
1

Genetic Algorithm(s)
A. Godunov

1. Basics: GA as numerical optimization algorithm
2. Genetic Algorithm
3. Improving the algorithm

1

Part 1:

Basics

2

Books – so many!

3

3

What is GA?

Genetic algorithms (GA) are numerical optimization algorithms
motivated by natural selection and natural genetics.

The method is a general one, capable of being applied to an extremely
wide range of problems.

4

4

History of the GA

• From the very early years of computers, computer scientists have
had visions of systems that mimicked one or more of the attributes
of life.

• The idea of using a population of solutions to solve practical
engineering optimization problems was considered several times
during the 1950's and 1960’s.

• GA was created by John Holland
"Adaptation in Natural and Artificial Systems” 1975

5

5

Applications (general areas)

• Physics and Chemistry

• Mathematics and Computer Science

• Biological Sciences and Bioinformatics

• Medicine

• Industry, Management and Engineering

• Finance and Economics

• Earth Sciences

• Social Sciences

• and more …

6

6

2

Applications (some examples)

• VLSI (very large scale integration) electronic chip layouts

• spacecraft trajectories

• robotics

• water networks

• the architectural aspects of building design

• Factory floor scheduling scheduling (Volvo, Deere, …)

• facial recognition

• Crashworthy car design (GM)

• Data mining

7

7

A typical algorithm might consist of the following:

1. a number, or population, of guesses of the solution to the problem;

2. a way of calculating how good or bad the individual solutions within
the population are;

3. a method for mixing fragments of the better solutions to form new,
on average even better solutions; and

4. a mutation operator to avoid permanent loss of diversity within the
solutions.

8

8

Search spaces

In a numerical search or optimization problem, a list, quite possibly of
infinite length, of possible solutions is being searched in order to locate
the solution that best describes the problem at hand

Example: maximize the lift generated by an airplane's wing.
If there were only two of these adjustable parameters, a and b, one
could try a large number of combinations, calculate the lift generated by
each design and produce a surface plot with a, b

9

9

Search spaces (cont.)

For more complex problems, with more than two unknowns, the
situation becomes harder to visualize!

The concept of a search space is valid as long as some measure of
distance between solutions can be defined and each solution can be
assigned a measure of success, or fitness, within the problem.

Better performing, or fitter, solutions will then occupy the peaks within
the search space (or fitness landscape) and poorer solutions the
valleys.

Such spaces or landscapes can be of surprisingly complex topography.
Even for simple problems, there can be numerous peaks of varying
heights, separated from each other by valleys on all scales.

The highest peak is usually referred to as the global maximum or global
optimum, the lesser peaks as local maxima or local optima.

10

10

A measure of success

For more complex problems, with more than two unknowns, the
situation becomes harder to visualize!

The concept of a search space is valid as long as some measure of
distance between solutions can be defined and each solution can be
assigned a measure of success, or fitness, within the problem.

Better performing, or fitter, solutions will then occupy the peaks within
the search space (or fitness landscape) and poorer solutions the
valleys.

Such spaces or landscapes can be of surprisingly complex topography.
Even for simple problems, there can be numerous peaks of varying
heights, separated from each other by valleys on all scales.

The highest peak is usually referred to as the global maximum or global
optimum, the lesser peaks as local maxima or local optima.

11

11

The goal of optimization

• For most search problems, the goal is the accurate identification of
the global optimum

• In some situations, for example real-time control, the identification of
any point above a certain value of fitness might be acceptable

• For other problems, for example, in architectural design, the
identification of a large number of highly fit, yet distant and therefore
distinct, solutions (designs) might be required

12

12

3

A simple example

Consider the experimental data

Assume that 𝑥 and 𝑦 are connected as 𝑦! = 𝑚𝑥! + 𝑐
But what values should be given to 𝑚 and 𝑐?

If there is reason to believe that 𝑦 = 0	when	𝑥 = 0	(i.e. the line passes
through the origin) then 𝑐 = 0 and 𝑚 is the only adjustable parameter
(or unknown). Let 𝑦! are experimental points, then we can use a least-

squares estimation Ω = ∑!"#
$ 𝑦! − 𝑦!

%
13

13

A simple example (cont.)

We need to find such 𝑚 that Ω = ∑!"#
$ 𝑦! − 𝑚𝑦!

%
 is a minimum.

One way to do this is to use a computer to calculate Ω over a fine grid
of values of 𝑚. Then simply choose the 𝑚 which generates the lowest
value of Ω.

This approach, of estimating an unknown parameter, or parameters, by
simply solving the problem for a very large number of values of the
unknowns is called an enumerative search.

It is only really useful if there are relatively few unknown parameters
and one can estimate Ω rapidly.

14

14

From simple to more complicated

Consider a problem in which there are ten unknowns, each of which
are required to an accuracy of one percent

It will require 10010, or 1020, estimations! (years to complete)

Given that ten is not a very large number of unknowns, one percent not
a very demanding level of accuracy clearly there is a need to find a
better approach.

15

15

More complications

A more complex one-dimensional search
space with both a global and a local
minimum.

If either the direct search algorithm is used, the final estimate of the
parameter 𝑎 will depend on where in the search space the algorithm was
started. Making the initial guess at 𝑎 = 𝑎% , will indeed lead to the correct
(or global) minimum, 𝑎∗ . However, if 𝑎 = 𝑎# is used then only 𝑎∗∗ 	will be
reached (a local minimum).

This highlights a serious problem. If the results produced by a search
algorithm depend on the starting point, then there will be little confidence
in the answers generated.

One way around this problem would be to start the problem from a series
of points and then assume that the true global minimum lies at the lowest
minimum identified 16

16

Part 2:

Genetic Algorithm

17

Key ideas

Rather than starting from a single point (or guess) within the search
space, GA is initialized with a population of guesses.

These are usually random and will be spread throughout the search
space.

A typical algorithm then uses three operators, selection, crossover and
mutation (chosen in part by analogy with the natural world) to direct the
population (over a series of time steps or generations) towards
convergence at the global optimum.

Typically, these initial guesses are held as binary encodings (or strings)
of the true variables, although an increasing number of GA use "real-
valued" (i.e. base-10) encodings.

18

18

4

Selection

Selection attempts to apply pressure upon the population in a manner
similar to that of natural selection found in biological systems.

Poorer performing individuals are weeded out and better performing, or
fitter, individuals have a greater than average chance of promoting the
information they contain within the next generation.

19

19

Crossover

Crossover allows solutions to exchange information in a way similar to
that used by a natural organism undergoing reproduction.

One method (termed single point crossover) is to choose pairs of
individuals promoted by the selection operator, randomly choose a
single locus (point) within the binary strings and swap all the
information (digits) to the right of this locus between the two individuals.

20

20

Mutation

Mutation is used to randomly change (flip) the value of single bits within
individual strings.

21

21

Procedure

After selection, crossover and mutation have been applied to the initial
population, a new population will have been formed and the
generational counter is increased by one.

This process of selection, crossover and mutation is continued until a
fixed number of generations have elapsed or some form of
convergence criterion has been met.

22

22

An Example

A trivial problem might be to maximize a function, 𝑓(𝑥),	where
𝑓(𝑥) = 𝑥% ; for integer 𝑥 and 0 ≤ 𝑥 ≤ 4095.

There are of course other ways of finding the answer (𝑥 = 4095) to this
problem than using a GA, but its simplicity makes it ideal as an
example.

Note: GA can take many forms. This allows a wealth of freedom in the
details of the algorithm.

The following represents just one possibility.

23

23

An Algorithm

1. Form a population, of eight random binary strings of length twelve
101001101010, 110011001100, …

2. Decode each binary string to an integer 𝑥 (i.e. 000000000111
implies 𝑥	 = 	7, 111111111111 𝑥 = 4095).

3. Test these numbers as solutions to the problem 𝑓(𝑥) = 𝑥% and
assign a fitness to each individual equal to the value 𝑓(𝑥) = (e.g.
𝑥 = 7 has a fitness of 72= 49).

4. Select the best half (those with highest fitness) of the population to
go forward to the next generation.

24

24

5

An Algorithm

5. Pick pairs of parent strings at random (with each string being selected
exactly once) from these more successful individuals to do single point
crossover. Taking each pair in turn, choose a random point between
the end points of the string, cut the strings at this point and exchange
the tails, creating pairs of child strings. example: crossover between
000100011100 and 111001101010 at point 3:
parents children
000100011100 000001101010

111001101010 111100011100

6. Apply mutation to the children by occasionally (with probability one in
six) flipping a 0 to a 1 or vice versa.

7. Allow these new strings, together with their parents to form the new
population, which will still contain only eight members.

8. Return to Step 2, and repeat until 𝑁 generations have elapsed. 25

25

Let the initial population be

population string x fitness

member

1 110101100100 3428 11751184

2 010100010111 1303 1697809

3 101111101110 3054 9326916

4 010100001100 1292 1669264

5 011101011101 1885 3553225

6 101101011010 2889 8346321

7 101011011010 2778 7717284

8 010011010101 1237 1530169

Populations 1, 3, 6 and 7 have the highest fitness

26

26

Keep top four most fitted

population string x fitness

member

1 110101100100 3428 11751184

2 101111101110 3054 9326916

3 101101011010 2889 8346321

4 101011011010 2778 7717284

Pairs of strings are now chosen at random (each exactly once):
1 is paired with 2, 3 with 4.

27

27

New generation

Selecting, at random, a crossover point for each pair of strings (marked
by a /, four new children are formed and the new population, consisting
of parents and offspring only, becomes

population string x fitness
member

1 11/0101100100 3428 11751184

2 10/1111101110 3054 9326916

3 101101/011010 2889 8346321

4 101011/011010 2778 7717284

5 111111101110 4078 16630084

6 100101100100 2404 5779216

7 101101011010 2906 8444836

8 101011011010 2761 7623121 28

28

Next temporary population

The initial population had an average fitness 𝑓'() = 5,065,797 and the
fittest individual had f*+, = 11,751,184. In the second generation, these
have risen to: 𝑓'() = 8,402,107 and f*+, = 16,630,084.
The next temporary population becomes:

population string x fitness
member

1 110101100100 3428 11751184

2 101111101110 3054 9326916

3 101101011010 2906 8444836

4 111111101110 4078 16630084

This temporary population does not contain 1 as the last digit in any of
the strings (whereas the initial population did). This implies that no
string from this moment on can contain such a digit and the maximum
that can evolve will be 111111111110. Mutation might be important 29

29

Mutation

Problem: the maximum that can evolve will be 111111111110, but
not 111111111111.

The inclusion of mutation allows the population to leapfrog over this
sticking point. It is worth reiterating that the initial population did include
a 1 in all positions.

Thus the mutation operator is not necessarily inventing new information
but simply working as an insurance policy against premature loss of
genetic information.

Mutation can be included by visiting every bit in each new child string,
throwing a random number between 0 and 1 and if this number is less
than 1/12 (since there are 12 numbers in the string), flipping the value
of the bit.

Child string: 101101011010 -> after mutation can be 101110011011
30

30

6

Calculations

The evolution of the population. The fitness of the best performing
individual 𝑓-'. is seen to improve with generation as is the average
fitness of the population 𝑓'() . Without mutation the lack of a I in all
positions limits the final solution.

31

31

Summary

The three central operators behind the method are selection, crossover
and mutation.

Using these operators a very simple GA has been constructed and
applied to a trivial problem.

Although a genetic algorithm has now been successfully constructed
and applied to a simple problem, it is obvious that many questions
remain.

In particular, how are problems with more than one unknown dealt with,
and how are problems with real (or complex) valued parameters to be
tackled?

32

32

Part 3:

Improving the Algorithm

33

Some questions

1. How will the algorithm perform across a wider range of problems?

2. How are non-integer unknowns tackled?

3. How are problems of more than one unknown dealt with?

4. Are there better ways to define the selection operator that
distinguishes between good and very good solutions?

34

34

Robustness

The more robust the algorithm the greater the range of problems it can
be applied to.

A tailor-made method such as a traditional calculus based algorithm
might be highly efficient for some problems, but will fail on others.

GAs are naturally robust and therefore effective across a wide range of
problems.

35

35

Non-integer Unknowns

From integer to float such as −3.62, or 1.23 ∗ 10/0 .

There are many ways of doing this; however the most common is by a
linear mapping between the real numbers and a binary representation
of fixed length.

36

36

7

Multiparameter Problems

Extending the representation to problems with more than one unknown
proves to be particularly simple.

The 𝑀 unknowns are each represented as sub-strings of length 𝑙.
These sub-strings are then concatenated (joined together) to form an
individual population member of length L, where:

𝐿 = B
!"#

1
𝑙!

For example, given a problem with two unknowns 𝑎 and 𝑏, then if
𝑎 = 10110 and 𝑏 = 11000	for one guess at the solution, then by
concatenation, the genotype is a 𝑎⨁𝑏 = 1011011000.

Two things: 1) there is no need for the sub-strings used to represent 𝑎
and 𝑏 to be of the same length; this allows varying degrees of accuracy
to be assigned to different parameters; 2) in general, the crossover cut
point will not be between parameters but within a parameter. 37

37

Mutation

In the natural world, several processes can cause mutation, the
simplest being an error during replication.

With a simple binary representation, mutation is particularly easy to
implement. With each new generation the whole population is swept,
with every bit position in every string visited and very occasionally a 1 is
flipped to a 0 or vice versa (e.g. with probability 𝑝- ≈ 1/𝐿).

However, just like everything else about GA, the correct setting for 𝑝-
will be problem dependent.

Example: 𝑝- ≈ ⁄1 (𝑁 𝐿) where 𝑁is the population size

Observation: too low rate is likely to be less disastrous than too high
rate for most problems.

38

38

Selection

Thus far, the selection operator has been particularly simple: the best
50% are selected to reproduce and the rest thrown away.

This is a practical method but not the most common.

 A more common selection operator is fitness-proportional, or roulette
wheel, selection. With this approach the probability of selection is
proportional to an individual‘s fitness.

39

39

Elitism

Fitness-proportional selection does not guarantee the selection of any
particular individual, including the fittest. Unless the fittest individual is
much, much fitter than any other it will occasionally not be selected. To
not be selected is to die.

Thus with fitness-proportional selection the best solution to the problem
discovered so far can be regularly thrown away.

Although it appears counterproductive, this can be advantageous for
some problems because it slows the algorithm, allowing it to explore
more of the search space before convergence.

For many applications the search speed can be greatly improved by not
losing the best, or elite, member between generations.

Ensuring the propagation of the elite member is termed elitism and
requires that not only is the elite member selected, but a copy of it does
not become disrupted by crossover or mutation. 40

40

Books – again

41

41

