have been prohibitive
e Parallel computation on GPUs is changing this
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Computational Requirements

e Perspective: At the current layout of the MEIC
1 hour of machine operation time = 400 million turns

e Requirements for long-term beam-beam simulations
@ Accurate and efficient particle tracking
@ Efficient beam collision simulation

 We meet these requirements by
@ High-order symplectic tracking
* One-turn maps + symplectic correction

@ Approximate beam-beam collisions by generalizing
strong-strong Bassetti-Erskine approximation

* Poisson solvers are much more expensive
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GHOST: Outline

GHOST: Gpu-accelerated High-Order Symplectic Tracking

* Resolve computational bottlenecks by
 Employing approximations (Bassetti-Erskine for collisions)
* Implementing the code on a massively-parallel GPU platform

GPU implementation yields best returns when:

 The same instruction for multiple data (particle tracking)
 No communication among threads (particle tracking)

* Done in close collaboration with field experts
 Physicists = proof of concept, CS = implementation

 Two main parts:
* Particle tracking
* Beam collisions

Terzic
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GHOST: Particle Tracking

e Symplectic tracking is essential for long-term simulations

GHOST: Non-Sympletic Tracking
3 million iterations, 37 order map

0,00025

0,0002 F

0,00015 F

0,0001

5e-05

7 oF

-5e-05 |

-0,0001

-0,00015

-0,0002

-0,00025 ~

’ Trackﬁng Unlg,'ﬂrder 3,'3 million iterations +

-2,5e-05 -2e-05 -1,5e-05 -le-05 -Se-0B 0 S5e-06 1e-08 1,5e-05 2e-05 2,5e-0

X

Energy not conserved
Particle will soon be lost

GHOST: Sympletic Tracking
3 million iterations, 379 order map
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GHOST: Symplectic Particle Tracking

e Symplectic tracking in GHOST is the same as in COSY Infinity
(Makino & Berz 1999)

e Start with a one-turn map
T = Z M(z|aBynip)z®aPy7 b1 §H
afynAp

e Symplecticity criterion enforced at each turn

0 —-I
(g7, p:i) = IVFa(qi, py) J = [ I o ]
Initial coordinates (g, D;) Final coordinates (qf,Py)

 Involves solving an implicit set of non-linear equations
* Introduces a significant computational overhead
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GHOST: Symplectic Particle Tracking

e Symplectic tracking is implemented as in COSY Infinity
(Makino & Berz 1999)

2D Non-Sympletic Tracking 37 order map

2D Sympletic Tracking 37 order map

COSY GHOST COSY GHOST
0.003 T T T 0.003 T T T
Map AR Gcmga - ot
MapCosy # gf’” i osy ‘ww
0.002 4t & 0.002 A £
of # £
H 4+ &
V4 ‘»# 3@? +g* *»
X .001 P sg* 0.001 o ¢'+
wm ‘#gz ++‘¢ *+*‘
MW f *+*‘ ++**
x 0 w:w : 0 *ﬁ + +
i A s &
o o &
w’f - 3* o
A:;4* s ’+ +*}
-0.001 i R -0.001
{ét * * +¢ *#v
éi st f* e
-0.002 [ ¥t 0002 | i ot
: ‘”fg} . d,«
ﬁ‘f&&&& . *+$+***¢*
-0.003 -0.003 e
-0.025-0.02-0.015-0.01-0.005 X ).005 0.01 0.015 0.02 0.025 : -0.025-0.02-0.015-0.01 -0.005 X ).005 0.01 0.015 0.02 0.025
. } ) . } ) i ) ) . } )
Perfect agreement!
Terzic Beam-Beam Simulations on GPUs 9




GHOST: Beam Collisions

e Bassetti-Erskine approximation (Bassetti & Erskine 1980)

 Beams treated as 2D transverse Gaussian slices
(Good approximation for the MEIC)

e Poisson equation reduces to a complex error function
 Finite length of beams simulated by using multiple slices

i -
||

 We generalized a “weak-strong” formalism of Bassetti-Erskine

 Include “strong-strong” collisions (each beam evolves)
 Include various beam shapes (original only flat beams)
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GHOST: Beam Collisions

e Code calibration and benchmarking
e Convergence with increasing number of slices N

e Comparison to BeamBeam3D (Qiang, Ryne & Furman 2002)
GHOST, 1 cm bunch BeamBeam3D & GHOST, 10 cm bunch

(2 i)
!

40k particles 40k particles
11 . . : 14 T T T T
— M=1 — M=5 BB3D M =1 —— BB3D M =10
10 — M=2 M=7 1 X GHOST M=1 GHOST M=10 ||
— M=3 — M=1
— M=14 M=1

[
o
T

1

Luminosity x10% [cm™2s7!]
Luminosity x 10° [em2s7!]
[«)]

0 200 400 600 800 1000 0 260 460 660

00 800 1000
Number of collisions Number of collisions

Finite bunch length Excellent agreement
accurately represented with BeamBeam3D
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GHOST Benchmarking: Hourglass Effect

* When the bunch length o, = B*at the IP, it experiences a

geometric reduction in luminosity — the hourglass effect
(Furman 1991)

GHOST, 128k particles, 10 slices
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400 million turns in an MEIC ring for a bunch with 100k particles:
> 7 hours for non-symplectic tracking
~ 4.5 days for symplectic tracking
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Current and Future Efforts

 Beam-beam collisions on GPUs
* Finish implementation and optimize

* Other effects to be considered and implemented
e Synchrotron damping

Cooling of the proton beam by an electron beam
IBS

Space charge

Other options for collisions? (fast multipole)

Beam synchronization
(arbitrary arrangement of colliding bunches)
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Future Challenges: Beam Synchronization

 MEIC design has to deal with beam synchronization

* Non-pair-wise collisions of beams with different number of
bunches (N,, N,) in each collider ring (“gear-change”)
» Simplifies detection and polarimetry

. 20, 19 bunches
* Beam-beam collisions precess

 If N, and N, are incommensurate, . ...
. . . collision expt
all combinations of bunches collide 8
@

* Can create linear and non-linear ®Cgo g0 @ ©
instabilities
(Hirata & Keil 1990; Hao et al. 2014)

e Gear-change requires many collisions per crossing (~3420)
 The load can be alleviated by implementation on GPUs
 The information for all bunches stored: huge memory load
 More interesting computer science problem: truly parallel!
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Conclusion

e GHOST: code for long-term beam-beam simulations

 Efficiency for long-term simulations achieved by
 GPU implementation in CUDA C
* Beam-beam kicks modeled with Bassetti-Erskine approximation

 Comparison with existing codes instills confidence
* Symplectic and non-symplectic tracking equivalent to that of COSY Infinity
* Beam collision mode is in excellent agreement with BeamBeam3D

e SDDS-compliant (Borland 1998)

e GHOST is a modular platform for beam-beam simulations
e Easy implementation of new modules and functionalities
 Particular challenge: beam synchronization for MEIC
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Terzic

MEIC Design Parameters Used

Quantity Unit e~ beam p beam
Energy GeV 3 60
Collision frequency MHz 750
Particles per bunch 1010 2.5 0416
Beam current A 3.0 0.5
Energy spread 10—+ 0.71 0.3
rms bunch length mm 1.5 10
Horiz. bunch size at IP pm 234
Vertical bunch size at I[P um 4.7
Horiz.1 emit. (norm.) pm 53.5 0.35
Vertical emit. (norm.) pm 10.7 0.07
Horizontal 3* cm 10
Vertical 3* cm 2
Vertical beam-beam 0.029 0.0145
tune shift
Damping time turns 1516 =~ 2.4 x 107
(6.8 ms) (== 11000 s)
Synchrotron tune 0.045 0.045
Ring length m 1340.92 1340.41
Peak luminosity em s 0.562 = 10°*
Reduction (hourglass) 0.957
Peak luminosity cm s 0.538 = 10°*

with hourglass effect
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GHOST: Beam Collisions

e Code calibration and benchmarking
e Convergence with increasing number of slices N

Luminosity x10% [cm™2s7!]
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GHOST GPU Implementation
GHOST Tracking on 1 GPU

50

T T l' r
® Symplectic
® Non-symplectic °
40
0 o
c o
i: 30 +
©
(V)
N
'©
£ 20 O o
| -
®)]
< o
10 | o
° e
o
o °
O j . , .I 1 1 1 1 |
1 2 3 4 5 6 7 8 9

Order of Map

Terzié Beam-Beam Simulations on GPUs

20




