

Hyperbolic PDEs The wave equation

$$\frac{\partial^2 f}{\partial t^2} = c^2 \frac{\partial^2 f}{\partial^2 x}$$

where c is the wave propagation speed. Waves travel in both directions at the velocities +c and -c.

The convection equation

$$\frac{\partial f}{\partial t} + v \frac{\partial f}{\partial x} = 0$$

where v is is the convection velocity. The convection equation models a wave travelling in one direction, the direction of the velocity v.

Hyperbolic PDEs are are initial-boundary-value problems in open domains. However, hyperbolic PDEs have a finite physical information propagation speed.

3

The finite difference method is a numerical procedure which solves a partial differential equation (PDE) by

- 1. discretizing the continuous physical domain
- approximating the individual exact partial derivatives in the PDE by algebraic finite difference approximations (FDAs),
- 3. substituting the FDAs into the PDE

4. and solving the resulting algebraic finite difference equations The objective of the numerical solution of a hyperbolic PDE is to march the solution at time level j forward in time to time level j + 1

Part : 2A CTCS: centered time centered space

7

9

The accuracy of the algorithm is $O(\Delta t^2) + O(\Delta x^2)$ if $c\Delta t < \Delta x$ (and even higher for $c\Delta t = \Delta x$.)

Initializing the solution requires displacements from two for $\frac{1}{\sqrt{3}}$ and $\frac{1}{\sqrt{3}}$ are for only one time. However, we can use the three-point centered-difference formula to approximate the first time derivative of the solution (just for the first step)

1,3+1

$$f_t(i,j) = \frac{f_{i,j+1} - f_{i,j-1}}{2\Delta t}, \qquad f_{i,j-1} = f_{i,j+1} - 2\Delta t f_t(i,j)$$

then the initialization of the algorithm is

$$f_{i,j+1} = 2(1-a^2)f_{i,j} + a^2f_{i-1,j} + a^2f_{i+1,j} - f_{i,j+1} + 2\Delta t f_t(i,j)$$

or the first step is calculated as

$$f_{i,2} = f_{i,1} + \frac{a^2}{2} \left(f_{i+1,1} - 2f_{i,1} + f_{i-1,1} \right) + \Delta t f_t(i,1)$$

10

8

Explicit methods

The objective of the numerical solution of a parabolic PDE is to march the solution at time level j forward in time to time level j+1.

Finite difference methods when the solution at point P at time level j+1 depends only on the solution at neighboring points at time level j are called explicit methods. Explicit methods are computationally faster than implicit methods because there is no system of finite difference equations to solve.

19

21

Other methods

- The extension of the Lax-Wendroff method by Richmyer. The Richtmyer method is much simpler than the Lax-Wendroff one-step method for nonlinear PDEs and systems of PDEs. The method is $O(\Delta t^2) + O(\Delta x^2)$
- The MacCormack (predictor-corrector) method: The method can be used to solve linear partial differential equations, nonlinear PDEs, and systems of PDEs with equal ease. It is identical to Lax-Wendroff method for linear PDEs. The method is *O*(Δt²) + *O*(Δx²)
- Upwind methods (the first- and second-order methods) The first-order method is nor very accurate The second-order method is *O*(Δt²) + *O*(Δx²) and conditionally stable for *c* < 2.

The forward-time centered-space (FTCS) method

The convection PDE $f_t + v f_x = 0$

 $\frac{f_{i,j+1} - f_{i,j}}{\Delta t} + v \frac{f_{i+1,j} - f_{i-1,j}}{2\Delta x} = 0$

Solving for $f_{i,j+1}$

$$f_{i,j+1} = f_{i,j} - \frac{c}{2}(f_{i+1,j} - 2f_{i-1,j})$$

where $c = v\Delta t / \Delta x$ is called the convection number

Attention: the FTCS approximation of the convection equation is unconditionally <u>unstable</u>. Consequently, it is unsuitable for solving the convection equation, or any other hyperbolic PDE.

20

22

Part 4:

Convection equation: implicit methods

2-1,541 2,541 itist

isi

Basics

- Explicit methods share one undesirable feature: they are only conditionally stable. Consequently, the allowable time step is usually quite small, and the amount of computational effort required to obtain the solution of some problems is immense.
- Implicit finite difference methods are unconditionally stable.
- There is no limit on the allowable time step required to achieve a stable solution.
- There is, of course, some practical limit on the time step required to maintain the truncation errors within reasonable limits, but this is not a stability consideration; it is an accuracy consideration.
- One disadvantage: the solution at a point at the solution time level *j* + 1 depends on the solution at neighboring points at level *j* + 1, which are also unknown

25

27

Replacing the wave equation into a system

The wave equation

 $f_{tt} = c^2 f_{xx}$

is equivalent to the following set two coupled first-order convection equations:

 $f_t + cg_x = 0$

$$g_t + cf_x = 0$$

Equations above suggest that the wave equations can be solved by the same methods that are employed to solve the convection equation: the FTCS method, the Lax method, upwind methods, the leap-frog method, the Lax-Wendroff one-step method, the Lax-Wendroff two-step method, the BTCS method, the Crank-Nicolson method, the hopscotch method.

However, it's more efficient to solve the wave equation using central second order differences straight with $f_{tt} = c^2 f_{xx}$.

The convection PDE
$$f_t + v f_x = 0$$

$$\frac{f_{i,j+1} - f_{i,j}}{\Delta t} = v \frac{f_{i+1,j+1} - f_{i-1,j+1}}{2\Delta x}$$
$$-\frac{c}{2} f_{i-1,j+1} + f_{i,j+1} + \frac{c}{2} f_{i+1,j+1} = f_{i,j}$$

 $c = v\Delta t / \Delta x$ is the convection number

The BTCS method applied to the convection equation is consistent and unconditionally stable. The method is $O(\Delta t) + O(\Delta x^2)$.

The BTCS approximation of the convection equation yields poor results, except for very small values of the convection number, for which explicit methods are generally more efficient.

26

28

d'Alembert solution

The wave equation

 $f_{tt} = c^2 f_{xx}$

with given initial conditions

 $f(x,0)=\varphi(x),\qquad f_t(x,0)=\mu(x).$

for infinitely long string has analytic solution (d'Alembert solution)

$$f(x,t) = \frac{\varphi(x+ct) + \varphi(x-ct)}{2} + \frac{1}{2c} \int_{x-ct}^{x+ct} \mu(p)dp.$$

In this case we only need to evaluate the integral above.

The solution represents a superposition of two traveling waves, a right-traveling wave and a left-traveling wave.

31

COMSOL

Simulate real-world designs, devices, and processes with multiphysics software from COMSOL https://www.comsol.com

Modeling with Partial Differential Equations in COMSOL Multiphysics

- · Poisson's and Laplace Equations
- Diffusion-Type Equations
- Convection–Diffusion Equations
- Coordinate Transformations
- Helmholtz Equation

and many more ...

33

MatLab:

Partial Differential Equation Toolbox:

- Solve partial differential equations using finite element analysis
- Structural Mechanics
- Heat Transfer
- · Electromagnetics
- General PDEs
- · Geometry and Meshing
- · Visualization and Postprocessing

32

COMSOL

Example: Diffusion-Type Equations

Modeling the electrical activity in cardiac tissue using the General Form PDE mathematics interface. In this model, two different time-dependent nonlinear partial differential equation systems are used: the FitzHugh–Nagumo equations and the Ginzburg–Landau equations

34

33

35

And ...

The are many software packages and libraries for solving PDE with application to engineering, physical sciences, medicine, manufacturing and many more ...