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Part 1: 

Basics
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Books – so many!
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What is GA?

Genetic algorithms (GA) are numerical optimization algorithms 
motivated by natural selection and natural genetics. 

The method is a general one, capable of being applied to an extremely 
wide range of problems. 
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History of the GA

• From the very early years of computers, computer scientists have 
had visions of systems that mimicked one or more of the attributes 
of life. 

• The idea of using a population of solutions to solve practical 
engineering optimization problems was considered several times 
during the 1950's and 1960’s. 

• GA was created by John Holland 
"Adaptation in Natural and Artificial Systems” 1975
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Applications (general areas)

• Physics and Chemistry

• Mathematics and Computer Science

• Biological Sciences and Bioinformatics

• Medicine 

• Industry, Management and Engineering

• Finance and Economics

• Earth Sciences

• Social Sciences

• and more …
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Applications (some examples)

• VLSI (very large scale integration) electronic chip layouts

• spacecraft trajectories

• robotics

• water networks

• the architectural aspects of building design

• Factory floor scheduling  scheduling (Volvo, Deere, …)

• facial recognition

• Crashworthy car design (GM)

• Data mining
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A typical algorithm might consist of the following:

1. a number, or population, of guesses of the solution to the problem; 

2. a way of calculating how good or bad the individual solutions within 
the population are; 

3. a method for mixing fragments of the better solutions to form new, 
on average even better solutions; and 

4. a mutation operator to avoid permanent loss of diversity within the 
solutions. 
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Search spaces

In a numerical search or optimization problem, a list, quite possibly of 
infinite length, of possible solutions is being searched in order to locate 
the solution that best describes the problem at hand

Example: maximize the lift generated by an airplane's wing. 
If there were only two of these adjustable parameters, a and b, one 
could try a large number of combinations, calculate the lift generated by 
each design and produce a surface plot with a, b 
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Search spaces (cont.)

For more complex problems, with more than two unknowns, the 
situation becomes harder to visualize!

The concept of a search space is valid as long as some measure of 
distance between solutions can be defined and each solution can be 
assigned a measure of success, or fitness, within the problem. 

Better performing, or fitter, solutions will then occupy the peaks within 
the search space (or fitness landscape) and poorer solutions the 
valleys.

Such spaces or landscapes can be of surprisingly complex topography. 
Even for simple problems, there can be numerous peaks of varying 
heights, separated from each other by valleys on all scales. 

The highest peak is usually referred to as the global maximum or global 
optimum, the lesser peaks as local maxima or local optima. 
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A measure of success 

For more complex problems, with more than two unknowns, the 
situation becomes harder to visualize!

The concept of a search space is valid as long as some measure of 
distance between solutions can be defined and each solution can be 
assigned a measure of success, or fitness, within the problem. 

Better performing, or fitter, solutions will then occupy the peaks within 
the search space (or fitness landscape) and poorer solutions the 
valleys.

Such spaces or landscapes can be of surprisingly complex topography. 
Even for simple problems, there can be numerous peaks of varying 
heights, separated from each other by valleys on all scales. 

The highest peak is usually referred to as the global maximum or global 
optimum, the lesser peaks as local maxima or local optima. 
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The goal of optimization

• For most search problems, the goal is the accurate identification of 
the global optimum 

• In some situations, for example real-time control, the identification of 
any point above a certain value of fitness might be acceptable 

• For other problems, for example, in architectural design, the 
identification of a large number of highly fit, yet distant and therefore 
distinct, solutions (designs) might be required 
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A simple example

Consider the experimental data 

Assume that 𝑥 and 𝑦 are connected as 𝑦! = 𝑚𝑥! + 𝑐 
But what values should be given to 𝑚 and 𝑐? 

If there is reason to believe that 𝑦 = 0	when	𝑥 = 0	(i.e. the line passes 
through the origin) then 𝑐 = 0 and 𝑚 is the only adjustable parameter 
(or unknown). Let 𝑦!  are experimental points, then we can use a least-

squares estimation Ω = ∑!"#
$ 𝑦! − 𝑦!

%
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A simple example (cont.)

We need to find such 𝑚 that Ω = ∑!"#
$ 𝑦! − 𝑚𝑦!

%
 is a minimum. 

One way to do this is to use a computer to calculate Ω over a fine grid 
of values of 𝑚. Then simply choose the 𝑚 which generates the lowest 
value of Ω. 

This approach, of estimating an unknown parameter, or parameters, by 
simply solving the problem for a very large number of values of the 
unknowns is called an enumerative search. 

It is only really useful if there are relatively few unknown parameters 
and one can estimate Ω rapidly.
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From simple to more complicated

Consider a problem in which there are ten unknowns, each of which 
are required to an accuracy of one percent

It will require 10010, or 1020, estimations! (years to complete)

Given that ten is not a very large number of unknowns, one percent not 
a very demanding level of accuracy clearly there is a need to find a 
better approach.

 

15

15

More complications

A more complex one-dimensional search 
space with both a global and a local 
minimum. 

If either the direct search algorithm is used, the final estimate of the 
parameter 𝑎 will depend on where in the search space the algorithm was 
started. Making the initial guess at 𝑎 = 𝑎% , will indeed lead to the correct 
(or global) minimum, 𝑎∗ . However, if 𝑎 = 𝑎#  is used then only 𝑎∗∗ 	will be 
reached (a local minimum). 

This highlights a serious problem. If the results produced by a search 
algorithm depend on the starting point, then there will be little confidence 
in the answers generated. 

One way around this problem would be to start the problem from a series 
of points and then assume that the true global minimum lies at the lowest 
minimum identified 16
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Part 2: 

Genetic Algorithm
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Key ideas

Rather than starting from a single point (or guess) within the search 
space, GA is initialized with a population of guesses. 

These are usually random and will be spread throughout the search 
space. 

A typical algorithm then uses three operators, selection, crossover and 
mutation (chosen in part by analogy with the natural world) to direct the 
population (over a series of time steps or generations) towards 
convergence at the global optimum. 

Typically, these initial guesses are held as binary encodings (or strings) 
of the true variables, although an increasing number of GA use "real-
valued" (i.e. base-10) encodings. 
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Selection

Selection attempts to apply pressure upon the population in a manner 
similar to that of natural selection found in biological systems. 

Poorer performing individuals are weeded out and better performing, or 
fitter, individuals have a greater than average chance of promoting the 
information they contain within the next generation. 
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Crossover 

Crossover allows solutions to exchange information in a way similar to 
that used by a natural organism undergoing reproduction. 

One method (termed single point crossover) is to choose pairs of 
individuals promoted by the selection operator, randomly choose a 
single locus (point) within the binary strings and swap all the 
information (digits) to the right of this locus between the two individuals. 
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Mutation 

Mutation is used to randomly change (flip) the value of single bits within 
individual strings.
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Procedure 

After selection, crossover and mutation have been applied to the initial 
population, a new population will have been formed and the 
generational counter is increased by one. 

This process of selection, crossover and mutation is continued until a 
fixed number of generations have elapsed or some form of 
convergence criterion has been met. 
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An Example

A trivial problem might be to maximize a function, 𝑓(𝑥),	where 
𝑓(𝑥) = 𝑥% ; for integer 𝑥 and 0 ≤ 𝑥 ≤ 4095. 

There are of course other ways of finding the answer (𝑥 = 4095) to this 
problem than using a GA, but its simplicity makes it ideal as an 
example. 

Note: GA can take many forms. This allows a wealth of freedom in the 
details of the algorithm. 

The following represents just one possibility. 
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An Algorithm

1. Form a population, of eight random binary strings of length twelve 
101001101010, 110011001100, …

2. Decode each binary string to an integer 𝑥 (i.e. 000000000111 
implies 𝑥	 = 	7, 111111111111 𝑥 = 4095). 

3. Test these numbers as solutions to the problem 𝑓(𝑥) = 𝑥%  and 
assign a fitness to each individual equal to the value 𝑓(𝑥) = (e.g. 
𝑥 = 7 has a fitness of 72= 49). 

4. Select the best half (those with highest fitness) of the population to 
go forward to the next generation. 
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An Algorithm

5. Pick pairs of parent strings at random (with each string being selected 
exactly once) from these more successful individuals to do single point 
crossover. Taking each pair in turn, choose a random point between 
the end points of the string, cut the strings at this point and exchange 
the tails, creating pairs of child strings. example: crossover between 
000100011100 and 111001101010 at point 3: 
parents         children
000100011100 000001101010

111001101010 111100011100

6. Apply mutation to the children by occasionally (with probability one in 
six) flipping a 0 to a 1 or vice versa.

7. Allow these new strings, together with their parents to form the new 
population, which will still contain only eight members. 

8. Return to Step 2, and repeat until 𝑁 generations have elapsed. 25

25

Let the initial population be

population string  x  fitness

member

1 110101100100  3428  11751184

2 010100010111  1303   1697809

3 101111101110  3054   9326916

4 010100001100  1292   1669264

5 011101011101  1885   3553225

6 101101011010  2889   8346321

7 101011011010  2778   7717284

8 010011010101  1237   1530169

Populations 1, 3, 6 and 7 have the highest fitness
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Keep top four most fitted

population string  x  fitness

member

1 110101100100  3428  11751184

2 101111101110  3054   9326916

3 101101011010  2889   8346321

4 101011011010  2778   7717284

Pairs of strings are now chosen at random (each exactly once): 
1 is paired with 2, 3 with 4.
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New generation

Selecting, at random, a crossover point for each pair of strings (marked 
by a /, four new children are formed and the new population, consisting 
of parents and offspring only, becomes 

population string  x  fitness
member

1 11/0101100100  3428  11751184

2 10/1111101110  3054   9326916

3 101101/011010  2889   8346321

4 101011/011010  2778   7717284

5 111111101110  4078  16630084

6 100101100100  2404   5779216

7 101101011010  2906   8444836

8 101011011010  2761   7623121 28
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Next temporary population

The initial population had an average fitness 𝑓'() = 5,065,797 and the 
fittest individual had f*+, = 11,751,184. In the second generation, these 
have risen to: 𝑓'() = 8,402,107 and f*+, = 16,630,084. 
The next temporary population becomes: 

population string  x  fitness
member

1 110101100100  3428  11751184

2 101111101110  3054   9326916

3 101101011010  2906   8444836

4 111111101110  4078  16630084

This temporary population does not contain 1 as the last digit in any of 
the strings (whereas the initial population did). This implies that no 
string from this moment on can contain such a digit and the maximum 
that can evolve will be 111111111110. Mutation might be important 29
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Mutation

Problem: the maximum that can evolve will be 111111111110, but 
not 111111111111.

The inclusion of mutation allows the population to leapfrog over this 
sticking point. It is worth reiterating that the initial population did include 
a 1 in all positions. 

Thus the mutation operator is not necessarily inventing new information 
but simply working as an insurance policy against premature loss of 
genetic information. 

Mutation can be included by visiting every bit in each new child string, 
throwing a random number between 0 and 1 and if this number is less 
than 1/12 (since there are 12 numbers in the string), flipping the value 
of the bit. 

Child string: 101101011010 -> after mutation can be 101110011011
30
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Calculations

The evolution of the population. The fitness of the best performing 
individual 𝑓-'.  is seen to improve with generation as is the average 
fitness of the population 𝑓'() . Without mutation the lack of a I in all 
positions limits the final solution. 
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Summary

The three central operators behind the method are selection, crossover 
and mutation.

Using these operators a very simple GA has been constructed and 
applied to a trivial problem. 

Although a genetic algorithm has now been successfully constructed 
and applied to a simple problem, it is obvious that many questions 
remain. 

In particular, how are problems with more than one unknown dealt with, 
and how are problems with real (or complex) valued parameters to be 
tackled? 
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Part 3: 

Improving the Algorithm
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Some questions

1. How will the algorithm perform across a wider range of problems?

2. How are non-integer unknowns tackled?

3. How are problems of more than one unknown dealt with?

4. Are there better ways to define the selection operator that 
distinguishes between good and very good solutions? 
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Robustness

The more robust the algorithm the greater the range of problems it can 
be applied to. 

A tailor-made method such as a traditional calculus based algorithm 
might be highly efficient for some problems, but will fail on others.

GAs are naturally robust and therefore effective across a wide range of 
problems. 
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Non-integer Unknowns

From integer to float such as −3.62, or 1.23 ∗ 10/0 .

There are many ways of doing this; however the most common is by a 
linear mapping between the real numbers and a binary representation 
of fixed length.
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Multiparameter Problems

Extending the representation to problems with more than one unknown 
proves to be particularly simple. 

The 𝑀 unknowns are each represented as sub-strings of length 𝑙. 
These sub-strings are then concatenated (joined together) to form an 
individual population member of length L, where: 

𝐿 = B
!"#

1
𝑙!

For example, given a problem with two unknowns 𝑎 and 𝑏, then if 
𝑎 = 10110 and 𝑏 = 11000	for one guess at the solution, then by 
concatenation, the genotype is a 𝑎⨁𝑏 = 1011011000. 

Two things: 1) there is no need for the sub-strings used to represent 𝑎 
and 𝑏 to be of the same length; this allows varying degrees of accuracy 
to be assigned to different parameters; 2) in general, the crossover cut 
point will not be between parameters but within a parameter. 37
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Mutation

In the natural world, several processes can cause mutation, the 
simplest being an error during replication. 

With a simple binary representation, mutation is particularly easy to 
implement. With each new generation the whole population is swept, 
with every bit position in every string visited and very occasionally a 1 is 
flipped to a 0 or vice versa (e.g. with probability 𝑝- ≈ 1/𝐿).

However, just like everything else about GA, the correct setting for 𝑝-  
will be problem dependent. 

Example: 𝑝- ≈ ⁄1 (𝑁 𝐿) where 𝑁is the population size

Observation: too low rate is likely to be less disastrous than too high  
rate for most problems.
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Selection

Thus far, the selection operator has been particularly simple: the best 
50% are selected to reproduce and the rest thrown away. 

This is a practical method but not the most common. 

 A more common selection operator is fitness-proportional, or roulette 
wheel, selection. With this approach the probability of selection is 
proportional to an individual‘s fitness. 
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Elitism

Fitness-proportional selection does not guarantee the selection of any 
particular individual, including the fittest. Unless the fittest individual is 
much, much fitter than any other it will occasionally not be selected. To 
not be selected is to die. 

Thus with fitness-proportional selection the best solution to the problem 
discovered so far can be regularly thrown away. 

Although it appears counterproductive, this can be advantageous for 
some problems because it slows the algorithm, allowing it to explore 
more of the search space before convergence. 

For many applications the search speed can be greatly improved by not 
losing the best, or elite, member between generations. 

Ensuring the propagation of the elite member is termed elitism and 
requires that not only is the elite member selected, but a copy of it does 
not become disrupted by crossover or mutation. 40
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Books – again

41

41


