
Chapter 11

The Eigenvalue Problem

11.1 Introduction

Applications of the eigenvalue problem can be found in practically every field of physics,

from classical to quantum, mechanics. (more specific examples: structure calculations in

in atomic, molecular, nuclear and solid state physics). Discretization of some types of

ordinary and partial di↵erential equation also leads to the eigenvalue problem in linear

algebra.

Let’s recollect some rudimentary knowledge from courses of linear algebra. If A is a

square matrix of order n, then the eigenvalue problem is presented as

A~x = �~x, (11.1)

or as a system of linear equations

a11x1 + a12x2 + . . .+ a1nxn = �x1

a21x1 + a22x2 + . . .+ a2nxn = �x2

. .

an1x1 + an2x2 + . . .+ annxn = �xn.

(11.2)

The system (11.2) looks like a regular linear system of equations. However, there is

substantial di↵erence between the eigenvalue problem and solving a linear system of

equations. For the eigenvalue problem the scalars �’s are unknown, and solutions for

the system (11.2) exist only for specific values of �. These values are called eigenvalues.

A vector ~x corresponding to an eigenvalue � is an eigenvector.

29

30 Chapter 11. The Eigenvalue Problem

Regrouping terms in the system (11.2) gives a system of homogeneous linear equa-

tions
0

BBB@

a11 � � a12 . . . a1n

a21 a22 � � . . . a2n

. .

an1 an2 . . . ann � �

1

CCCA

0

BBB@

x1

x2

. . .

xn

1

CCCA
=

0

BBB@

0

0

. . .

0

1

CCCA
, (11.3)

Introducing a unit matrix I, which is

I =

0

BBB@

1 0 · · · 0

0 1 · · · 0

· · · · · · · · · · · ·
0 0 · · · 1

1

CCCA
(11.4)

the system of linear equations (11.3) may also be written as

(A� �I)~x = 0. (11.5)

Nontrivial solutions for the system (11.5) exists if and only if the determinant of the

matrix (A� �I) to be zero, that is

det |A� �I| = 0. (11.6)

If expanded, the determinant (11.6) is a characteristic polynomial of degree n in �.

It has n eigenvalues �i (i = 1, 2, . . . , n), including multiple roots. Since a polynomial

can have not only real but complex roots as well, the eigenvalues can be real and/or

complex. It has been proved, that it is not possible to compute roots of a polynomial

for n > 4 in a finite number of steps. Therefore, all numerical methods for finding

eigenvalues are iterative. Than makes the eigenvalue problem in linear algebra di↵erent

form other linear problems. All other linear problems can be solved in a finite number

of calculations.

There are many methods for solving the eigenvalue problem. The direct solution

of the characteristic equation derived from equation (11.6) would yield n roots (eigen-

values). Then, the eigenvectors ~x, can be calculated by substituting the individual

eigenvalues � into the homogeneous system of equations (11.3). Looking straightfor-

wardly, this approach is rarely used in practice, unless n the matrix is very small. If

one only eigenvalue is needed (the largest or the smallest in absolute value), then the

11.1. Introduction 31

iterative power method is a practical approach. The power method is based on the

repetitive matrix multiplication of a trial eigenvector ~y by matrix A, which eventually

yields the largest eigenvalue. Most methods for finding the eigenvalues and eigenvectors

are based on the fact that the transformation

A
0 = R

�1
AR (11.7)

does not alter the eigenvalues of A. It is also called as the similarity transforma-

tion. This property can be easily demonstrated using determinant properties. Since

det(AB) = det(A) det(B) and det(A�1) = (det(A))�1) then det(A0) = det(R�1
AR) =

det(R�1) det(A) det(R) and using the property for the inverse matrices det(A0) = det(A) det(R�1) det(R) =

det(A). With a proper similarity transformation it is possible to transform matrix A to

the diagonal or triangular form. Then the problem is solved, since the eigenvalues can

be read from the diagonal. The process is iterative and its convergence depends on the

type of a matrix (may add the definition for the determinant for these kind of matrices).

The Jacobi method for symmetric matrices transforms matrix A to its diagonal form by

iterative rotation transformations, that is a subset of similarity transformations. The

most e�cient methods for solving the eigenvalue problem employ a two-step approach.

As the first step, a similarity transformation is used to to reduce the original matrix

to tridiagonal or Hessenberg form. It can be done in a finite number of steps. Then,

using one of factorization methods (e.g. the QR method) all the eigenvalues are com-

puted. The factorization methods converge faster for these specific matrices (tridiagonal

or Hessenberg).

Since there are many forms of matrices, there is no single method that is universally

suitable. The choice of a proper method for attacking the eigenvalue problem depends

of the form of matrix A, the matrix dimension n, whether we need one or all eigenvalues.

The most e�cient methods are tailored to the form of a matrix. For example, many

applications in physics deal with symmetric matrices with real coe�cients, or Hermitian

matrices.

In this chapter we will mostly work with this kind of matrices.

Comment on eigenvectors: Even so, this x is determined only up to a proportionality

factor, since the homogeneity of our equations permits any solution to be multiplied by

an arbitrary constant and still remain a solution. Geometrically, our solution vector x

has a unique direction but indeterminant length.

32 Chapter 11. The Eigenvalue Problem

11.2 The power method

In some applications we are interested in one or few of the eigenvalues. For example, in

quantum mechanical structure calculations we often need only to evaluate the ground

state energy (that is the largest negative eigenvalue).

In this section we consider a symmetric n⇥nmatrix A with real coe�cients, and hav-

ing n eigenvalues. Most of equations in this section continue to be correct for asymmetric

matrices, till the largest eigenvalue is a real number. In case of complex eigenvalues, the

equations presented in this section are to be modified, or methods specifically designed

for comples eigenvalues are to be used.

11.2.1 The basic power method

Without simplifying the consideration, we may assume, that the eigenvalues are aligned

in decreasing order |�1| > |�2| > . . . |�n|. The n eigenvectors of a nonsingular matrix

span the n-dimensional space. (The eigenvectors of a symmetric matrix are mutually

orthogonal). The power method is based on the fact that any arbitrary vector in the

n-dimensional space may be expressed as a linear combination of the eigenvectors of the

matrix A, as

~y =
nX

i=1

ci~xi, (11.8)

where ~x is a set of eigenvectors.

Multiplying both sides of (11.8) by A, AA, . . ., A(k), and using that A~x = �~x we

obtain

A~y =
nX

i=1

ciA~xi =
nX

i=1

ci�i~xi = ~y(1) (11.9)

AA~y = A~y(1) =
nX

i=1

ci�iA~xi =
nX

i=1

ci�
2
i~xi = ~y(2) (11.10)

. . .

A
(k)
~y = A~y(k�1) =

nX

i=1

ci�
k�1
i A~xi =

nX

i=1

ci�
k
i ~xi = ~y(k). (11.11)

Thus, each multiplication by A changes the previous vector to a new one

~y(k+1) = A~y(k). (11.12)

11.2. The power method 33

Factoring out �k
1 in (11.11) we may write

A
(k)
~y = �

k
1

nX

i=1

ci

✓
�i

�1

◆k

~xi = �
k
i

"
c1~x1 + c2

✓
�2

�1

◆k

~x2 + . . .+ cn

✓
�n

�1

◆k
#

(11.13)

Since �1 is the largest eigenvalue in absolute value, then all (�i/�k)k ! 0 for i =

2, 3, . . . , n as k ! 1. Thus, we may write

~y(k) = �
k
i c1~x1. (11.14)

The repeated pre-multiplication of an arbitrary vector ~y by matrix A would result in

computing the largest eigenvalue, since for k ! 1

~y(k+1) = �1~y(k). (11.15)

For the algorithm to be practical we need to take into account that the repeated

pre-multiplication results in unconstrained grows of the length of ~y(k), while changing

its direction rather slowly. The problem can be addressed by a normalization between

iterations, that preserves the direction of ~y(k) but rescale the length. In older textbooks,

for in hand calculations, it was recommended to make the largest component of ~y(k)
equal to unity. For computer calculations we may normalize the length of the vector

~y(k) to unity at each iteration, treating all components of the vector symmetrically.

The convergence of the iterative process is proportional to the ratio �2/�1, where �2

is the next largest in magnitude eigenvalue. It is clear that the power method fails if the

ratio of the first two eigenvalues is ±1. If the two first eigenvalues are very close (but not

identically equal), the iterative process would be very slow to be practical. Therefore

for the power method to be e�cient, the largest eigenvalue must be distinct. Besides,

the initial guess for the trial vector ~y must have some component of the eigenvector ~x

corresponding to �1. It is common to choose all the components of the trial vector as

equal to unity.

example - hand in calculations for 3x3 matrix The reader should try this iteration

on the matrix ... starting with [1,0,0] and carrying out about five iterations,

Program 11.1. The Power method for symmetric matrices

subroutine Power(a,y,lambda,eps,n,iter)

!==

! Evaluate the largest eigenvalue and corresponding eigenvector

! of a real matrix a(n,n): a*x = lambda*x

34 Chapter 11. The Eigenvalue Problem

! method: the power method

! comment: the program works for real values only

! Alex G. (December 2009)

!--

! input ...

! a(n,n) - array of coefficients for matrix A

! x(n) - initial vector

! n - number of equations

! eps - convergence tolerance

! output ...

! lambda - eigenvalue (the largest modulus)

! x(n) - eigenvector corresponding to lambda

! iter - number of iterations to achieve the tolerance

! comments ...

! kmax - max number of allowed iterations

!==

implicit none

integer n, iter

double precision a(n,n),y(n),lambda, eps

double precision yp(n),lambda0, norm

integer k, i, j

integer, parameter::kmax=1000

lambda0=0.0

do k=1,kmax

! compute y’=A*y

do i=1,n

yp(i)=0.0

do j=1,n

yp(i) = yp(i)+a(i,j)*y(j)

end do

end do

! normalization coefficient

norm = 0.0

do i=1,n

norm = norm + yp(i)*yp(i)

end do

norm = sqrt(norm)

! normalize vector y(n) to unity for the next iteration

do i=1,n

11.2. The power method 35

y(i)=yp(i)/norm

end do

lambda = norm

! check for convergence

if (abs(lambda-lambda0) < eps) exit

! prepare for the next iteration

lambda0 = lambda

end do

iter = k

if(k == kmax) write (*,*)’The eigenvlue failed to converge’

end subroutine Power

Example 11.1. Solution by the Power method

The largest eigenvalues (Power method)

Matrix A

1.000000 2.000000 3.000000

2.000000 2.000000 -2.000000

3.000000 -2.000000 4.000000

Initial vector

1.000000 1.000000 1.000000

The largest eigenvalue

6.000000

Eigenvector

0.436487 -0.218143 0.872865

iterations = 18

Have comments for arbitrary matrices - see comments at the end

11.2.2 The shifted power method

The eigenvalues � of a matrix A may all be shifted by a scalar s by subtracting it from

the main diagonal elements of A. Thus

(A� sI)~x = (�� s)~x, (11.16)

36 Chapter 11. The Eigenvalue Problem

and

B~x = �~x, (11.17)

where the new eigenvalue problem (11.17) has the same eigenvectors, and the old and

new eigenvalues are connected in a simple way � = �� s.

Shifting the eigenvalues of a matrix is very useful in finding the the opposite extreme

eigenvalue, accelerating the convergence, and even to find intermediate eigenvalues.

Suppose a matrix A has five eigenvalues, for example 1, 4, 9, 16, 25. Using the

direct power method we may find the largest eigenvalue, that is 25. Then, shifting the

eigenvalues by this amount s=25 would result in a set of the following eigenvalues for

the shifted matrix -24, -21, -16, -9, 0. Applying the basic power method to the shifted

matrix B yields the largest (in absolute scale) eigenvalue � = �24, that corresponds

to � = 1. Thus, the shifting provides the power method with a tool to find both the

largest and the smallest eigenvalues of a matrix.

The convergence rate of the power method for the original matrix A is the ratio of

the largest to the second largest eigenvalue, i.e. 25/16 ' 1.56. What would happen if we

shift the above eigenvalues 1, 4, 9, 16, 25 by a smaller amount, for example s=5. Then

the new set of � is -4, -1, 4, 11, 20, and the convergence rate accelerates 20/11 ' 1.82.

Thus if our iterative process seems to be slow, we may shift the eigenvalues by some

amount, and continue iterations. If the convergence speeds up, we may try to shift more,

if it gets worse, we may shift in the opposite direction. This approach was popular in

the times of the in hand calculations, however, it is still useful in computer calculations.

11.2.3 The inverse power method

In many physics applications the eigenvalues are arranged in non-linear manner. For

example, energy spectrum (eigenvalues) of most quantum systems (atoms, molecules,

nuclei) have rather a distinct ground state (the most negative eigenvalue), with most

excited states concentrated closer to the zero. Therefore, shifting in by the ground

state energy will bring the smallest eigenvalue �n to the largest eigenvalue �1, but the

next eigenvalue �2 could be so close to the first one, that the convergence rate may be

impractical. For the example above, the shifting by s=25, yields a slower convergence

24/21 ' 1.14 for finding the smallest eigenvalue.

The inverse power method, that is a variation of the basic power method, is more

11.3. The Jacobi Method (Symmetric Matrices) 37

powerful way to find the smallest distinct eigenvalue. In the original eigenvalue problem

A~x = �~x (11.18)

we multiple both sides by the inverse matrix A
�1

A
�1
A~x = ~x = �A

�1
~x, (11.19)

hence

A
�1
~x =

1

�
~x. (11.20)

The inverted matrix has the same eigenvectors as A, but inverted eigenvalues. Evidently,

the power method applied to the inverse matrix yields the largest 1/�, that corresponds

to the smallest (in absolute value) eigenvalue of matrix A. In practical calculations.

As we recall from chapter 6, the LU Doolittle factorization is an e�cient technique to

compute the matrix A
�1.

Using together the inverse power method with the shifted power method makes

possible to find other eigenvalues. We consider the same example with five eigenvalues 1,

4, 9, 16, 25 of A. Suppose we already calculated the largest and the smallest eigenvalues,

i.e. 1 and 25. If we shift the eigenvalues by s=(25-1)/2=12, then the shifted set is -11, -8,

-3, 4, 13. Applying the inverse power method yields the smallest eigenvalue in absolute

value, that is -3, corresponding to the middle eigenvalue in the original set � = 9. The

methods sounds as feasible, however rarely use to find more that few eigenvalues. There

are more e�cient methods to find all eigenvalues of a matrix.

11.3 The Jacobi Method (Symmetric Matrices)

The power method with variations is a simple and fast method for computing the largest

and the smallest eigenvalues, provided they are well distinct from the adjusted eigen-

values. We need a di↵erent approach if all the eigenvalues are to be computed. Most

numerical method for calculating all the eigenvalues and eigenvectors are based on sim-

ilarity transformations.

A ! Q
�1
AQ or A ! QAQ

�1
. (11.21)

It is easy to demonstrate that similarity transformation preserves eigenvalues of A. We

start with the eigenvalue equation

A~x = �~x (11.22)

38 Chapter 11. The Eigenvalue Problem

and multiply both sides by inverse matrix Q
�1

Q
�1
A~x = �Q

�1
~x. (11.23)

Defining a new vector ~y

Q
�1
~x = ~y (11.24)

we get

~x = Q~y, (11.25)

and then substituting it to (11.23)

Q
�1
AQ~y = �Q

�1
Q~y = ~y. (11.26)

Thus the matrix Q
�1
AQ has the same eigenvalues, but di↵erent eigenvectors. Methods

based on similarity transformation attempt to to find muticesQ such that matrixQ�1
AQ

has a form, that makes simple/easy to evaluate the eigenvalues.

There are various types (classes?) of similarity transformations. The orthogonal

transformation is one of the most popular transformation in the eigenvalue problem. In

this case the transpose matrix Q
T is equal to its inverse matrix Q

�1. The orthogonality

transformation Q
�1AQ preserves both eigenvalues and symmetry of original A. One

of the simples orthogonal transformation is the plane rotation. In 1846 Jacobi applied

the plane rotation transformation to calculate all the eigenvalues and eigenvector of real

symmetric and Hermitian matrices.

The Jacobi method iteratively uses orthogonal similarity transformations

Ak+1 = R
�1
k AkRk (11.27)

to transform the original matrix A to a diagonal form. Then the eigenvalues are the

diagonal elements. The R matrices are the plane rotational matrices (also called Givens

rotational matrices), where for Ri,j the diagonal elements ri,i = rj,j = c, all the other

diagonal elements are unity, and for o↵-diagonal elements ri,j = �rj,i = s, all other

o↵-diagonal elements are zero. The coe�cients c and s satisfy the following condition

c
2 + s

2 = 1. For example 5⇥ 5 matrix R2,4 has the following form
0

BBBBBB@

1 0 0 0 0

0 c 0 s 0

0 0 1 0 0

0 �s 0 c 0

0 0 0 0 1

1

CCCCCCA
. (11.28)

11.3. The Jacobi Method (Symmetric Matrices) 39

The Givens rotational matrices have the following property R
�1
i,j = R

T
i,j where R

T
i,j is the

transpose matrix. Thus Ri,j is orthogonal since R
T
i,jRi,j = Ri,jR

T
i,j = I.

We consider in detailes the transformation R
T
i,jARi,j. The pre-multiplication R

T
i,jA

has the e↵ect of replacing rows i and j by linear combination of the original rows i and

j, while ARi,j changes only columns i and j. In the transformed matrix A
0 we are most

interested in the two diagonal elements a0i,i, a
0
j,j, and two o↵-diagonal elements a0i,j and

a
0
j,i. They follow the transformation

a
0
i,i = c

2
ai,i + s

2
aj,j � 2scai,j (11.29)

a
0
j,j = s

2
ai,i + c

2
aj,j + 2scai,j (11.30)

a
0
i,j = (c2 � s

2)ai,j + sc(ai,i � aj,j) = a
0
j,i. (11.31)

The other a↵ected elements are

a
0
k,i = cak,i � sak,j (k 6= i, k 6= j) (11.32)

a
0
k,j = cak,j + sak,i (k 6= i, k 6= j) (11.33)

but we are not interested in these.

We want to choose the coe�cients c and s so that the o↵-diagonal elements a
0
i,j =

a
0
j,i = 0. Then from equation (11.31) follows that

(c2 � s
2)ai,j + sc(ai,i � aj,j) = 0 (11.34)

or

c
2 � s

2

sc
=

aj,j � ai,i

ai,j
= 2� (11.35)

Since c
2 + s

2 = 1 we may eliminate s from (11.35) and after simple algebra

c
4 � c

2 +
1

4(1 + �2)
= 0 (11.36)

Solving the quadratic equations for c2 we get for the coe�cients c and s

c =

✓
1

2
� �

2(1 + �2)1/2

◆1/2

(11.37)

s =

✓
1

2
+

�

2(1 + �2)1/2

◆1/2

(11.38)

40 Chapter 11. The Eigenvalue Problem

The good news - choosing the coe�cients from (11.37,11.38) we may bring zero into

any o↵-diagonal position i, j, while preserving the eigenvalues, and the symmetry of the

matrix. The bad news - on the next transformation the zero elements will be transformed

to non-zero. It looks like we do not gain much. However, there is a theorem stating that

when the symmetric matrix A is transformed into R
T
i,jARi,j, with Ri,j chosen so that

a
0
i,j = 0, the sum of the squares of the diagonal elements increases by 2a2i,j, while the sum

of squares of the o↵-diagonal elements decreases by the same amount. (a reference?).

Thus, we make steady progress toward the diagonalization. (more here?)

There are a couple ways to practically implement the Jacobi method to transfer

a real symmetric matrix to near diagonal form (within accepted tolerance). First, we

may use a systematic way to treat ((ai,j, j = i + 1, . . . , n), i = 1, 2, . . . , n � 1) till all

o↵-diagonal elements are small. This way is definitely slow since we will zero in elements

that are already small. Second, we search for the largest (in absolute value) o↵-diagonal

element and transform it to zero (the original Jacobi method). It could be e�cient for

”in hand calculations” but not for real computing. Finding the largest element takes

O(n2) operations, while the transformation (11.27) takes about O(n) operations. The

third, and the most e�cient way would be to check all the o↵-diagonal elements in a

systematic order, but zeroing only those whose squares |ai,j|2 is more that a half of the

current average for all average for all o↵-diagonal. (place a condition here).

The convergence of the iterative process is at least linear, when far from the solution,

and quadratic, when close to the solution.

Here goes the algorithm

Algorithm 7.1 The Jacobi method for ...

Step 1: ...

Program 11.2. the Jacobi method for symmetric matrices

subroutine Jacobi(a,x,abserr,n)

!===

! Evaluate eigenvalues and eigenvectors

! of a real symmetric matrix a(n,n): a*x = lambda*x

! method: Jacoby method for symmetric matrices

!---

! input ...

! a(n,n) - array of coefficients for matrix A

! n - number of equations

! abserr - abs tolerance [sum of (off-diagonal elements)^2]

11.3. The Jacobi Method (Symmetric Matrices) 41

! output ...

! a(i,i) - eigenvalues

! x(i,j) - eigenvectors

! comments ...

!===

implicit none

integer i, j, k, n

double precision a(n,n),x(n,n)

double precision abserr, b2, bar

double precision beta, coeff, c, s, cs, sc

! initialize x(i,j)=0, x(i,i)=1

! *** the array operation x=0.0 is specific for Fortran 90/95

x = 0.0

do i=1,n

x(i,i) = 1.0

end do

! find the sum of all off-diagonal elements (squared)

b2 = 0.0

do i=1,n

do j=1,n

if (i.ne.j) b2 = b2 + a(i,j)**2

end do

end do

if (b2 <= abserr) return

! average for off-diagonal elements /2

bar = 0.5*b2/float(n*n)

do while (b2.gt.abserr)

do i=1,n-1

do j=i+1,n

if (a(j,i)**2 <= bar) cycle ! do not touch small elements

b2 = b2 - 2.0*a(j,i)**2

bar = 0.5*b2/float(n*n)

! calculate coefficient c and s for Givens matrix

beta = (a(j,j)-a(i,i))/(2.0*a(j,i))

coeff = 0.5*beta/sqrt(1.0+beta**2)

s = sqrt(max(0.5+coeff,0.0))

42 Chapter 11. The Eigenvalue Problem

c = sqrt(max(0.5-coeff,0.0))

! recalculate rows i and j

do k=1,n

cs = c*a(i,k)+s*a(j,k)

sc = -s*a(i,k)+c*a(j,k)

a(i,k) = cs

a(j,k) = sc

end do

! new matrix a_{k+1} from a_{k}, and eigenvectors

do k=1,n

cs = c*a(k,i)+s*a(k,j)

sc = -s*a(k,i)+c*a(k,j)

a(k,i) = cs

a(k,j) = sc

cs = c*x(k,i)+s*x(k,j)

sc = -s*x(k,i)+c*x(k,j)

x(k,i) = cs

x(k,j) = sc

end do

end do

end do

end do

return

end

Example 11.2. Solution by the Jacobi method

Eigenvalues and eigenvectors (Jacobi method)

Matrix A

1.000000 2.000000 3.000000

2.000000 2.000000 -2.000000

3.000000 -2.000000 4.000000

Eigenvalues

-2.541381 3.541381 6.000000

Eigenvectors

-0.703413 -0.561011 0.436436

0.522158 -0.824459 -0.218218

0.482246 0.074391 0.872872

The Jacobi method is about 10 times slower comparing to ... However, the Jacobi

11.4. The basic QR method 43

method is invaluable when accuracy, reliability, and simplicity of calculations are more

important than time.

11.4 The basic QR method

The QR method employs orthogonal transformations to transform matrix A into a

triangular form. On the first step matrix A is factorized as

A = QR, (11.39)

where columns matrix Q form a set of orthogonal (mutually orthogonal) vectors ~q,

and matrix R is the upper triangular matrix, whose elements are the vector products

ri,j = ~Q
T
i ~aj. Here ~aj is column j of matrix A. Once Q and R are evaluated, a new A

0

is calculated as

A
0 = RQ. (11.40)

Matrices A and A
0 are connected by similarity transformation, and share the same

eigenvalues. Multiplying from the left (11.39) by Q
�1 we have

Q
�1
A = Q

�1
QR = R. (11.41)

Multiplying (11.41) from the right by Q yields

Q
�1
AQ = RQ = A

0
. (11.42)

Vectors ~q of matrix Q are evaluated using Gram-Schmidt orthogonalization process.

The first vector ~q1 is a normalized vector ~a1

~q1 = ~a1/k~a1k, (11.43)

where

k~ajk =
�
a
2
j1 + a

2
j2 + · · ·+ a

2
jn

�1/2
. (11.44)

The rest vectors ~qj are evaluated as

~a0j = ~aj �
j�1X

m=1

(~qTm~aj)~qm (j = 2, . . . , n), (11.45)

44 Chapter 11. The Eigenvalue Problem

and

~qj = ~a0j/k~a0jk. (11.46)

The diagonal coe�cients of the upper triangular matrix R are

rj,j = k~a0jk (j = 1, . . . , n), (11.47)

the o↵-diagonal coe�cients are

ri,j = ~q
T
i ~aj (i = 1, . . . , n, j = i+ 1, . . . , n). (11.48)

add more details + iterations

Program 11.3. the QR method for symmetric matrices

subroutine QRbasic(a,e,eps,n,iter)

!==

! Compute all eigenvalues: real symmetric matrix a(n,n,)

! a*x = lambda*x

! method: the basic QR method

! Alex G. (January 2010)

!--

! input ...

! a(n,n) - array of coefficients for matrix A

! n - dimension

! eps - convergence tolerance

! output ...

! e(n) - eigenvalues

! iter - number of iterations to achieve the tolerance

! comments ...

! kmax - max number of allowed iterations

!==

implicit none

integer n, iter

double precision a(n,n), e(n), eps

double precision q(n,n), r(n,n), w(n), an, Ajnorm, sum, e0,e1

integer k, i, j, m

integer, parameter::kmax=1000

! initialization

q = 0.0

11.4. The basic QR method 45

r = 0.0

e0 = 0.0

do k=1,kmax ! iterations

! step 1: compute Q(n,n) and R(n,n)

! column 1

an = Ajnorm(a,n,1)

r(1,1) = an

do i=1,n

q(i,1) = a(i,1)/an

end do

! columns 2,...,n

do j=2,n

w = 0.0

do m=1,j-1

! product q^T*a result = scalar

sum = 0.0

do i=1,n

sum = sum + q(i,m)*a(i,j)

end do

r(m,j) = sum

! product (q^T*a)*q result = vector w(n)

do i=1,n

w(i) = w(i) + sum*q(i,m)

end do

end do

! new a’(j)

do i =1,n

a(i,j) = a(i,j) - w(i)

end do

! evaluate the norm for a’(j)

an = Ajnorm(a,n,j)

r(j,j) = an

! vector q(j)

do i=1,n

q(i,j) = a(i,j)/an

end do

end do

! step 2: compute A=R(n,n)*Q(n,n)

46 Chapter 11. The Eigenvalue Problem

a = matmul(r,q)

! egenvalues and the average eigenvale

sum = 0.0

do i=1,n

e(i) = a(i,i)

sum = sum+e(i)*e(i)

end do

e1 = sqrt(sum)

! check for convergence

if (abs(e1-e0) < eps) exit

! prepare for the next iteration

e0 = e1

end do

iter = k

if(k == kmax) write (*,*)’The eigenvlue failed to converge’

end subroutine QRbasic

function Ajnorm(a,n,j)

implicit none

integer n, j, i

double precision a(n,n), Ajnorm

double precision sum

sum = 0.0

do i=1,n

sum = sum + a(i,j)*a(i,j)

end do

Ajnorm = sqrt(sum)

end function Ajnorm

Example 11.3. Solution by the QR method

QR basic method - eigenvalues for A(n,n)

Matrix A

1.000000 2.000000 3.000000

2.000000 2.000000 -2.000000

3.000000 -2.000000 4.000000

The eigenvalues

11.5. Practical methods 47

6.000000 3.541381 -2.541381

iterations = 21

11.5 Practical methods

Three parameters are important for practical algorithms: (1) convergence, (2) stability,

and (3) e�ciency.

Given’s method utilizes the same kind or rotational matrix transformations, however,

the technique does not destroy any zeros which were created in the previous transforma-

tions. Unlike in Jacobi method, we use (c,s) rotation to zero in the (c-1,s) element with

c = 1, 2, . . . , n� 1 and s = c + 2, c + 3, . . . , n). The end result of the rotations is not a

diagonal matrix, but a tridiagonal one. The eigenvalues of a tridiagonal matrix are then

calculated using a Sturmanian recursive sequence of polynomials. The total number of

multiplications to calculate all the eigenvalues in this approach is 4n3
/3. However, there

is even faster method. Householder’s method also uses orthogonal transformations to

reduce a symmetric matrix to tridiagonal form. Unlike Given’s method, Householder

method produces them a row at a time. The method is much more complicated compu-

tationally, but works faster than other methods. Both Given’s and Householder methods

are extremely stable.

It is worth to mention about other e�cient methods. The LR method involves

repeated factorization to bring the original matrix A into a product of left-triangular,

and right-triangular matrices A = LU . It works the same way as Gaussian elimination.

The LR decomposition works fast, but it is not very stable. Another decomposition, an

exceedingly stable one, is QR algorithm.

Other methods: Faddeev-Leverrier, Lanczos

11.6 Problems

1. Modify the program ”Power” in this chapter to carry out calculations with the

shifted power method.

2. Using routines from this chapter and chapter ”Systems of linear equations”, write

a program that calculates the smallers eigenvalue (the inverse power method)

3. Using the QRbasic routine together with one of programs from chapter ”Systems

48 Chapter 11. The Eigenvalue Problem

of linear equations”, write a code that calculates all eigenvalues and eigenvectors

of a symmetric matrix with real coe�cients.

4. plus some numerical calculations ...

