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Partial Differential Equations
A. Godunov

1. Hyperbolic PDE
2. Wave equation
3. Convection equation: explicit methods
4. Convection equation: implicit methods
5. Wave equation: special considerations
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Part 1: 

Hyperbolic PDEs
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Hyperbolic PDEs

The wave equation

𝜕!𝑓
𝜕𝑡!

= 𝑐!
𝜕!𝑓
𝜕!𝑥

where c is the wave propagation speed. Waves travel in both directions 
at the velocities +𝑐	and −𝑐. 

The convection equation

𝜕𝑓
𝜕𝑡

+ 𝑣
𝜕𝑓
𝜕𝑥

= 0

where 𝑣 is is the convection velocity. The convection equation models a 
wave travelling in one direction, the direction of the velocity 𝑣. 

Hyperbolic PDEs are are initial-boundary-value problems in open 
domains. However, hyperbolic PDEs have a finite physical information 
propagation speed. 3
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The domain of the solution and boundary conditions

The hyperbolic PDEs have a finite physical information propagation 
speed. As a result, the solution at a given point P at time level n 
depends on the solution at points in the area defined by the 
propagation speed 𝑐.
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The boundary conditions

The solution must satisfy an initial conditions at 𝑡 = 0, 𝑓 𝑥, 0 = 𝐹 𝑥  for 
the convection equation and additional condition 𝑓" 𝑥, 0 = 𝐺(𝑥) for the 
wave equation. The time coordinate has an open final value. 

For the convection equation – one boundary condition must be 
specified, for the wave equation (second order in the spatial coordinate, 
two boundary conditions are required.
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Finite-difference method

The finite difference method is a numerical procedure which solves a 
partial differential equation (PDE) by 
1. discretizing the continuous physical domain 
2. approximating the individual exact partial derivatives in the PDE by 

algebraic finite difference approximations (FDAs), 
3. substituting the FDAs into the PDE  

4. and solving the resulting algebraic finite difference equations
The objective of the numerical solution of a hyperbolic PDE is to march 
the solution at time level 𝑗 forward in time to time level 𝑗 + 1
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Part : 2

Wave equation
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Part : 2A

CTCS: centered time centered space
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Finite-differences

The wave equation 

𝑓"" = 𝑐!𝑓##

Similar to the elliptic equation we replace second derivatives (now for 
time and space) on 

𝑓"" =
𝑓$ ,&'( − 2𝑓$ ,& + 𝑓$ ,&)(

∆𝑡!
, 	 𝑓## =

𝑓$'(,& − 2𝑓$ ,& + 𝑓$)(,&
∆𝑥!

𝑓$ ,&'( − 2𝑓$ ,& + 𝑓$ ,&)(
𝑐!∆𝑡!

=
𝑓$'(,& − 2𝑓$ ,& + 𝑓$)(,&

∆𝑥!

using 𝑎 = 𝑐∆𝑡/∆𝑥

𝑓$ ,&'( = 2 1 − 𝑎! 𝑓$ ,& + 𝑎!𝑓$)(,& + 𝑎!𝑓$'(,& − 𝑓$ ,&)(

The explicit algorithm propagates the wave from two earlier times 𝑗 and 
𝑗 − 1, and from three nearby positions,𝑖 − 1, 𝑖, and 𝑖 + 1,to a later time 
𝑗 + 1 and a single space position 𝑖 9
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Initializing the steps

Initializing the solution requires displacements from two 
earlier times, but the initial conditions are for only one time.

However, we can use the three-point centered-difference formula to 
approximate the first time derivative of the solution (just for the first 
step)

𝑓" 𝑖, 𝑗 =
𝑓$ ,&'( − 𝑓$ ,&)(

2∆𝑡
, 𝑓$ ,&)( = 𝑓$ ,&'( − 2∆𝑡𝑓" 𝑖, 𝑗

then the initialization of the algorithm is

𝑓$ ,&'( = 2 1 − 𝑎! 𝑓$ ,& + 𝑎!𝑓$)(,& + 𝑎!𝑓$'(,& − 𝑓$ ,&'( + 2∆𝑡𝑓" 𝑖, 𝑗

or the first step is calculated as

𝑓$ ,! = 𝑓$ ,( +
𝑎!

2
𝑓$'(,( − 2𝑓$ ,( + 𝑓$)(,( + ∆𝑡𝑓" 𝑖, 1
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Stability and accuracy

For stability the method

𝑓$ ,&'( = 2 1 − 𝑎! 𝑓$ ,& + 𝑎!𝑓$)(,& + 𝑎!𝑓$'(,& − 𝑓$ ,&)(

the 𝑐 ≤ 	 ⁄∆𝑥 ∆𝑡 or 𝑐∆𝑡 ≤ ∆𝑥 (Courant condition). 

The condition means that the solution gets better with smaller time 
steps but gets worse for smaller space step 

Since 𝑐 is the wave speed, this means that the distance 𝑐∆𝑡 traveled by 
the solution in one time step should not exceed the space step ∆𝑥. 

Attention: if 𝑐∆𝑡 = ∆𝑥, then the method provides higher accuracy (the 
leading term in the error vanishes!)

The accuracy of the algorithm is 𝑂 ∆𝑡! + 𝑂 ∆𝑥!  if 𝑐∆𝑡 < ∆𝑥 (and even 
higher for 𝑐∆𝑡 = ∆𝑥.)
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The final touch …

The explicit algorithm has various names: time-stepping, CTCS 
(centered-time centered-space method)

𝑓$ ,&'( = 2 1 − 𝑎! 𝑓$ ,& + 𝑎!𝑓$)(,& + 𝑎!𝑓$'(,& − 𝑓$ ,&)(

It is applied with initial and boundary conditions for 0 ≤ 𝑥 ≤ 𝐿 and 𝑡 ≥ 0 

𝑓 𝑥, 0 = 𝑔 𝑥 , 𝑓" 𝑥, 0 = ℎ 𝑥

𝑓 0, 𝑡 = 𝜇 𝑡 , 𝑓 𝐿, 𝑡 = 𝜂(𝑡)
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Example: MatLab code
%{
  Solving the wave equation with Dirichlet BCs
  Method: Centered-time Centered-space difference
  INPUT:
  f(i,j)    initial and boundary condition
  ft(i)     initial condition for the derivative
  dx, dy    grid increments
  nx        number of grid points in x direction 
  nt        number of grid points in y direction
  c         speed
  OUTPUT
  f2(x,y)   the solution
%}
function[f2] = pdeW1(f,ft, dx,dt,nx,nt,c)
% preparation
f2 = zeros(nx,nt);
a = c*dt/dx;
a2 = a*a;
fprintf(' CFL number a = %6.4f \n',a)
if a > 1.0
  fprintf(' ATTENTION: the CFL is too large for the method \n ')
end
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Example: MatLab code
% Preparing the first iteration (with the derivatives)
for i=2:nx-1
  f(i,2) = f(i,1) + 0.5*a2*(f(i+1,1)-2*f(i,1)+f(i-1,1))+dt*ft(i);
end
% Marching forward
for j=2:nt
  for i=2:nx-1
    f(i,j+1) = 2.0*(1-a2)*f(i,j) +a2*(f(i+1,j)+f(i-1,j)) - f(i,j-1);
  end
end
% Prepare OUTPUT 
for j=1:nt
  for i=1:nx
    f2(i,j)= f(i,j);
  end
end
end
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Example: Using explicit CTCS method

𝑓"" = 16𝑓##

Numerical solutions                           Analytic solution

for the same initial conditions (the boundary conditions set to zero)

𝑓 𝑥, 0 = 0, 𝑓" 𝑥, 0 = 2𝜋 sin 𝜋𝑥

analytic solution: 𝑓 𝑥, 𝑡 = (

!
sin 𝜋𝑥 sin(4𝜋𝑡)
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Example: Instability when CFL number >1

𝑓"" = 𝑐!𝑓##

             ⁄𝑎 = 𝑐∆𝑡 ∆𝑥 = 1	 ⁄𝑎 = 𝑐∆𝑡 ∆𝑥 = 1.04

 

Example of instability
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Example: solutions with non-zero boundary conditions

𝑓"" = 𝑐!𝑓##

initial conditions: 𝑓 𝑥, 0 = 0, 	 𝑓" 𝑥, 0 = 𝜋 sin 𝜋𝑥

Boundary conditions:
𝑓 0, 𝑡 = 0, 	𝑓 1, 𝑡 = 0                        𝑓 0, 𝑡 = 0,  𝑓 1, 𝑡 = 0.2sin(2𝜋𝑡)

17

17

Part 3: 

Convection equation: explicit methods

𝑓J +𝑣𝑓K = 0
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Explicit methods

The objective of the numerical solution of a parabolic PDE is to march the 
solution at time level j forward in time to time level j+1.

Finite difference methods when the solution at point P at time level j+1 
depends only on the solution at neighboring points at time level j are 
called explicit methods. Explicit methods are computationally faster than 
implicit methods because there is no system of finite difference equations 
to solve. 

19
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The forward-time centered-space (FTCS) method

The convection PDE 𝑓" + 𝑣𝑓# = 0

𝑓$ ,&'( − 𝑓$ ,&
∆𝑡

+ 𝑣
𝑓$'(,& − 𝑓$)(,&

2∆𝑥
= 0

Solving for 𝑓$ ,&'(

𝑓$ ,&'( = 𝑓$ ,& −
𝑐
2
(𝑓$'(,& − 2𝑓$)(,&)

where 𝑐 = ⁄𝑣∆𝑡 ∆𝑥 is called the convection number

Attention: the FTCS approximation of the convection equation is 
unconditionally unstable. Consequently, it is unsuitable for solving the 
convection equation, or any other hyperbolic PDE. 
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The Lax method

The idea – approximating 𝑓$ ,&  in FTCS 𝑓$ ,&'( = 𝑓$ ,& −
*

!
(𝑓$'(,& − 2𝑓$)(,&)

as 𝑓$ ,& = ( ⁄𝑓$'(,& + 𝑓$)(,&) 2

Then 

𝑓$ ,&'( =
1
2
𝑓$'(,& + 𝑓$)(,& −

𝑐
2
(𝑓$'(,& − 2𝑓$)(,&)

The Lax approximation of the convection equation is conditionally 
stable 

Attention: The Lax equation is not a consistent approximation of the 
convection equation. Don’t use it
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21

The Lax-Wendroff one-step method

The method is 𝑂 ∆𝑡! + 𝑂 ∆𝑥!  and very popular

For the convection equation  

𝑓$ ,&'( = 𝑓$ ,& −
𝑐
2
𝑓$'(,& − 𝑓$)(,& +

𝑐!

2
(𝑓$'(,& − 2𝑓$ ,& + 𝑓$)(,&)

The Lax-Wendroff approximation of the convection equation is 
conditionally stable for

𝑐 =
𝑣∆𝑡
∆𝑥

≤ 1

The Lax-Wendroff one-step approximation of the convection equation is 
consistent and conditionally stable. 

However, the method is quite complicated for nonlinear PDEs, systems of 
PDEs, and two- and three-dimensional physical spaces. 
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Other methods

• The extension of the Lax-Wendroff method by Richmyer. The 
Richtmyer method is much simpler than the Lax-Wendroff one-step 
method for nonlinear PDEs and systems of PDEs. The method is 
𝑂 ∆𝑡! + 𝑂 ∆𝑥!  

• The MacCormack (predictor-corrector) method: The method can be 
used to solve linear partial differential equations, nonlinear PDEs, 
and systems of PDEs with equal ease. It is identical to Lax-Wendroff 
method for linear PDEs. The method is 𝑂 ∆𝑡! + 𝑂 ∆𝑥!  

• Upwind methods (the first- and second-order methods)
The first-order method is nor very accurate
The second-order method is  𝑂 ∆𝑡! + 𝑂 ∆𝑥!  and conditionally 
stable for 𝑐 < 2.
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Part 4: 

Convection equation: implicit methods
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Basics

• Explicit methods share one undesirable feature: they are only 
conditionally stable. Consequently, the allowable time step is usually 
quite small, and the amount of computational effort required to 
obtain the solution of some problems is immense. 

• Implicit finite difference methods are unconditionally stable. 

• There is no limit on the allowable time step required to achieve a 
stable solution. 

• There is, of course, some practical limit on the time step required to 
maintain the truncation errors within reasonable limits, but this is not 
a stability consideration; it is an accuracy consideration. 

• One disadvantage: the solution at a point at the solution time level 
𝑗 + 1 depends on the solution at neighboring points at level 𝑗 + 1, 
which are also unknown 
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Backward-time centered-space (BTCS) method

The convection PDE 𝑓" + 𝑣𝑓# = 0

𝑓$ ,&'( − 𝑓$ ,&
∆𝑡

= 𝑣
𝑓$'(,&'( − 𝑓$)(,&'(

2∆𝑥

−
𝑐
2
	𝑓$)(,&'( + 𝑓$ ,&'( +

𝑐
2
	𝑓$'(,&'( = 𝑓$ ,&

𝑐 = ⁄𝑣∆𝑡 ∆𝑥 is the convection number

The BTCS method applied to the convection equation is consistent and 
unconditionally stable. The method is 𝑂 ∆𝑡 + 𝑂 ∆𝑥! .

The BTCS approximation of the convection equation yields poor 
results, except for very small values of the convection number, for 
which explicit methods are generally more efficient. 
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Application 

−
𝑐
2
	𝑓$)(,&'( + 𝑓$ ,&'( +

𝑐
2
	𝑓$'(,&'( = 𝑓$ ,&

for one-dimensional 𝑥	grid 

	 𝑓!,&'( +
𝑐
2
𝑓+,&'( = 𝑓!,& +

𝑐
2
𝑓(,&'(

−
𝑐
2
𝑓!,&'( + 𝑓+,&'( +

𝑐
2
𝑓,,&'( = 𝑓+,&

−
𝑐
2
𝑓+,&'( + 𝑓,,&'( +

𝑐
2
𝑓-,&'( = 𝑓,,&

…

	 −
𝑐
2
𝑓.)!,&'( + 𝑓.)(,&'( 	 = 𝑓.)(,& −

𝑐
2
𝑓.,&'(

Equation is a tridiagonal system of linear equations. 
27
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Part : 5

Wave equation: more methods

28

Replacing the wave equation into a system

The wave equation 

𝑓"" = 𝑐!𝑓##

is equivalent to the following set two coupled first-order convection 
equations: 

𝑓" + 𝑐𝑔# = 0

𝑔" + 𝑐𝑓# = 0

Equations above suggest that the wave equations can be solved by the 
same methods that are employed to solve the convection equation: the 
FTCS method, the Lax method, upwind methods, the leap-frog method, 
the Lax-Wendroff one-step method, the Lax-Wendroff two-step method, 
the BTCS method, the Crank-Nicolson method, the hopscotch method.

However, it’s more efficient to solve the wave equation using central 
second order differences straight with 𝑓"" = 𝑐!𝑓## . 29
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The Lax-Wendroff one-step method for wave equation

For the system

𝑓" + 𝑐𝑔# = 0

𝑔" + 𝑐𝑓# = 0

𝑓$ ,&'( = 𝑓$ ,. −
𝑎
2
𝑔$'(,& − 𝑔$)(.& +

𝑎!

2
𝑓$'(,& − 2𝑓$ ,0 + 𝑓$)(,&

𝑔$ ,&'( = 𝑔$ ,. −
𝑎
2
𝑓$'(,& − 𝑓$)(,& +

𝑎!

2
𝑔$'(,& − 2𝑔$ ,0 + 𝑔$)(,&

with 𝑎 = ⁄𝑐∆𝑡 ∆𝑥

for stability 𝑎 ≤ 1.
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d’Alembert solution

The wave equation 

𝑓"" = 𝑐!𝑓##

with given initial conditions 

𝑓 𝑥, 0 = 𝜑 𝑥 , 	 𝑓" 𝑥, 0 = 𝜇 𝑥 .

for infinitely long string has analytic solution (d’Alembert solution)

𝑓 𝑥, 𝑡 =
𝜑 𝑥 + 𝑐𝑡 + 𝜑 𝑥 − 𝑐𝑡

2
+
1
2𝑐

N
#)*"

#'*"

𝜇 𝑝 𝑑𝑝 .

In this case we only need to evaluate the integral above.

The solution represents a superposition of two traveling waves, a right-
traveling wave and a left-traveling wave.
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Part : 6

PDE solvers 

hyperbolic, parabolic, elliptical

32

COMSOL

Simulate real-world designs, devices, and processes with multiphysics 
software from COMSOL
https://www.comsol.com

Modeling with Partial Differential Equations in COMSOL Multiphysics

• Poisson's and Laplace Equations

• Diffusion-Type Equations

• Convection–Diffusion Equations

• Coordinate Transformations

• Helmholtz Equation

and many more …
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COMSOL

Example: Diffusion-Type Equations

Modeling the electrical activity in cardiac tissue using the General Form 
PDE mathematics interface. In this model, two different time-dependent 
nonlinear partial differential equation systems are used: the FitzHugh–
Nagumo equations and the Ginzburg–Landau equations
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MatLab: 

Partial Differential Equation Toolbox: 
Solve partial differential equations using finite element analysis

• Structural Mechanics

• Heat Transfer

• Electromagnetics

• General PDEs

• Geometry and Meshing

• Visualization and Postprocessing
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And …

The are many software packages and libraries for solving PDE with 
application to engineering, physical sciences, medicine, manufacturing 
and many more …
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