
 Parallelization
T. Powell

1. Computational Benefits & Speedup
2. Algorithms
3. OpenMP
4. Message-Passing Interface (MPI)

updated 20 April 2022

Part 1:

Computational Benefits & Speedup

What is Parallelization?

3

Where is parallelization useful?

4

Most desktops and laptops now feature multi-core processors, which
run dozens of concurrent processes at any given time to keep the PC
running (just check your task manager!).

In the sciences, the push towards solving more complex and difficult
problems has led to a similar need for more processing power to obtain
results in a reasonable timeframe. The primary utility of
supercomputers (HPCs) is the vast number of processors available to
do simultaneous calculations on distinct portions of a single problem.

Presently, HPCs are used for everything from maintaining the nuclear
stockpile and weather forecasting to large-scale molecular dynamics
simulations and simulating nuclear particle interactions.

Where is parallelization useful?

5

The Nuclear Physics with Lattice Quantum Chromodynamics
(NPLQCD) collaboration uses roughly 50-150 million core hours per
year for calculations done by their various users

Where is parallelization useful?

6

The Partnership for Advanced Computing in Europe (PRACE) has a
call for proposals annually, and last awarded a total of 2 billion core
hours to 43 different projects.

Speedup - Amdahl’s Law

7

When parallelizing a program, one major consideration is the amount of
speedup that can be achieved through allocating additional resources.

The theoretical speedup of task execution for a process with additional
resources is given by Amdahl’s law,

Limitations to Speedup

8

In the creation of parallelized programs, the primary theoretical
limitation to the speedup of a process is the amount of dependence
between portions of the problem.

Inherently serial problems - Some problems require information from
previous steps in order to complete future steps.

e.g., Iterative numerical methods such as ODE solvers

Embarrassingly parallel problems - Other problems are ripe for
parallelization because the individual steps are completely independent
of one another

e.g., Numerical integration, Monte-Carlo

Limitations to Speedup

9

For most programs, tasks are a mixture of some serial portions and
some parallelizable tasks.

For those tasks which are parallelizable, it becomes important to design
an algorithm which divides up the work as evenly as possible between
the processors (load-balancing).

For tasks which require at least some communication between
individual nodes, balancing communication overhead also becomes an
important consideration to ensure an implementation remains efficient.

Case Study: Improper Load Balancing

10

Consider a program which uses parallelization to split up the task of
numerical integration over some region

Case Study: Improper Load Balancing

11

Performing numerical integration for some simple function with ~107
steps, we can find the speedup from including more nodes for the
computation.

Case Study: Improper Load Balancing

12

Now let’s have this program implement adaptive integration. Each of
the subdivided regions are now sent to nodes, which use an adaptive
integration routine to obtain the local value for the integral,

Case Study: Improper Load Balancing

13

Finally, this program examines a set of sinusoids dependent on
different powers of x,

Clearly, for higher powers of x, processors which are assigned
subsections further from the origin will take longer to perform the
numerical integration than those closer to the origin.

Case Study: Improper Load Balancing

14

Linear

Case Study: Improper Load Balancing

15

Cubic

Case Study: Improper Load Balancing

16

Linear

Cubic

Part 2:

Algorithms

Algorithms - Standard Task Distribution

18

Algorithms - Standard Task Distribution

19

Algorithms - Manager-Worker

20

Algorithms - Stack Allocation

21

Algorithms - Domain Decomposition

22

Algorithms - Domain Decomposition

23

Part 3:

OpenMP

OpenMP

Simplest way to get started with parallelization in C++ is the OpenMP
library. Extremely fast to set up and can be used to parallelize anything
that would be a for loop in a standard program.

Based on a fork-join model, where forks are generated from a primary
thread to complete a set number of tasks in parallel.

25

OpenMP - Pragma Commands

Most of the commands used by OpenMP are compiler directives of the
form

#pragma omp construct [clause]

The construct we will focus on is the parallel for construct, which
simply parallelizes a for loop. Some common examples look like:

#pragma omp parallel for private (x, y) shared (z)

#pragma omp parallel for schedule(dynamic)

#pragma omp parallel for reduction (+:sum)

Other constructs which may be useful for more advanced
implementation are barrier, single, critical, and ordered.

26

OpenMP - Clauses

● private - Each thread creates its own private instance of the
enclosed variables

● shared - All threads share the same value across memory

● if - executes the loop in parallel if the condition is satisfied

● reduction - reduces a shared variable according to the specified
operation {+,-,*,max,min}

● schedule - accepts the kind of schedule {dynamic, static, guided,
runtime} as well as the chunk size of iterations (an integer).

● nowait - skips the barrier at the end of a parallel region (useful for
multiple independent “parallel for” sections in sequence).

27

OpenMP “Hello World” Example

28

OpenMP Advantages

This is by far the simplest way to parallelize any program where the
bulk of the work is some repeated process within a for loop. The
communication and overhead is entirely handled by the library and
compiler, and the parallelization is handled by a single line of compiler
directives.

It also doesn’t require a full rewrite of serial code since parallelization
can simply be added through the compiler directive and an
“#include <omp.h>” statement

OpenMP also allows for dynamic load balancing between nodes on the
fly as a program runs by adding “schedule(dynamic)” at the end of the
directive

29

OpenMP Drawbacks

30

OpenMP is a multithreading technique. As such, it is limited by the
number of threads to which the program has access.
● On ODU’s HPC cluster, Wahab, each core has 40 nodes, therefore

an OpenMP-enabled program can create up to 40 threads at most.

No built-in support for parallel I/O from within parallel threads

Limited to the simplest of parallelization algorithms discussed in the
previous section, since the programmer has little control over the
communication between threads.

General Tips for OpenMP Programming

1. Begin with a fully-optimized serial version of the program you wish
to parallelize.

2. Add OpenMP in steps and do testing to evaluate the speedup
achieved with varying number of threads.

3. If the program uses nested loops, start by parallelizing the
outermost loops, since that will typically result in the best
performance by reducing communication overhead

4. Experiment with different task scheduling.
a. In general, if the tasks are of equal time-complexity, static

scheduling is fine. If the tasks vary in time-complexity between
loop iterations, consider dynamic scheduling with small chunk
size

5. Minimize the number of barriers used through a program (if any)

31

Part 4:

Message-Passing Interface (MPI)

Message-Passing Interface (MPI)

MPI is considered the main workhorse for writing parallelized code in
C++ and FORTRAN. It is a lower-level parallelization library than
OpenMP, and therefore the programmer has to manually control the
way in which nodes communicate and pass data.

Unlike OpenMP, MPI is scalable even to the largest architectures
currently in use. Instead of being limited to the number of threads
available to a single node, MPI program spawn independent processes,
which are individually capable of both executing commands and
communicating with other processes to transfer data.

33

MPI - Advantages

MPI is capable of running on a variety of memory architectures, and is
adaptable to heterogeneous hardware implementations.

Applicable to a wider variety of problems than OpenMP and can adapt
to various designs to suit the needs of a particular project.

Distributed memory systems are generally cheaper and more
accessible than shared memory systems.

34

MPI - Drawbacks

It is not only more difficult to write a program with MPI, it is also more
difficult in general to adapt a serial program into a parallelized version
with MPI. This corresponds to additional development time in order to
develop a good parallelized program with MPI even if a serial version
already exists.

Debugging MPI program is generally more difficult and there are
relatively few resources available for debugging in general.

35

MPI - Basic Routines

MPI_Init(&argc, &argv) - Required at the start of the program.

MPI_Finalize() - Required at the end of the program

MPI_Comm_rank(MPI_COMM_WORLD, &node) - identifies the processor
currently being used as an integer between 0 and N

MPI_Comm_size(MPI_COMM_WORLD, &nproc) - gives the total number
of processes allocated for the program

MPI_Send(data, count, MPI_Datatype, destination, tag, MPI_COMM) -
blocking communication to send data to another process

MPI_Recv(data, count, MPI_Datatype, source, tag, MPI_COMM, status) -
blocking communication to receive data from another process

36

MPI - Basic Datatypes

MPI_INT
MPI_FLOAT
MPI_DOUBLE

37

MPI_LONG
MPI_CHAR

MPI - Additional Routines

MPI_Barrier
MPI_Bcast
MPI_Gather

MPI_Scatter
MPI_Reduce
MPI_Scan

MPI “Hello World” Example

38

MPI Manager-Worker Example

39

MPI Manager-Worker Example

40

Further Reading

OpenMP:

https://www.openmp.org/

Lawrence Livermore tutorial series, https://hpc-tutorials.llnl.gov/openmp/

Tim Mattson’s series on YouTube, YouTube Link

MPI:

https://www.open-mpi.org/

Wes Kendall’s tutorials, https://mpitutorial.com/tutorials/

Lawrence Livermore tutorial, https://hpc-tutorials.llnl.gov/mpi/

Sample code used in this lecture is available on my GitHub at

https://github.com/Taylor-Powell/OpenMP_Basics

https://github.com/Taylor-Powell/MPI_Basics 41

https://www.openmp.org/
https://hpc-tutorials.llnl.gov/openmp/
https://www.youtube.com/playlist?list=PLLX-Q6B8xqZ8n8bwjGdzBJ25X2utwnoEG
https://www.open-mpi.org/
https://mpitutorial.com/tutorials/
https://hpc-tutorials.llnl.gov/mpi/
https://github.com/Taylor-Powell/OpenMP_Basics
https://github.com/Taylor-Powell/MPI_Basics

