
Chapter 10

Systems of Linear Equations

10.1 Introduction

Systems of linear equations hold a special place in computational physics, chemistry,

and engineering. In fact, multiple computational problems in science and technology

can be mathematically expressed as a linear system. Most methods in computational

mathematics for solving systems of partial di↵erential equations (PDE), integral equa-

tions, and boundary value problems in ordinary di↵erential equations (ODE) utilize

the Finite Di↵erence Approximation, e↵ectively replacing the original di↵erential and

integral equations on systems of linear equation. Additionally, other applications of

systems of linear equations in numerical analysis include the linearization of systems of

simultaneous nonlinear equations, and the fitting of polynomials to a set of data points.

A system of linear equations has the following form

a11x1 + a12x2 + a13x3 + . . .+ a1nxn = b1

a21x1 + a22x2 + a23x3 + . . .+ a2nxn = b2

. .

an1x1 + an2x2 + an3x3 + . . .+ annxn = bn

(10.1)

where xj(j = 1, 2, . . . , n) are unknown variables, aij(i, j = 1, 2, . . . , n) are the coef-

ficients, and bi(i = 1, 2, . . . , n) are the nonhomogeneous terms. The first subscript i

identifies the row of the equation and the second subscript j identifies the column of the

1

2 Chapter 10. Systems of Linear Equations

system of equations. The system (10.1) can also be written as a matrix equation

0

BBB@

a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n

.

an1 an2 an3 . . . ann

1

CCCA

0

BBB@

x1

x2

. . .

xn

1

CCCA
=

0

BBB@

b1

b2

. . .

bn

1

CCCA
, (10.2)

or in a compact form as Ax = b

Methods for solving linear systems are normally taught in mathematical classes and

courses of linear algebra. The standard syllabus includes the substitution method,

Cramer’s rule, and the inverse matrix. Unfortunately, Cramer’s rule is a highly in-

e�cient method for solving real systems of linear equations: the number of equations

in a system may run into the hundreds, thousands, or even millions (e.g. structure and

spectra calculations for quantum systems). Since Cramer’s rule is based on evaluations

of multiple determinants, it needs about n! multiplications and divisions for solving a

system of n equations. Thus, solving a system of only 30 equations (30! ⇠ 2 · 1032)
would take as much time as the age of the universe on a teraflop computer. Another

common idea in standard linear algebra courses is that the solution to Ax = b can be

written as x = A
�1
b, where A

�1 is the inverse matrix of A. However, in most practical

computational problems, it is not recommended to compute the inverse matrix to solve

a system of linear equations. In fact, it normally takes more operations to compute

the actual inverse matrix instead of simply finding the solution by one of the direct

elimination methods. Finally, the method of substitution, well known for high school

students, is the foundation for multiple methods in numerical analysis for solving real

problems.

There are two classes of methods for solving systems of linear equations. In direct

methods, a finite number of arithmetic operations leads to an ”exact” (within round-o↵

errors) solution. Examples of such direct methods include Gauss elimination, Gauss-

Jordan elimination, the matrix inverse method, and LU factorization. The average

number of operations to solve a system of linear equations for these methods is ⇠ n
3.

Iterative methods achieve the solution asymptotically by an iterative procedure, start-

ing from the trial solution. The calculations continue until the accepted tolerance "

is achieved. Jacobi, Gauss-Seidel, and successive over-relaxation, are all examples of

iterative methods. Direct elimination methods are normally used when the number of

equations is less than a few hundred, or if the system of equations is ill-conditioned.

10.2. Direct elimination methods 3

Iterative methods are more common for large and diagonally dominant systems of equa-

tions, especially when many non-diagonal coe�cients equal zero or very small numbers.

At present, there are multiple algorithms and programs developed for solving systems

of linear equations based on direct and iterative methods. Using a method that utilizes

the most from the matrix shape (symmetric, sparse, tridiagonal, banded) results in

higher e�ciency and accuracy. The most common problems in matrix calculations are

the results of round-o↵ errors or the running out of memory and computational time

for large systems of equations. It is also important to remember that various computer

languages may handle the same data very di↵erently. For example, in C/C++, the first

element of an array starts from index 0, in Fortran (by default), from index 1. It is

also useful to note that Fortran 90/95 has numerous intrinsic functions to do matrix

calculations.

In this chapter, we will consider linear systems (10.1) to have real coe�cients aij.

We will also assume an existence of a unique solution (e.g. detA 6= 0 if the right-hand

coe�cients bi 6= 0, or detA = 0 if bi = 0).

Comments: 1) possible examples from physics: electric circuits, equilibrium problems

10.2 Direct elimination methods

Elimination methods use a simple idea that is well known from courses of algebra: a

system of two equations worked out formally by solving one of the equations. Let’s

say we solve the first equation for the unknown x1 in terms of the other unknown x2.

Substituting the solution for x1 into the second equation gives us a single equation for

one unknown x2, thus x1 is eliminated from the second equation. After x2 is found, the

other x1 unknown can be found by back substitution.

In the general case of n linear equations, the elimination process employs operations

on rows of linear equations that do not change the solution, namely, ”scaling” - any

equation may be multiplied by a constant, ”pivoting” - the order of equations can be

interchanged, ”elimination” - any equation can be replaced by a linear combination of

that equation with any other equation.

4 Chapter 10. Systems of Linear Equations

10.2.1 Basic elimination

For a good understanding of basic techniques of direct elimination, it is incredibly helpful

to apply the elimination method to find solutions of a system of three linear equations

a11x1 + a12x2 + a13x3 = b1

a21x1 + a22x2 + a23x3 = b2 (10.3)

a31x1 + a32x2 + a33x3 = b3

Step 1a: Subtracting the first equation multiplied by a21/a11 from the second equation,

and multiplied by a31/a11 from the third equation gives

a11x1 + a12x2 + a13x3 = b1

(a21 � a21)x1 + (a22 � a21
a11

a12)x2 + (a23 � a21
a11

a13)x3 = b2 � a21
a11

b1

(a31 � a31)x1 + (a32 � a31
a11

a12)x2 + (a33 � a31
a11

a13)x3 = b3 � a31
a11

b1

(10.4)

One can see that the coe�cients by the unknown x1 in the second and the third rows

of the new system are zero

a11x1 + a12x2 + a13x3 = b1

0 + a
0
22x2 + a

0
23x3 = b

0
2

0 + a
0
32x2 + a

0
33x3 = b

0
3

(10.5)

where a
0
ij = aij � ai1a1j

a11
and b

0
i = bi � ai1

a11
b1. Thus, we eliminated the first unknown x1

from the second and third equations.

Step 1b: Now, let’s subtract the modified second equation multiplied by a
0
32/a

0
22 from

the third equation in (10.5)

0 + (a032 � a
0
32)x2 + (a033 � a

0
23

a
0
32

a022
)x3 = b

0
3 � b

0
2

a
0
32

a022
(10.6)

After the two eliminations we have a new form for the system (10.3)

a11x1 + a12x2 + a13x3 = b1

0 + a
0
22x2 + a

0
23x3 = b

0
2

0 + 0 + a
00
33x3 = b

00
3

(10.7)

with a
00
ij = a

0
ij �

a0i2a
0
2j

a022
and b

00
i = b

0
i �

a0i2
a022

b2. Thus, the original system Ax = b is reduced

to triangular form.

10.2. Direct elimination methods 5

Step 2: The last equation in (10.7) can be solved for x3, and the second for x2, and

finally the first for x1

x3 = b
00
3/a

00
33

x2 = (b02 � a
0
23x3)/a

0
22 (10.8)

x1 = (b1 � a12x2 � a13x3)/a11

The basic elimination method can be easily generalized for a general n by n system,

Ax = b

Algorithm 6.1 The basic elimination algorithm for solving a system of n linear

equations.

Step 1: Apply the elimination procedure to every column k (k = 1, 2, . . . , n � 1) for

rows i (i = k + 1, k + 2, . . . , n) to create zeros in column k below the pivot element ak,k

ai,j = ai,j � (ai,k/ak,k) ak,j (i, j = k + 1, k + 2, . . . , n) (10.9)

bi = bi � (ai,k/ak,k) bk (i, j = k + 1, k + 2, . . . , n) (10.10)

Step 2: The solutions of the reduced triangular system can then be found using the

backward substitution

xn = (bn/an,n) (10.11)

xj =
1

ai,i

bi �

nX

j=i+1

ai.jxj

!
(i = n� 1, n� 2, . . . , 1) (10.12)

The total number of multiplications and divisions done by the basic elimination algo-

rithm for a system of n equations is about O(n3). The back substitution takes approx-

imately O(n2) multiplication and divisions.

Comments: Every next elimination uses results from the elimination before. For

large systems of equations the round-o↵ errors may quickly accumulate. It takes finite

number of steps to get a true (within the round-o↵ error solution)

The program below implements the basic elimination for a general n by n matrix A

Program 10.1. The basic elimination.

subroutine gauss_1(a,b,x,n)

!==

! Solutions to a system of linear equations A*x=b

6 Chapter 10. Systems of Linear Equations

! Method: the basic elimination (simple Gauss elimination)

! Alex G. November 2009

!---

! input ...

! a(n,n) - array of coefficients for matrix A

! b(n) - vector of the right hand coefficients b

! n - number of equations

! output ...

! x(n) - solutions

! comments ...

! the original arrays a(n,n) and b(n) will be destroyed

! during the calculation

!===

implicit none

integer n

double precision a(n,n), b(n), x(n)

double precision c

integer i, j, k

!step 1: forward elimination

do k=1, n-1

do i=k+1,n

c=a(i,k)/a(k,k)

a(i,k) = 0.0

b(i)=b(i)- c*b(k)

do j=k+1,n

a(i,j) = a(i,j)-c*a(k,j)

end do

end do

end do

!step 2: back substitution

x(n) = b(n)/a(n,n)

do i=n-1,1,-1

c=0.0

do j=i+1,n

c= c + a(i,j)*x(j)

end do

x(i) = (b(i)- c)/a(i,i)

end do

end subroutine gauss_1

10.2. Direct elimination methods 7

Example 10.1. Solution by the basic elimination.

Basic elimination (Simple Gauss)

Matrix A and vector b

3.000000 2.000000 4.000000 4.000000

2.000000 -3.000000 1.000000 2.000000

1.000000 1.000000 2.000000 3.000000

Matrix A and vector b after elimination

3.000000 2.000000 4.000000 4.000000

0.000000 -4.333333 -1.666667 -0.666667

0.000000 0.000000 0.538462 1.615385

Solutions x(n)

-2.000000 -1.000000 3.000000

10.2.2 Gauss elimination

The first immediate problem with the basic elimination method comes when one of

diagonal elements is zero. For example, the following system

0x1 + 1x1 + 2x1 = 4

2x1 + 1x2 + 4x3 = 3 (10.13)

2x1 + 4x2 + 6x3 = 7

has a unique solution of x = {�2.5, 0.0, 2.0}. However, basic elimination would fail on

the first step since the a11 pivot element is zero. The procedure also fails when any

of subsequent ak,k pivot elements during the elimination procedure are zero. However,

the basic elimination procedure can be modified to push zero ak,k elements o↵ the

major diagonal. The order of equations in a linear system can be interchanged without

changing the solution. This procedure is called ”partial pivoting”. ”Full pivoting”

includes interchanging both equations and variables, and it is rarely applied in practical

calculations because of its complexity. Nevertheless, pivoting can remove divisions by

zero during the elimination process.

The e↵ect of round-o↵ errors can be reduced by scaling before pivoting. Scaling

selects an equation with the relatively largest pivot element akk. On every step k of

the elimination procedure we a) look first for a largest element ai,j in every row i =

8 Chapter 10. Systems of Linear Equations

k, k + 1, . . . , n and scale (normalize) every element in that row on the largest element,

b) look for the largest element ai,k in the column k to have it as a pivot element for

the next elimination, c) interchange the current equation k with the equation with the

largest pivot element.

Let’s apply scaled pivoting to the system (10.13). The first scaling gives the following

ai,1 elements {0.00, 0.50, 0.33}. Therefore, we rearrange the system placing the second

equation as the first one, and the third equation into second place.

2x1 + 1x2 + 4x3 = 3

2x1 + 4x2 + 6x3 = 7 (10.14)

0x1 + 1x1 + 2x1 = 4

After the first elimination, we have

2x1 + 1x2 + 4x3 = 3

0x1 + 3x2 + 2x3 = 4 (10.15)

0x1 + 1x2 + 2x3 = 4

The second scaling gives {1.00, 0.50} for ai,2 elements where i � 2. Therefore, we

keep the same order of equations. After the second elimination, the original matrix is

transformed to the upper triangular form

2.00x1 + 1.00x2 + 4.00x3 = 3.00

0.00x1 + 3.00x2 + 2.00x3 = 4.00 (10.16)

0.00x1 + 0.00x2 + 1.33x3 = 2.66

The backward substitution returns the solutions {2.0, 0.0,�2.5}
The Gauss elimination includes all three basic operations on rows of linear equations:

scaling, pivoting and elimination.

Algorithm 6.2 Gauss elimination for solving a system of n linear equations.

Step 1: Apply the scaling, pivoting and elimination to every column k (k = 1, 2, . . . , n�
1) starting from k = 1

a). Find the largest element in every row i = k, k + 1, . . . , n and divide other elements

of those rows by the corresponding largest element.

b). Find the largest pivoting element ai,k in a given column k for i = k, k + 1, . . . , n.

Let’s say it was al,k

10.2. Direct elimination methods 9

c). Interchange rows k and l to have the relatively largest akk into the pivot position.

d). Apply the elimination procedure to the column k for rows i (i = k+1, k+2, . . . , n)

ai,j = ai,j � (ai,k/ak,k) ak,j (i, j = k + 1, k + 2, . . . , n) (10.17)

bi = bi � (ai,k/ak,k) bk (i, j = k + 1, k + 2, . . . , n) (10.18)

Step 2. Now it is time for backward substitution. At this point all the diagonal elements

are non zero, if the matrix is not singular. From the last equation we have

xn = (bn/an,n) (10.19)

Solving the other unknowns in the reverse order

xj =
1

ai,i

bi �

nX

j=i+1

ai.jxj

!
(i = n� 1, n� 2, . . . , 1) (10.20)

The solution is achieved in a finite number of steps determined by the size of the sys-

tem. The partial pivoting takes a very small fraction of computational e↵orts comparing

to the elimination calculations. The total number of operations is about O(n3). If all

the potential pivots elements are zero, then the matrix A is singular. Linear systems

with singular matrices either have no solutions, or do not have a unique solution.

Program 10.2. Gauss elimination with scaling and pivoting.

subroutine gauss_2(a,b,x,n)

!===

! Solutions to a system of linear equations A*x=b

! Method: Gauss elimination (with scaling and pivoting)

! Alex G. (November 2009)

!---

! input ...

! a(n,n) - array of coefficients for matrix A

! b(n) - array of the right hand coefficients b

! n - number of equations (size of matrix A)

! output ...

! x(n) - solutions

! coments ...

! the original arrays a(n,n) and b(n) will be destroyed

! during the calculation

!===

10 Chapter 10. Systems of Linear Equations

implicit none

integer n

double precision a(n,n), b(n), x(n)

double precision s(n)

double precision c, pivot, store

integer i, j, k, l

! step 1: begin forward elimination

do k=1, n-1

! step 2: "scaling"

! s(i) will have the largest element from row i

do i=k,n ! loop over rows

s(i) = 0.0

do j=k,n ! loop over elements of row i

s(i) = max(s(i),abs(a(i,j)))

end do

end do

! step 3: "pivoting 1"

! find a row with the largest pivoting element

pivot = abs(a(k,k)/s(k))

l = k

do j=k+1,n

if(abs(a(j,k)/s(j)) > pivot) then

pivot = abs(a(j,k)/s(j))

l = j

end if

end do

! Check if the system has a sigular matrix

if(pivot == 0.0) then

write(*,*) ’ The matrix is sigular ’

return

end if

! step 4: "pivoting 2" interchange rows k and l (if needed)

if (l /= k) then

do j=k,n

store = a(k,j)

a(k,j) = a(l,j)

10.2. Direct elimination methods 11

a(l,j) = store

end do

store = b(k)

b(k) = b(l)

b(l) = store

end if

! step 5: the elimination (after scaling and pivoting)

do i=k+1,n

c=a(i,k)/a(k,k)

a(i,k) = 0.0

b(i)=b(i)- c*b(k)

do j=k+1,n

a(i,j) = a(i,j)-c*a(k,j)

end do

end do

end do

! step 6: back substiturion

x(n) = b(n)/a(n,n)

do i=n-1,1,-1

c=0.0

do j=i+1,n

c= c + a(i,j)*x(j)

end do

x(i) = (b(i)- c)/a(i,i)

end do

end subroutine gauss_2

Example 10.2. Solution by Gauss elimination.

Gauss elimination with scaling and pivoting

Matrix A and vector b

0.000000 1.000000 2.000000 4.000000

2.000000 1.000000 4.000000 3.000000

2.000000 4.000000 6.000000 7.000000

Matrix A and vector b after elimination

2.000000 1.000000 4.000000 3.000000

12 Chapter 10. Systems of Linear Equations

0.000000 3.000000 2.000000 4.000000

0.000000 0.000000 1.333333 2.666667

Solutions x(n)

-2.500000 0.000000 2.000000

It is useful to remember that there are variations of the Gauss elimination. For

example, the Gauss-Jordan elimination transforms the matrix A to a diagonal form, with

a subsequent reduction to the identity matrix I. As a result, the transformed vector

b is a solution vector. Despite the fact that this method needs more computational

time, it can be used to evaluate the inverse of matrix A
�1, so that AA�1 = I. On the

other hand, LU factorization is very e�cient for solving multiple systems with the same

matrix A but with di↵erent vectors b. The Thomas algorithm treats tridiagonal systems

of equations.

10.2.3 Computing inverse matrices and determinants

The inverse matrix A
�1 can be computed using the same Gauss elimination procedure.

Finding an inverse matrix is equivalent to finding matrix X such as

AX = I (10.21)

This equation can be rewritten as

nX

k=1

ai,kxk,j = �i,j (i, j = 1, 2, . . . , n), (10.22)

where �i,j is the Kronecker delta. Then the system (10.22) is actually a set of n indepen-

dent systems of equations with the same matrix A but di↵erent vectors b. Let’s define

the two following vectors

x
(j) = {xi,j}, e

(j) = {�i,j}, (i = 1, 2, . . . , n) (10.23)

Now the the j-th column of the inverse matrix A
�1 is the solution of the linear system

Ax
(j) = e

(j) (j = 1, 2, . . . , n) (10.24)

The set of systems (10.24) can be solved with Gauss elimination. It is clear that find-

ing the inverse matrix requires n-times more computational time than the elimination

procedure.

10.2. Direct elimination methods 13

For the illustration of this method, we consider a system of three equations. The

first column of the inverse matrix X can be found from the following systems
0

B@
a11 a12 a13

a21 a22 a23

a31 a32 a33

1

CA

0

B@
x11

x21

x31

1

CA =

0

B@
1

0

0

1

CA . (10.25)

The next two columns of the inverse matrix X correspond to solutions of the linear

equations with the same matrix A and the right sides as

b =

0

B@
0

1

0

1

CA for the second column, and b =

0

B@
0

0

1

1

CA for the third column. (10.26)

Technically, we may use Gauss elimination algorithm for solving n systems of n linear

equations to find the inverse matrix. However, computationally, it is time consuming

since we have to do the elimination for the same matrix A over and over again.

On the other hand, the LU factorization algorithm is incredibly e�cient for solving

multiple linear equations with the same matrix but di↵erent right-hand vectors b. Any

matrix can be written as a product of two other matrices, in particular as A = LU ,

where L and U are the lower triangular and upper triangular matrices. If the elements

on the major diagonal of L are equal to one, the method is called the Doolittle method.

For unity elements on the major diagonal of U , the method is called the Crout method.

For A = LU , the linear system of equations Ax = b becomes LUx = b. Multiplying

both sides of the system by L
�1 gives L�1

LUx = L
�1
b, and then Ux = L

�1
b = d, where

d is a solution of Ld = b. Now it should be easy to see that the following algorithm

would lead to a solution of the linear system. First, we calculate U and L matrices

using the Gaussian elimination. While getting U is the goal of the elimination, the L

matrix consists of the elimination multipliers with unity elements of the main diagonal

(it would correspond to the Dolittle method). For every vector b we solve Ld = b to

find d, namely

di = bi �
i�1X

k=1

li,kdk (i = 2, 3, . . . , n), note that d1 = b1 (10.27)

Then, xn = dn/U(n, n), and other solutions for the linear system Ux = d are

xi = di �
nX

k=i+1

ui,kxk/ui,i (i = n� 1, n� 2, . . . , 1) (10.28)

14 Chapter 10. Systems of Linear Equations

Since the number of multiplications to find solutions from the last two equations are of

the order O(n2), we can see that the LU decomposition method is exceptionally helpful

for computing inverse matrices.

Program 10.3. Compute Inverse matrix using LU Doolittle factorization

subroutine inverse(a,c,n)

!==

! Inverse matrix

! Method: Based on Doolittle LU factorization for Ax=b

! Alex G. December 2009

!---

! input ...

! a(n,n) - array of coefficients for matrix A

! n - dimension

! output ...

! c(n,n) - inverse matrix of A

! comments ...

! the original matrix a(n,n) will be destroyed

! during the calculation

!===

implicit none

integer n

double precision a(n,n), c(n,n)

double precision L(n,n), U(n,n), b(n), d(n), x(n)

double precision coeff

integer i, j, k

! step 0: initialization for matrices L and U and b

! Fortran 90/95 aloows such operations on matrices

L=0.0

U=0.0

b=0.0

! step 1: forward elimination

do k=1, n-1

do i=k+1,n

coeff=a(i,k)/a(k,k)

L(i,k) = coeff

do j=k+1,n

a(i,j) = a(i,j)-coeff*a(k,j)

end do

10.2. Direct elimination methods 15

end do

end do

! Step 2: prepare L and U matrices

! L matrix is a matrix of the elimination coefficient

! + the diagonal elements are 1.0

do i=1,n

L(i,i) = 1.0

end do

! U matrix is the upper triangular part of A

do j=1,n

do i=1,j

U(i,j) = a(i,j)

end do

end do

! Step 3: compute columns of the inverse matrix C

do k=1,n

b(k)=1.0

d(1) = b(1)

! Step 3a: Solve Ld=b using the forward substitution

do i=2,n

d(i)=b(i)

do j=1,i-1

d(i) = d(i) - L(i,j)*d(j)

end do

end do

! Step 3b: Solve Ux=d using the back substitution

x(n)=d(n)/U(n,n)

do i = n-1,1,-1

x(i) = d(i)

do j=n,i+1,-1

x(i)=x(i)-U(i,j)*x(j)

end do

x(i) = x(i)/u(i,i)

end do

! Step 3c: fill the solutions x(n) into column k of C

do i=1,n

c(i,k) = x(i)

end do

b(k)=0.0

16 Chapter 10. Systems of Linear Equations

end do

end subroutine inverse

Example 10.3. Inverse matrix

Computing Inverse matrix

Matrix A

3.000000 2.000000 4.000000

2.000000 -3.000000 1.000000

1.000000 1.000000 2.000000

Inverse matrix A^{-1}

1.000000 0.000000 -2.000000

0.428571 -0.285714 -0.714286

-0.714286 0.142857 1.857143

The elimination method can be easily applied to compute matrix determinants. At

the end of the elimination procedure, the original matrix A is transformed to the upper

triangular form. For such matrices, the determinant is a product of diagonal elements.

det(A) = ±
nY

i=1

aii = a11a22a33 . . . ann, (10.29)

where the sign depends on the number of interchanges. Let’s remember that pivoting

changes the value of the determinant (interchanging any two equations changes the sign

of the determinant). However, counting the number of equation interchanges would give

us the proper sign for the determinant.

10.2.4 Tridiagonal systems

When a system of linear equations has a special shape (symmetric, or tridiagonal), then

it is recommended to use a method specifically developed for this kind of equation.

Such methods are not only more e�cient in term of computational time and computer

memory, but also accumulate smaller round-o↵ errors.

Here is an example of a tridiagonal system of five equations
0

BBBBBB@

a11 a12 0 0 0

a21 a22 a23 0 0

0 a32 a33 a34 0

0 0 a43 a44 a45

0 0 0 a54 a55

1

CCCCCCA

0

BBBBBB@

x1

x2

x3

x4

x5

1

CCCCCCA
=

0

BBBBBB@

b1

b2

b3

b4

b5

1

CCCCCCA
, (10.30)

10.2. Direct elimination methods 17

It is clear to see that one only element is to be eliminated in every row, namely

ai�1,i, a↵ecting only the diagonal elements and the right hand vector. Subsequently, the

elimination procedure for a tridiagonal matrix

ai,i = ai,i � (ai,i�1/ai�1,i�1) ai�1,i (i = 2, . . . , n) (10.31)

and

bi = bi � (ai,i�1/ai�1,i�1) bi�1 (i = 2, . . . , n) (10.32)

However, it is possible to improve the e�ciency of this method even further. Instead

of storing all n ⇥ n elements of the matrix A, since there is no need to keep the zero

elements, we may use a smaller matrix such n⇥ 3:
0

BBBBBBBB@

� c12 c13

c21 c22 c23

c31 a32 c33

.

cn�1,1 cn�1,2 cn�1,3

cn,1 cn,2 �

1

CCCCCCCCA

(10.33)

where the coe�cients cij are related to the coe�cients of the original matrix A as

ci,1 = ai,i�1, ci,2 = ai,i, and ci,3 = ai,i+1. (10.34)

Then the elimination procedure for the new matrix C

ci,2 = ci,2 � (ci,1/ci�1,2) ci�1,3 (i = 2, 3, . . . , n) (10.35)

and

bi = bi � (ci,1/ci�1,2) bi,i�1 (i = 2, 3, . . . , n) (10.36)

After the forward elimination, the back substitution gives the solutions of the tridiagonal

system

xn = bn/cn,2 (10.37)

xi = (bi � ci,3xi+1)/ci,2 (i = n� 1, n� 2, . . . , 1) (10.38)

This algorithm for solving tridiagonal systems is called the Thomas algorithm. Thus

algorithm is widely used in solving 3-point partial and ordinary di↵erential equations

(more details?)

18 Chapter 10. Systems of Linear Equations

Program 10.4. the Thomas method for tridiagonal systems

subroutine thomas(c,b,x,n)

!==

! Solutions to a system of tridiagonal linear equations C*x=b

! Method: the Thomas method

! Alex G. November 2009

!---

! input ...

! c(n,3) - array of coefficients for matrix C

! b(n) - vector of the right hand coefficients b

! n - number of equations

! output ...

! x(n) - solutions

! comments ...

! the original arrays c(n,3) and b(n) will be destroyed

! during the calculation

!===

implicit none

integer n

double precision c(n,3), b(n), x(n)

double precision coeff

integer i

!step 1: forward elimination

do i=2,n

coeff=c(i,1)/c(i-1,2)

c(i,2)=c(i,2)-coeff*c(i-1,3)

b(i)=b(i)-c(i,1)*b(i-1)

end do

!step 2: back substitution

x(n) = b(n)/c(n,2)

do i=n-1,1,-1

x(i) = (b(i)- c(i,3)*x(i+1))/c(i,2)

end do

end subroutine thomas

Example 10.4. Solution by the Thomas method

The Thomas method for tridiagonal systems

10.2. Direct elimination methods 19

Matrix A and vector b

0.000000 4.000000 -1.000000 0.000000

-1.000000 4.000000 -1.000000 0.000000

-1.000000 4.000000 -1.000000 0.000000

-1.000000 4.000000 -1.000000 0.000000

-1.000000 4.000000 -1.000000 0.000000

-1.000000 4.000000 -1.000000 0.000000

-1.000000 4.000000 -1.000000 0.000000

-1.000000 4.000000 0.000000 16.000000

Solutions x(n)

0.000395 0.001578 0.005919 0.022099

0.082476 0.307806 1.148748 4.287187

Pivoting destroys the tridiagonality, and cannot be used ... (more?) However, as

a rule, tridiagonal systems representing real physical systems are diagonally dominant,

and pivoting is unnecessary. more ... the number of multiplicative operations ⇠ 5n ,

that makes it much more e�cient comparing to Gauss elimination by a factor of ⇠ n
2.

10.2.5 Round-o↵ errors and ill-conditioned systems

In the elimination methods, each elimination step uses results from the step before. For

linear systems with large numbers of equations, the round-o↵ errors may strongly a↵ect

the solution. Round-o↵ errors can be minimized by using double precision calculations

and scaled pivoting. Therefore, for matrix calculations, it is vital to use high precision

arithmetic. Unfortunately, it takes additional computational resources (memory and

time), but it is better then having unreliable solutions.

The e↵ect of round-o↵ errors is especially dangerous for ill-conditioned systems,

when doing ”everything right”, you may in fact get ”everything wrong”. Ill-conditioned

systems are very sensitive to small variations in the equation coe�cient. There are no

methods for solving this problem other than increasing precision. If we cannot fix the

problem, it is at least good to know if we are dealing with an ill-conditioned system. The

Ill-conditioned system has a matrix similar to a singular form, and their determinant is

close to zero. A commonly used measure of the condition of a matrix is its condition

number. In fact, the norm of a matrix can be used to evaluate the condition number:

there are several ways to define the norm of a matrix, but the most widely accepted is

20 Chapter 10. Systems of Linear Equations

the Euclidean norm

kAk =

nX

i=1

nX

j=1

a
2
i,j

!1/2

. (10.39)

For a matrix equation Ax = b it follows from the norm definition that

kAkkxk � kbk. (10.40)

A small change in the right-hand vector b results in a change in the solution x as

A(x+ �x) = b+ �b, (10.41)

or subtracting the original equation for this one

A�x = �b or �x = a
�1
�b (10.42)

Using norm’s properties we may write

k�xk kA�1kk�bk (10.43)

Combining together equations (10.40) and (10.43)

kbkk�xk kAkkxkkA�1kk�bk (10.44)

or

|�xk
kxk kAkkA�1k |�bkkbk = C(A)

|�bk
kbk , (10.45)

where the product of two norms

C(A) = kAkkA�1k (10.46)

is the condition number of matrix A. The condition number is always � 1. Logically, the

condition number is a factor by which a small variation in the coe�cients is amplified

during the elimination procedure. Since computing the inverse matrix takes more time

than solving the system itself, it is common to use estimations for kA�1k without actually
calculating the inverse matrix. The most sophisticated codes in numerical libraries

estimate the condition number along with the solution, giving users an idea about the

accuracy of the returned result. For ill-conditioned systems it is advisable to check the

final solution by a direct substitution in the original equation.

10.3. Iterative methods 21

Here is an example. Consider the equation

3.000000x1 + 2.00x2 + 4.000000x3 = 4.00

3.000001x1 + 2.00x2 + 4.000002x3 = 4.00 (10.47)

1.000000x1 + 1.00x2 + 2.000000x3 = 3.00

The condition number of the matrixA is 1.3264 · 107. The single precision solution by

the basic elimination is x = {�2.000, 2.750, 1.125}, and the double precision solution is

x = {�2.0, 3.0, 1.0} (that is the true solution).

10.3 Iterative methods

Iterative methods cannot compete with direct elimination methods for arbitrary matrix

A. However, in certain types of problems, systems of linear equations have many ai,j

elements as zero, or close to zero (sparse systems). Under those circumstances, iterative

methods can be extremely fast. Iterative methods are also e�cient for solving Partial

Di↵erential Equations by finite di↵erence or finite element methods.

The idea of the iterative solution of a linear system is based on assuming an initial

(trial) solution that can be used to generate an improved solution. The procedure is

repeated until convergence with an accepted accuracy solution occurs. However, for

an iterative method to succeed/converge, the linear system of equations needs to be

diagonally dominant.

|ai,i| >
X

j 6=i

|ai,j|. (10.48)

Iterative methods are less sensitive to round-o↵ errors in comparison to direct elimination

methods.

Let’s consider a system of linear equations

nX

j=1

ai,jxj = bi (i = 1, 2, . . . , n). (10.49)

Every equation can be formally solved for a diagonal element

xi =
1

ai,i

bi �

i�1X

j=1

ai,jxj �
nX

j=i+1

ai,jxj

!
(i = 1, 2, . . . , n). (10.50)

22 Chapter 10. Systems of Linear Equations

Choosing an initial solution we may calculate the next iteration

x
k+1
i =

1

ai,i

bi �

i�1X

j=1

ai,jx
k
j �

nX

j=i+1

ai,jx
k
j

!
(i = 1, 2, . . . , n). (10.51)

Equation (10.51) can be rewritten in the iterative form

x
k+1
i = x

k
i +

1

ai,i

bi �

nX

j=1

ai,jx
k
j

!
(i = 1, 2, . . . , n). (10.52)

Equation (10.51) defines the Jacobi iterative method, which is also called the method

of simultaneous iterations. It is possible to prove that if A is diagonally dominant, then

the Jacobi iteration will converge. The number of iterations is either predetermined by

a maximum number of allowed iterations, or by one of conditions for absolute errors

max
1in

��xk+1
i � x

k
i

�� ", or
nX

i=1

��xk+1
i � x

k
i

�� ", or

nX

i=1

�
x
k+1
i � x

k
i

�2
!1/2

 ", (10.53)

where " is a tolerance. It is also possible to use another condition

kAxk � bk
kbk < " (10.54)

Since e↵orts to evaluate the norms above are comparable with the iterative calculations,

it is recommended to check the convergence based on equation (10.54) after every tenth

iteration.

In the Jacobi method, all values of xk+1 are calculated using x
k values. In the Gauss-

Seidel method, the most recently computed values of xi are used in calculations for j > i

solutions

x
k+1
i =

1

ai,i

bi �

i�1X

j=1

ai,jx
k+1
j �

nX

j=i+1

ai,jx
k
j

!
(i = 1, 2, . . . , n), (10.55)

or

x
k+1
i = x

k
i +

1

ai,i

bi �

i�1X

j=1

ai,jx
k+1
j �

nX

j=i

ai,jx
k
j

!
(i = 1, 2, . . . , n). (10.56)

The Gauss-Seidel iterations generally converge faster than Jacobi iterations.

10.3. Iterative methods 23

Quite often, the iterative solution to a linear system approaches the true solution in

the same direction. Then it is possible to accelerate the iterative process by introducing

the over-relaxing factor !

x
k+1
i = x

k
i + !

1

ai,i

bi �

i�1X

j=1

ai,jx
k+1
j �

nX

j=i

ai,jx
k
j

!
(i = 1, 2, . . . , n). (10.57)

For ! = 1 the system (10.57) is the Gauss-Seidel method, for 1.0 < ! < 2.0 the system

is over-relaxed, and for ! < 1.0 the system is under-relaxed. The optimum value of !

depends on the size of the system and the nature of the equations. The iterative process

(10.57) is called the successive-over-relaxation (SOR) method.

Program 10.5. Gauss-Seidel: The successive-over-relaxation

subroutine gs_sor(a,b,x,omega,eps,n,iter)

!==

! Solutions to a system of linear equations A*x=b

! Method: The successive-over-relaxation (SOR)

! Alex G. (November 2009)

!--

! input ...

! a(n,n) - array of coefficients for matrix A

! b(n) - array of the right hand coefficients b

! x(n) - solutions (initial guess)

! n - number of equations (size of matrix A)

! omega - the over-ralaxation factor

! eps - convergence tolerance

! output ...

! x(n) - solutions

! iter - number of iterations to achieve the tolerance

! coments ...

! kmax - max number of allowed iterations

!==

implicit none

integer, parameter::kmax=100

integer n

double precision a(n,n), b(n), x(n)

double precision c, omega, eps, delta, conv, sum

integer i, j, k, iter, flag

! check if the system is diagonally dominant

24 Chapter 10. Systems of Linear Equations

flag = 0

do i=1,n

sum = 0.0

do j=1,n

if(i == j) cycle

sum = sum+abs(a(i,j))

end do

if(abs(a(i,i)) < sum) flag = flag+1

end do

if(flag >0) write(*,*) ’The system is NOT diagonally dominant’

do k=1,kmax

conv = 0.0

do i=1,n

delta = b(i)

do j=1,n

delta = delta - a(i,j)*x(j)

end do

x(i) = x(i)+omega*delta/a(i,i)

if(abs(delta) > conv) conv=abs(delta)

end do

if(conv < eps) exit

end do

iter = k

if(k == kmax) write (*,*)’The system failed to converge’

end subroutine gs_sor

Example 10.5. Solution by successive-over-relaxation

The successive-over-relaxation (SOR)

Matrix A and vector b

8.00000 2.00000 4.00000 2.00000

2.00000 6.00000 1.00000 6.00000

1.00000 1.00000 8.00000 4.00000

Trial solutions x(n)

0.00000 0.00000 0.00000

Solutions x(n)

-0.20000 1.00000 0.40000

10.4. Practical notes 25

iterations = 10

Consider here to have an example from PDE

The Jacobi and Gauss-Seidel iterative methods are one step iterative methods since

the x
k+1
i solution is defined through x

k
i . In multi-step iterative methods, the x

k+1
i

solution is determined in accordance with past iterations xk+1
i = f(xk

i , x
k�1
i , . . . , x

k�m
i).

There are multiple variations or iterative methods, like explicit and implicit iterative

methods, the method of upper relaxation, ... more?

10.4 Practical notes

There are multiple methods, and various computer packages available for solving systems

of linear equations. A researcher (or a student) faces this question - what would be a

good way to solve my problem? Should I invest my time in writing a program, buy

software that could do this job for me, learn how to use a sophisticated numerical

package, or attempt to find a matrix calculator on the Web?

The answer depends on the following factors: a) the complexity of the system of

equations (the size, conditioning, a general or sparse matrix), b) whether the problem is

a part of a larger computational problem or a standing alone task, c) whether a one-time

solution is needed, or multiple systems are to be solved.

A simple student problem can instantly be solved even with Excel. Excel has a

number of functions to work with matrices, in particularly MINVERSE to find an inverse

matrix, and MMULT for matrix multiplication. With Excel a solution can be just a

few clicks away using x = A
�1
b. Software packages such as Mathematica, Maple, or

MathCad have libraries for solving various systems of equations. If the problem is part

of a larger computational project, and a system of equations is not very large (less than

a few hundreds of equation), yet well-conditioned, then using the quick and e�cient

programs of this chapter would be best. However, for serious computational projects, it

is advisable to use sophisticated packages developed by experts in numerical analysis.

The most well known commercial general libraries are NAG (Numerical Algorithmic

Group), and IMSL (International Mathematical and Statistical Library), both available

in Fortran 90/5 and C/C++. The NAG package also includes libraries for parallel

calculations. The IMSL library now is a part of compilers such as Intel Fortran, and

Intel C++ (check it!).

26 Chapter 10. Systems of Linear Equations

Additionally, there are also various special packages to solve multiple problems of

linear algebra that are absolutely free. LAPACK (Linear Algebra PACKage) is the

most advanced linear algebra library. It provides routines for solving systems of linear

equations and eigenvalue problems. LAPACK was originally written in Fortran 77, and

was the successor of LINPAC (routines for the linear equations) and EISPACK (set of

routines for solving the eigenvalue problem). LAPACK has routines to handle both

real and complex matrices in single and double precision. The present core version of

LAPACK is written in Fortran 90. It has several implementations: LAPACK95 uses

features of Fortran 95, CLAPACK in for C, LAPACK++ for C++ (it is being superseded

by the Template Numerical Toolkit (TNT), JLAPACK for Java.

There are also two large numerical libraries that have multiple routines for linear

algebra problems. SLATEC is a comprehensive library of routines having over 1400

general purpose mathematical and statistical programs. The code was developed by a

group from few National Laboratories (US), and is therefore public domain. The library

was written in Fortran 77, but some routines are translated to Fortran 90, and there

is a possibility to use SLATEC routines from a C++ code. The other large library

is the GNU Scientific Library (or GSL). It is written in the C. The GSL is part of

the GNU project and is distributed under the GNU General Public License. GAMS -

Guide to Available Mathematical Software from the National Institute of Standards and

Technology (NIST) is a practical starting point to find the best routine for your problem.

GAMS provides an excellent reference place and orientation for available programs.

10.5. Problems 27

10.5 Problems

1. Modify the Gauss 2 program above to calculate the determinant of a matrix A.

2. Using the routines from this chapter, write a program that evaluates the condi-

tional number of a linear system (place eq number)

3. Modify the GS SOR program above based on Gauss-Seidel successive over-relaxation,

to change the convergence condition from (10.53) to (10.54).

4. Study on a diagonally dominant linear system how the choice of the factor ! a↵ects

the convergence of the solution.

5. Implement a program from the LAPACK library to solve a system of linear equa-

tions(select one or two)

6. Calculations: Compare accuracy of the program implementing the Gauss elimina-

tion method with a program from a standard library for solutions of the following

system of equations

0

BBB@

1 1
2

1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

1
4

1
5

1
6

1
7

1

CCCA

0

BBB@

x1

x2

x3

x4

1

CCCA
=

0

BBB@

4

3

2

1

1

CCCA

7. consider some physics problems

28 Chapter 10. Systems of Linear Equations

