Chapter 3

Motion in Two or Three Dimensions

Outline

Position, velocity, acceleration
Motion in a plane (Set of equations)
Projectile Motion (Range, Height, Velocity, Trajectory)

Circular Motion (Polar coordinates, Time derivatives)

a > b PkE

Relative Motion




Position, velocity, acceleration

~

1. Position F=x +y+2

2. Average velocity ¥, -t

3. Instantaneous velocity

<l

Af_df_dx.A ﬂ’: dz ~

—i+—=j+—Kk
dt  dt " dt

2 2 2
V= Vi +V) + Ve

At—)OE B dt
v :vxf+vyi+vzlz
4. Average acceleration . V-V
Ay =
L-1
5. Instantaneous acceleration[ — — Ay gv
a= _
At—0 At dt

Part 1

Motion in a plane




Motion in Plane When Acceleration is
Constant

o Consider a caseyvhen acceleration in a plane
is constant @ — A — const
o In 2-D Cartesian coordinates, this can be written as
aridayj=Ari4+ AyJ
@ Or, in terms of velocity:

dvg . duy N N
@ g I = At A
o Since i and j are linearly independent, it is clear that

dvy dvy

dt -t dt Y
Motion that occurs in x -direction is
completely independent
of motion that occurs in the y-direction.

Set of equations

o Each of these equations can be integrated to obtain components
of velocity and position

Uy = Ay

Uy = Agt +  Uzo

r = %Axt2 + wvgot + X
{ ay = Ay

vy, = Ayt + vy

y = A 4+ vt + wo

Anything that can possibly be known about

motion in the zy-plane at constant acceleration
is contained within these equations




Being practical: 2D motion

1. initial value problem:
knowing initial conditions
(Xo0,Yo & Vy0:Vy) @nd acceleration

with const. a

(ax.ay) one may find position (x,y)
and velocity (v,,v,) atany moment
in time.

2. final value problem:
when some (or all) or final values
are known, one may find required

V, = Vg, tat

1 .
X = X+Vt+ 5 at
V, = V+at

1
Yy = Yo+Vl+ > at?

initial conditions to satisfy the final
values

3. a mixture of initial and final value
problems (just algebra :-)

Part 2

Projectile Motion

* A projectile moves in a vertical plane that
contains the initial velocity vector v,

» [ts trajectory depends only on v, and
on the downward acceleration due to gravity.

————

e s ~<Traj::ct0ry

a ~
N

X = VxO
= X+t ont
Vg = V- gyt

1
Yo + Vot = > gt’

\\
0,a,=-¢




Projectile Motion - 2 D Example

o Projectile is launched at angle 6

¥y,
1% i Note that
. a=-jg
A Uz0 = Vg cos B
. X 4 i ’ ]
0 s Uyo = g sin by
=0 =T, t=T

o Two sets of equations for motion in z-direction
and y-direction can now be written as

a, = Ay=-g

vy = —gt+ vy

—gt +vpsinfy
f%th + vyl sin

A, =0
Uy = Ugg = Vgcosby
vUzolt — vot cosfy

Ay

&
Il
I

Projectile Motion - 2 D

Al the top of the trajectory, the projectile has zero vertical

velocity (t 03, but its vertical acceleration is still —g
¥ )
¢ s
- e — -
B Pigre=" gl S 1
A i

vy, B S, : i ir !

| T i 1 | Vertically, the projectile

Ealop - ' I
5y L o ilrg-\ exhibits constunt-acceleration
x i 1 1Yy
P Wy vy 1 ¥ motion in response to the
- M "
5 < ! b canth's gravitational pull. Thus,
" : I
. - & ' its vertical velocity « s b
ll” # |y ] \\ l H i ity ¥
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oy b [ 1
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o] Uy

stant-velocity

5 in equal time intervals,

Sson Wesey.
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Range of Projectile

Yo

e e Note that
g, :‘I‘(Tl) =R
0 I y(Th) =0
=0 (=T, =T,

Using equations for y and x:
0=—23gT% + voT} sinfy , R =wvgTycosby }

“ - Substituting 77 into 2™
From 1% equation: } equation:

T = Z..?;—D sin Ay

R = 2% sinfgcosp = 2 sin(20
=27 sinfpcosby = sin(26p)

Maximal range is reached when
sin(20y) = 1

= Rpax = ?J(Q]/g for 0p = 45° 11

Maximum height reached by projectile

Y. '
At maximum

H
mj‘g height:
i e y(Ty) = H

0 R

=0 (=T, =T, vy(T2) =0

Using equations for v, and y:

0 =—gTe+wvo sinth , H= 7%gT22+U0T2 sin dy

Substituting 75 into 22

From 1* equation: \ equation:

TQ = %’ Hill@o = %Tl L‘g . 9 ”50
H = 3g S By = 9

Maximum height location =(7,) = X
from z-equation

2
X =wvylscosby = %“ cos By sin 6y = % 12




Velocity at the ground g / \

0 R
t=0 =i =T,
Impact occurs attime t = T3 =
velocity components at that time are
vy = vgcosly , vy = —gT1 +vgsinby = —wvgsinby
Speed of projectile at impact:
v=4/v2+ o= \/(vg cos 00)% + (—vo sin 6p)? = vy
Surprised?
This result will be obvious later when
we learn about conservation of energy
13

Trajectory of the projectile

To find y as function of 2 extract ¢ from equation for z(¢): J

T = vt cosbp=1t = UOTL?SBD

and substitute ¢ into equation for y:
1
y o= —igt2 + wyo L sin g
1 T 2 n 0 x
= —q|— vp sin
29' vp cos fo 0 0 o cos By
g 2
= ————— tan 6
( 202 cos? 90) v \_.( an_/o)m
b
—a

Equation has the form y = —az? + b

Y.
This is the equation of a parabola. J /“'-g//ﬁk—fg




example 1: initial value problem

FlightTime = 1.0000

2,000
1,500
v 1,000

5004

L S e e e
0 500 1,000 1,500 2,000
X

http://www.physics.odu.edu/~godunov/teaching/phys420/index.html
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Using parabola equation

@ The z-coordinate of the point where y has the highest value
(its maximum value) can be found using
dy X
(dm) _— g-v%co.c,‘ﬂt?oAJr At ’
e R
= ] sin g cos g — —
g 2

16




= Vo

Problem X = XtV
. . ) Vy = V- gyt
Figure shows a pirate ship 560 m _ ,
from a fort defending the harbor Y = YotV > gt

entrance of an island. A defense
cannon, located at sea level, fires X; =560.0m

balls at initial speed v,=82 m/s. v.=820m/s
, =82.

(a) at what angle from the g=9.81m/s’
horizontal must a ball be fired to hit 0=
the ship? 1 o

2 il

R=Vog n(260) ,g// \

two solutions: T~
270 and 630- =‘h?_.\ih R=560m
Question

A battleship simultaneously fires two shells toward two
enemy ships, one close by (A), one far away (B). The shells
leave the battleship at different angles and travel along the
parabolic trajectories indicated below. Which of the two
enemy ships gets hit first? Do you need more information to
answer the question?

battleship

W ! .




Maximum height reached by projectile

Yo

At maximum

H
// r\-.;g height:
’ = y(1z) = H

0 R

=0 t=T, =T vy(TQ) =0

Using equations for v, and y:
0 =—gTo+wvo sinfy , H= —%gTQQ—f—voTQ sin fg

Substituting 75 into 2™
equation:

Ty = @ sinfly = 3 T

From 1%* equation:
9 ’

2 2
__ Y n2p. vyO
H = 75 St fy = o

Maximum height location =(75) = X
from z-equation

2
_ _ %% i _ R
X = wvgThcosty = g cos Bosin by = 5 19

Question

A cart on a roller-coaster rolls down the track shown below.
As the cart rolls beyond the point shown, what happens to its
speed and acceleration in the direction of motion?

1. Both decrease.
2. The speed decreases, but the acceleration increases.
3. Both remain constant.

4. The speed increases, but acceleration decreases.

5. Both increase.
6. Other

..___\\\
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Question

At the same instant that you fire a bullet horizontally from a
gun, you drop a bullet from the height of the barrel. If there is
no air resistance, which bullet hits the ground first?

X = VXO
= X0+ont

y = Vyo_gyt

1 .
y = yo-i_VyOt__gt

2

21

Question

When arifle is fired at a distant target, the barrel is not lined
up exactly on the target. Why not?

22
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Problem

A car comes to a bridge during a storm and finds the
bridge washed out. The driver must get to the other side,
so he decides to try leaping it with his car. The side the
carisonis 21.3 m above the river, while the opposite
side is a mere 1.8 m above the river. The river itself is a
raging torrent 61.0 wide.

How fast should the car be traveling just as it leaves the
cliff in order just to clear the river and land safely on the
opposite side?

What is the speed of the car just before it lands safely on
the other side?

23

Vi = Vo
Problem (cont) X = X+ Vgt
v, = —gt
x=00m y=213m Y gyl )
= y,——gt
Xx=61m y,=18m 4 %730
=7
Vo= &4
vi="? o e

1. Use vertical motion to
find time in the air (last

eqguation)
2. Then find v, from the

second equation

24
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Problem 3.55

According to the Guinness Book of World Records, the
longest home run ever measured was hit by Roy “Dizzy”
Carlyle in a minor league game. The ball traveled 188 m
(618 ft) before landing on the ground outside the
ballpark.

Assuming the ball's initial velocity was 45° above the
horizontal and ignoring air resistance, what did the initial
speed of the ball need to be to produce such a home run
if the ball was hit at a point 0.9 m (3.0 ft) above ground
level? Assume that the ground was perfectly flat.

How far would the ball be above a fence 3.0 m (10 ft)
high if the fence was 116 m (380 ft) from home plate?

25

= Vo
= X0 P ont
Vy = VyO = gyt

1
y = yo+vyot—§gt2

Problem (cont)

Xo=0 Yo=0.9m

X =188 m, y;=0.0m

|
N
H

. find time for
horizontal motion
from the second
equation

| W 2. using this time find
_ (1 e v, from the last
\a :
g\ V
LN

Vo =~

o equation

3. a fence — then find
time to fly to the
fence in x direction
and theny pos?ﬁon

188 m

13



Problem 3.63

A physics professor did daredevil stunts in his spare
time. His last stunt was an attempt to jump across a river
on a motorcycle. The takeoff ramp was inclined at 53.0° ,
the river was 40.0 m wide, and the far bank was 15.0 m
lower than the top of the ramp. The river itself was 100 m
below the ramp. You can ignore air resistance.

a) What should his speed have been
at the top of the ramp to have just
made it to the edge of the far bank?

b) If his speed was only half the
value found in A, where did he land?

27

‘:‘?:?“3 0 K\i{l"\.(lln
A
S30°
=t 40,0 m ==
Problem 3.63
Data

150 m \

40.0 m

X = X, + V, COSe, - t

y = y0+vosin0(0-t—%gt2

a) What should his speed have been
at the top of the ramp to have just
made it to the edge of the far bank?

b) If his speed was only half the
value found in A, where did he land?

Given: (X, %), (Y, Yo) %
Unknown: Vot

a) solve the system

b) find vertical time (now v, is given)
and then the horizontal distance

28
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How far and how high?

The fastest man (100 meters): 9.74 s
Asafa Powell (Jamaica) Rieti, Italy September 9, 2007
How high can he jump if ... (world record 2.45 m)

How far can he jump if ... (world record 8.95 m)

29

Altitude (km)

Going beyond of simple projectile motion

W W | — the largest cannon: effect of air resistance

250 F 7 T T T T T T T T -
WWI cannon no air resistance
I yes (same air density) 1]
200 - speed 1600 m/s yes p=pexp(-yly,)
angle 52°
| drag coeff. C=0.06
air density 1.25kg/m®
150 Rprojeai\e:O'l m T
Mprojeai\e:94 kg
100 o
50 o
0 " " 1 " 1 " 1 "
0 50 100 150 200 250

range (km)
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Going beyond of simple projectile motion

effect of air resistance — the acceleration is no longer constant

250

T T T T
Golf ball ——no air resistance

T T T
Golf ball ——no air resistance

speed 100 m/s ——air resistance 20k ——air resistance
o —— with backspin speed 70 mi/s —— with backspin
200 |-angle 35 angle 9 degrees
150 2
E ET
s 3
2 El
£ 100 E
10
50 (-
0 L L L L L L L L L o . L
0 100 200 300 400 500 600 700 800 900 1000 0 50 100 150 200 250
distance (m) distance (m)
31

Going beyond of simple projectile motion

effect of air resistance — the acceleration is no longer constant

terminal velocity mg = %C,OAVZ
oo | pest [ spemn [ derce

shot 145 316 2500
sky diver 60 130 430
baseball 42 92 210
basketball 20 44 47
raindrop 7 15 6
parachutist 5 11 *

16
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Part 3

Uniform Circular Motion

34
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Motion in a circle

Car speeding up along a circular path Car slowing down along a circular path Uniform circular motion: Constant speed
along a circular path

Component of acceleration parallel 1o velocity S

Chang "s speed s pemTEE

[ e / Or seleration
- ¥ . perpendic ity
5 " SRS, o sceleration is exactly
i & Changes car’s direction =
& . s A sendicular to velocity
4 b Fi no parallel component
S Sad £ /
7 i f
¥ ; ’ : " _— F
I § v f onent of acceleration parallel ] L
- § ] - o
To center of circle

o : 1o velocity: Che
i Component of acceleration perpendicular to

ges car's speed

1 velocity: Changes car’s direction

35

(@) A point moves a distance As an
constant speed along a circular path.

Finding motion information

» velocity change,

» average acceleration,

* and instantaneous acceleration (b) The correspondin chanse i veliy and

average acceleration

These two triangles

may be found.




Uniform Circular Motion

remains constant,

N\ Magnitude of the velocity
:/ ‘

v(f,;""‘ but direction of the velocity
"N [¥te)] = fee.) changes continuously

= motion is accelerated

<0

P can be located
independently by either

Cartesian coordinates (z,y)
or polar coordinates (r, #)

The easiest way is to use polar coordinates

Unit vectors in polar coordinates

, iy Introduce unit vectors 7, and i;:
\/ i, points in the direction of increasing
i o r when 6 is held constant,
P % 5 i @ : u y
<y iy points in the direction of increasing

6 when r is held constant

Recall that 7 and j are
constant in both
magnitude and direction,
i, and iy are constantin
maghitude, but they are not
constant in direction.

As P moves with respect
to time, these polar unit
vectors change their
directions

Consequently, they have
non-zero time derivatives

We need to calculate those time derivatives

19



Time derivatives of unit vectors

Express polar unit vectors in terms of Cartesian unit vectors:

2. = tcosf 4+ jsind
19 = —isinf 4+ jcosl
X
Differentiating radial unit vector:
d de [
= —i, = —is8inf—+7j cosf —
dtlr 7 Sln ar —I—j cos da
de de
— (—7 sin@ i cosl) = —ip = wi
dt( i sinf + j cosh) 0 = wig
where w is called the angular velocity
39

Time derivative of azimuthal unit vector

Differentiating azimuthal unit vector:

b st ™ e ®
qile = —htcoso—jsing
dag . . o
= -5 (i cosf + 7 sinf) = g = Wi

Summary: di,/dt = wig , dig/dt = —wi,

Differentiating position vector i = ri, gives needed kinematical relation
for velocity

7o dr dr bty di, dr? +orwi
Tar @ T dr T de T 0

Radial component of velocity is v, = dr/dt
Tangential component of velocity is vy = wr

40
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Kinematical relations for acceleration

Differentiating velocity gives

v d . R
a = T (vp 2 +wrig)
di, . duv, o dig o dr o dw
Vg T ) T\ et T g
— 2t +”(Lﬂ_,,2,ﬁ 4o d_"’ «+_@»
= UpWig iy df [T w dt (7] T dt 16
N’
Ur
. [ du, 5 N dw
= i —wer in [ 20w p 2
"r(dt w 7) —I—lg( Up L 7 dt)
General

It is simpler for motion
ona

circular path (v, = 0) at

expression for
acceleration

is quite e
complicated constant speed (dw/dt = ()
41
Circular motion with constant speed
o For motion in a circle at constant speed,
r = const and w = const
dr duvy dw . 9 .
— ,‘:—:O‘—:O_—: = 0= —Wri,
{“ dt at 0 dt } T e
Now acceleration is totally in the It is called
radial direction and is oriented centripetal
toward the center of motion acceleration.
An alternative way of Y1
expressing the e ;—->m,1
centripetal [ 7
acceleration: _ /
2 2 V(fz) . 4 _/’
v ) =
ap=—wr=—tr=—-"t fie)|= 92, 42
, ”

21



Circular motion with constant speed

(a) Uniform circular motion

o Acceleration has
et~y constant magni-
- » 3
PR tude but varying
ar-ld
¢ dnulmn
s A g ‘
| 1
I
\
\ JuI
y \Llnu.n\ and
a,
rad “d -acceleration
3 “-.._____'. s ! are always
v perpendicular.

43

Part 4

Relative Motion of Inertial Frames

44
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Kinematical relations for acceleration

Consider a frame (2/, y’), with axes parallel to those of (z,y) frame,
and the origin of (2/, /) located at R = iit,

where i is the constant velocity of the primed frame relative to the
unprimed frame

Such frames are called
inertial frames of reference J

45

Relations between two inertial frames

, } oy Note that
l Vo F=R+7 I

Differentiate with respect to time to obtain J

T=a+7

time-differentiation yields

Since 1 is constant, one further
i=a J

when we will consider the principles of

This result will be particularly important
Newtonian dynamics j

46
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