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Monte Carlo method III
A. Godunov

1. Random walks
2. Stochastic search and optimization
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Part : 1

Random Walks
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What is a random walk?

The original statement of a random walk was formulated in the context 
of a drunken sailor. If drunkard begins at the lamp post and takes 𝑁 
steps of equal length in random directions, how far will the drunkard be 
from the lamp post? The result is related to the diffusion!

There are very many versions of random walks

Random walks have multiple applications in

• Science: physics, chemistry, biology, … 

• Medicine (in particular, spread of inflectional diseases and effects of 
immunization)

• Engineering

• Economics

• Sociology

• …
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Books …

So many!
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Some of random walks

We will consider some of random walks (in one and/or two dimensions) 
with multiple applications

1) A simple random walk (all directions are equal)

2) A persistent random walk (probability depends on the previous step)

3) A self-avoiding random walk (the same site cannot be occupied twice)

4) A restricted random walk (walls or traps)

5) Correlated random walks (a connection between walkers)
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1) A Simple random walk

A simple random walk is a sequence of unit steps where each step is 
taken in the direction of one of the coordinate axis, and each possible 
direction has equal probability of being chosen. 

In one dimension 1D random walk there are two possible directions (left 
and right)

In two dimensions 2D there are four possible directions, e.g., a single 
step starting at the point with integer coordinates (𝑥, 𝑦)	would be 
equally likely to move to any of one of the four neighbors
(𝑥 + 1, 𝑦), (𝑥 − 1, 𝑦), (𝑥, 𝑦 + 1)	or (𝑥, 𝑦 − 1).	
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1D Random simple walk

A particle (the walker) starts at the origin (𝑥 = 0), and then steps (same 
length) are chosen randomly left or right with the same probability. 

After 𝑁 steps a position can be recorded as a function of 𝑁. 

Evaluating the average distance form the starting after many trials would 
give (the result can easily be derived using that each step is random and 
it is independent from a previous step)

< 𝑥 >≈ 0	 and	 < 𝑥! > ~𝑁.	

In many physical processes (such as the motion of a molecule in 
solution), the time between steps is approximately a constant, so that  
number of steps is roughly a proportional to time, then we can write 

< 𝑥! > ~𝐷𝑡,

where the factor 𝐷 is the diffusion constant.
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1D Random simple walk and diffusion
The one-dimensional diffusion equation can be written as

𝜕𝑝(𝑥, 𝑡)
𝜕𝑡

= 𝐷
𝜕!𝑝(𝑥, 𝑡)
𝜕𝑥!

where 𝐷 is the self-diffusion coefficient, and 𝑝 𝑥, 𝑡 𝑑𝑥 is the probability of 
a particle being in the interval between 𝑥 and 𝑥 + 𝑑𝑥 at time 𝑡.

The solution gives

𝑥!(𝑡) = 2𝐷𝑡

We can see that the random walk method gives the same time 
dependence.

While the diffusion equation can be solved numerically (e.g. Crank-
Nicholson method), it can be very challenging to treat complicated 
boundary conditions. 

Formulating the diffusion problem as a random walk is straightforward to 
incorporate various boundary conditions.
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2D Random walks

a) Type1: Simple random walk on a lattice: 
Four directions are possible left, right, up and down with equal 
probability 1/4. 
Same step-size (one random number is needed)

b) Type 2: Random directions but fixed step-size
Choose a random angle 𝜃 in 0, 2𝜋 , and set 

𝑥 = ℎ cos 𝜃 , 𝑦 = ℎ sin 𝜃
where ℎ is a fixed step size and 𝜃 is a variable 
angle (one random number is needed 𝜃"

c) Type 3: Random 𝑥"  and random 𝑦" : Random step-size 𝑥"
! + 𝑦"

!  and 

random direction (two random numbers are needed)
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2D Random walk on a lattice (C++)

// very simple code
integer*4 iu, it, is, itests, isteps, iway, x, y
 real*4 rand, d, dav
 read  (*,*) itests, isteps
 dav=0.0
 do it=1,itests
    x=0
    y=0
    do is=1,isteps
       iway= int(0.0+4.0*rand())
       if(iway.eq.0) x = x+1
       if(iway.eq.1) x = x-1
       if(iway.eq.2) y = y+1
       if(iway.eq.3) y = y-1
c        write(7,101) x,y
    end do
    d = sqrt((float(x))**2+(float(y))**2)
    dav = dav + d
 end do
 dav = dav/float(itests)
 write(*,100) itests, isteps, dav
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Average distance traveled 

The means square distance traveled from the starting point after 𝑁 steps
(averaged over K trials)

< 𝑅! 𝑁 >=
1
𝐾
D
#$%

&

𝑅#
!(𝑁)

where 𝑁 is a number of steps.

Root-mean-square distance for a constant step size

𝑅'() = 𝑅! 𝑁 ≈ 𝑁	

Root-mean-square distance for a variable step size 𝑟"
! = 𝑥"

! + 𝑦"
!

𝑅'() ≈ 𝑁𝑟'()

where 𝑟'() = 𝑟!   is the root-mean-square step size
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2D simple random walk
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2D simple random walk

-5 0 5 10 15 20
-5

0

5

10

15

20

2D random walk

 

 

y

x

14

Example

N    R_rms      R_rms/sqrt(N) 
   2    1.189395   0.841029  
   4    1.731610   0.865805  
   8    2.501420   0.884386  
  16    3.542654   0.885663  
  32    4.955683   0.876049  
  64    7.098192   0.887274  
 128   10.003223   0.884168  
 256   14.184277   0.886517  
 512   20.260120   0.895379  
1024   28.338716   0.885585  
2048   40.154944   0.887307  
4096   56.679889   0.885623 

𝑅'() ≈ 𝑁𝑟'()
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Random walk and shielding a reactor

During World War II scientists in Los Alamos (Manhattan 
project) had to find how far neutrons would travel in 
different materials. Results were important for the 
calculation of critical masses as well as shielding. 

The physicists knew most of the basic data and their 
dependences on the neutron energy, namely, the 
average distances between collisions of a neutron with 
an atomic nucleus, the probabilities of neutron elastic or 
inelastic scattering, probability of capture by an atomic 
nucleus, the energy loss of the neutrons after each 
collision. 

However, it was not clear how to use all this information 
to find a solution. Ulam and von Neumann solved the 
problem by a novel numerical approach i.e. simulating a 
path of a neutron using random numbers.
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2) Persistent random walk

In a persistent random walk, the transition probability depends on the 
previous step.

One of the earliest applications of a persistent random walk what to the 
study of diffusion in chromatographic  column.

Example for a walk on a lattice:  
A persistent random walk in 2 dimensions in a city with 𝑛×𝑛	blocks. 
Condition: the walker can not step back
Goal: find average number of steps to get out the city. Is it different from 
a simple random walk?
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Average number of blocks to go to 
leave the city with 24*24 blocks
from the center:     92 blocks
from a random point: 47 blocks
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3) Self avoiding random walk

Example: using random walk for studying protein growth

Note: A protein is a large biological molecule made up of molecular 
chains (the residues of amino acids). These chains are formed from 
monomers, that is, molecules that bind chemically with other molecules. 

Random walk is perfectly suited for modelling protein grows. 

However, the walk is restricted such that the only positions available 
after each step are the three neighboring sites (if random walk on a 
lattice), with the already-occupied sites excluded 

This is why this technique is known as a self-avoiding random walk.

Attention:  the walk stops when there are no empty neighboring sites 
available. 
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Examples for self avoiding RW on lattice
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Self avoiding random walk

Example: a polymer growth
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Practical application to protein grows

Protein chains consist of (H) and (P) monomers. The actual structure of 
a protein results from a folding process in which random coils of chains 
rearrange themselves into a configuration of minimum energy. 

Simulation: At each step, you randomly choose an H or a P monomer 
and drop it on the lattice, with your choice weighted such that H 
monomers are more likely than P ones. 

The goal of the simulation is to find the lowest energy state of an HP 
sequence of various lengths. 

The energy of a chain is defined as 

𝐸 = −𝜖𝑘

where 𝜖 is a positive constant and 𝑘 is the number of H–H neighbor not 
connected directly (P–P and H–P bonds do not count at lowering the 
energy). 
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4) Restricted random walk

Consider a one-dimensional lattice with traps sites at 𝑥 = 0	 and 𝑥 =
𝐿	(𝐿 > 0). A walker begins at a site 𝑥*  and takes unit steps to the left and 
right with equal probability. 

When the walker arrives at the trap side, it can no longer move. 

Do a Monte Carlo simulation and verify that the mean number of steps 𝜏 
for the particle to be trapped is given by 

𝜏 = 2𝐷 +%𝑥*(𝐿 − 𝑥*)

where 𝐷	is the self-diffusion coefficient in the absence of the traps, and 
the average is over all possible walks.

The problem is relevant to condense-matter physics (energy transport in 
solids)
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4) Restricted random walk (more)

Suppose that the trap sites are distributed it random on one dimensional 
lattice with density 𝜌. For example, if 𝜌 = 0.01, the probability that a site is 
a trap site is 1%. 

This site is a trap site if 𝑟 < 𝜌 where, as usual, 𝑟 is uniformly distributed in 
the interval 0 ≤ 𝑟 ≤ 1.

If a walker is placed at random at any non-trapping site, determine its 
mean survival time 𝜏, that is, the mean number of steps before a trap site 
is reached.

Of the major complication is that it is necessary to perform three averages: 
the distribution of traps, the origin of the walker, and the different walks for 
a given trap distribution and origin.
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5) Synchronized random walk

Randomly please two walkers on a one-dimensional lattice of 𝐿 site, so 
that both walkers are not at the same site. 

It each time step randomly choose whether the walkers move to the left 
or to the right. Both walkers move in the same direction. 

If a walker cannot move into choosing direction because it is at the 
boundary, then this walker remains at the same side for this time step.

The trail ends when both walkers are the same site. Find the mean time 
for two walkers to reach the same side. 

This model is relevant to a method of doing cryptography using neural 
networks.
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Part 2: 

Monte Carlo Optimization
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Areas

• Stochastic optimization 
or the problem of local minima.

• Swarm intelligence
or the ant colony optimization

• Genetic algorithms
Use Darwinian evolution of a gene pool 
to find the fittest genes

• Simulated annealing

• and many more …
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Example of  Problems Using Stochastic Search 
and Optimization 

• Place sensors in manner to maximize useful information

• Minimize the costs of shipping from production facilities to warehouses

• Maximize the probability of detecting an incoming warhead (vs. decoy) 
in a missile defense system

• Determine the times to administer a sequence of drugs for maximum 
therapeutic effect

• Find the best red-yellow-green signal timings in an urban traffic network

• Determine the best schedule for use of laboratory facilities to serve an 
organization’s overall interests
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Example 1

Find a configuration of 7 particles (interacting by Lenard-Jones potential) 
that has the lowest energy

Initial (random) configuration.                 Final configuration

-2 -1 0 1 2 3 4
-2

-1

0

1

2

3

4

-2 -1 0 1 2 3 4
-2

-1

0

1

2

3

4

29

Example 1

Find a configuration of 10 particles (interacting by Lenard-Jones potential) 
that has the lowest energy

Initial (random) configuration.                 Final configuration
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Example 1

Find a configuration of 19 particles (interacting by Lenard-Jones potential) 
that has the lowest energy

Initial (random) configuration.                 Final configuration
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Example 2

Solving 1D Schrodinger equation for a well potential
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Example 2

Solving 1D Schrodinger equation for harmonic oscillator potential
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Example 2

Solving 1D Schrodinger equation for Lennard-Jones potential
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Part : 4

Problems for a curious student
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1. Buffon’s needle

The French naturalist and mathematician Comte de Buffon showed that 
the probability that a needle of length L thrown randomly onto a grid of 
parallel lines with distance 𝐷 > 𝐿 apart intersects a line is ⁄2𝐿 (𝐷 ∗ 𝜋)

A part of a code …

c*** loop over trials
      hit = 0
      do it=1,itests
        x0 = float(N)*D*rand()   
        k = int(x0/D)
   x1 = x0 - D*float(k)
   x2 = D - x1 
   x = min(x1,x2) 
   dx = 0.5*abs(L*cos(1.0*pi*rand()))
   if(dx.ge.x) hit = hit + 1
 end do
c*** average number of hits
      ahit = float(hit)/float(itests)
      buffon = (2*L)/(pi*D)
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2. Conditional probability

Suppose that many people in the community tested at random for Covid. 
The accuracy of the test is 87%, and the incidence of the disease in the 
general population, independent of any test, is 1%.

A person tested positive for Covid, what is the probability that this person 
really has Covid? 

Comment: the answer is much less than 87%.
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3. The gambler's ruin problem.

Suppose that a person decides to try to increase the amount of money in 
his/her pocket by participating in some gambling. Initially, the gambler 
begins with $m in capital. The gambler decides that he/she will gamble 
until a certain goal, $n (n>m), is achieved or there is no money left 
(credit is not allowed). On each throw of a coin (roll of the dice, etc.) the 
gambler either win $1 or lose $1. If the gambler achieves the goal, 
he/she will stop playing. If the gambler ends up with no money he/she is 
ruined. 

What are chances for the gambler to achieve the goal as a function of k, 
where k=n/m? 

How long on average will it take to play to achieve the goal or to be 
ruined? 
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write (*,*)'enter numbers of tests, money and goal'
      read  (*,*) itests, money1, money2
c*** loop over trials
      total = 0
      wins = 0
      do it=1,itests
        x=money1
        games=0
        do while(x.gt.0.and.x.lt.money2)
           games = games + 1
           luck = 1
           if(rand().le.0.5) luck=-1
           x = x+luck
        end do
        total = total+games
        if(x.gt.0) wins = wins+1
      end do
c*** average number of games and wins
      agames = float(total)/float(itests)
      awins = float(wins)/float(itests)
 aloose = 1.0-awins
      write (*,100) itests, money1, money2
      write (*,101) awins, aloose, agames
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If a chance to win in each bet 50/50

 The gambler`s ruin problem.
 Chances to reach certain goal
 enter numbers of tests, money and goal
10000
10
100

 tests:     10000
 initial:      10
 goal:        100
 win   =   1.026E-01         chance to win is about 10% 
 loose =   8.974E-01
 games =   9.019E+02
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If a chance to win in each bet 49/51

 The gambler`s ruin problem.
 Chances to reach certain goal
 enter numbers of tests, money and goal
10000
10
100

 tests:    100000
 initial:      10
 goal:        100
 win   = 9.44000E-03          chance to win is about 0.9% 
 loose = 9.90560E-01
 games = 4.51806E+02
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4. Cooking burgers

An industrious physics major finds a job at a local fast food restaurant to help 
him pay his way through college. His task is to cook 20 hamburgers on a grill at 
any one time. When a hamburger is cooked, he is supposed to replace it with 
uncooked hamburger. However, our physics major does not pay attention to 
whether the hamburger is cooked or not. His method is to choose a hamburger 
at random and replace it by an uncooked one. He does not check if the 
hamburger that he removes from the grill is ready. 

What is the distribution of cooking times of the hamburgers that he removes? 

What is a chance for a customer to get a well cooked hamburger if it takes 5 
minutes to cook a hamburger. 

Does the answers to the first two questions change if he cooks 40 hamburgers at 
any one time? 

Comment: For simplicity, assume that he replaces a hamburger at a regular 
interval of 30 seconds and there is an indefinite supply of uncooked hamburgers.

42



8

Example

 for 100,000 burgers

 20 burgers on the grill
 max cooking time =   237
 undercooked = 0.39941001
 well cooked = 0.25903001
 over cooked = 0.34156001

 40 burgers on the grill
 max cooking time =   463
 undercooked = 0.22596000
 well cooked = 0.18769000
 over cooked = 0.58635002
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5. Let’s make a deal

Investigate a simple problem that generated much attention several years ago 
and for which many mathematicians obtained an incorrect solution. The problem 
was the analysis of the optimal strategy in a television game show popular at the 
time. The show was Let’s Make a Deal with host Monty Hall. At some point in the 
show, a contestant was given a choice of selecting one of three possible items, 
each concealed behind one of three closed doors. The items varied considerably 
in value. After the contestant made a choice but before the chosen door was 
opened, the host, who knew where the most valuable item was, would open one 
of the doors not selected and reveal a worthless item. The host would then offer 
to let the contestant select a different door from what was originally selected. 
The question, of course, is should the contestant switch? A popular magazine 
writer Marilyn vos Savant concluded that the optimal strategy is to switch. This 
strategy is counterintuitive to many mathematicians, who would say that there is 
nothing to be gained by switching; that is, that the probability of improving the 
selection is 0.5. Study this problem by Monte Carlo methods. What is the 
probability of improving the selection by switching? Be careful to understand all 
of the assumptions, and then work the problem analytically also. (A Monte Carlo 
study is no substitute for analytic study.) 
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c*** loop over trials
      win1 = 0
 win2 = 0
      do it=1,itests
        a(1) = rand()
   a(2) = rand()
        a(3) = rand()
        choice = 1 + int(3.0*rand())
   b(1) = a(choice)
   if(choice.eq.1) b(2) = max(a(2),a(3))
   if(choice.eq.2) b(2) = max(a(1),a(3))
   if(choice.eq.3) b(2) = max(a(1),a(2))
        if(b(1).ge.b(2)) then
      win1 = win1 + 1
      else
      win2 = win2 + 1
   end if
      end do
c*** average number of games and wins
      awin1 = float(win1)/float(itests)
      awin2 = float(win2)/float(itests)
      write (*,101) awin1, awin2

Lets make a deal
 enter numbers of tests
 10000
 win1 =   3.359E-01
 win2 =   6.641E-01
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