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1 Introduction 

“All science is either physics or stamp collecting.”  

Ernest Rutherford 
 

1.1 The Nature of Physics 

Physics is the most fundamental and all-inclusive of the sciences, and has had a profound effect on all 

scientific development. Scientists of all disciplines make use of ideas, laws, methods and techniques 

of physics. Physics is the foundation of all science, engineering and technology. Students of many 

fields find themselves studying physics because of the basic role it plays in all phenomena. 

Richard Feynman has a beautiful description of the nature of physics in “The Feynman Lectures on 

Physics.”  The book can be found at http://www.feynmanlectures.caltech.edu/I_toc.html 

The next few paragraphs in this section are based on his book. 

If you are going to learn physics, you will have a lot to study: two hundred years of the most rapidly 

developing field of knowledge that there is. Surprisingly enough, in spite of the tremendous amount 

of work that has been done for all this time it is possible to condense the enormous mass of results to 

a large extent—that is, to find laws which summarize all our knowledge. Even so, the laws are so hard 

to grasp that it is unfair to you to start exploring this tremendous subject without some kind of map 

or outline of the relationship of one part of the subject of science to another. 

You might ask why we cannot teach physics by just giving the basic laws on page one and then 

showing how they work in all possible circumstances. We cannot do it in this way for two reasons. 

First, we do not yet know all the basic laws: there is an expanding frontier of ignorance. Second, the 

correct statement of the laws of physics involves some very unfamiliar ideas which require advanced 
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mathematics for their description. Therefore, one needs a considerable amount of preparatory 

training even to learn what the words mean. No, it is not possible to do it that way. We can only do it 

piece by piece. 

Each piece, or part, of the whole of nature is always merely an approximation to the complete truth, 

or the complete truth so far as we know it. In fact, everything we know is only some kind of 

approximation, because we know that we do not know all the laws as yet. Therefore, things must be 

learned only to be unlearned again or, more likely, to be corrected. 

The principle of science, the definition, almost, is the following: The test of all knowledge is 

experiment. Experiment is the sole judge of scientific "truth." But what is the source of knowledge? 

Where do the laws that are to be tested come from? Experiment, itself, helps to produce these laws, 

in the sense that it gives us hints. But also needed is imagination to create from these hints the great 

generalizations - to guess at the wonderful, simple, but very strange patterns beneath them all, and 

then to experiment to check again whether we have made the right guess. This imagining process is 

so difficult that there is a division of labor in physics: there are theoretical physicists who imagine, 

deduce, and guess at new laws, but do not experiment; and then there are experimental physicists 

who experiment, imagine, deduce, and guess. 

Now, what should we teach first? Should we teach the correct but unfamiliar law with its strange and 

difficult conceptual ideas, for example the theory of relativity, four-dimensional space-time, and so 

on? Or should we first teach the simple "constant-mass" law, which is only approximate, but does not 

involve such difficult ideas? The first is more exciting, more wonderful, and more fun, but the second 

is easier to get at first, and is a first step to a real understanding of the second idea. This point arises 

again and again in teaching physics. At different times we shall have to resolve it in different ways, 

but at each stage it is worth learning what is now known, how accurate it is, how it fits into everything 

else, and how it may be changed when we learn more. 

1.2 Physical Quantities and Units 

Physics is an experimental science, based on measurements. Theory plays a major role in 

understanding. We measure each physical quantity in its own units, by comparison with a standard. 

The standard corresponds to 1.0 unit of the quantity. 

Scientists measure all sorts of things in their observations and experiments. Many quantities can be 

determined by measuring others and then combining the measurements according to the laws of 

physics.  

There are very many physical quantities, but practically all physical processes, characteristics and 

phenomena can be expressed in terms of a small number of independent, fundamental quantities. 

There are seven fundamental (or base) quantities forming the basis of the International System of 

Units, commonly known as SI units, from the French Système International d'Unités. 
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Table 1.1 Fundamental quantities and their SI units 

Quantity Units Abbreviation 

length  meter m 

time second s 

mass kilogram kg 

temperature kelvin K 

electric current ampere A 

amount of substance mole mol 

light intensity candela cd 

 

Although, the choice of the units is arbitrary (they have been defined by humans rather than 

prescribed by nature), the SI units is the most widely used system in the word.  

For the first semester of university physics we mostly need three base units: length, time, and mass. 

1.2.1 Length 

In the late 1700s the French Academy of Sciences declared the meter to be a specific fraction 

(1/10,000,000) of the distance from Earth’s equator to the North Pole (at sea level).  

In the 1870s and in light of modern precision, a series of international conferences was held to devise 

new metric standards. In 1889 at the first General Conference on Weights and Measures the 

International Prototype Metre was established as the distance between two lines on a standard bar 

composed of an alloy of ninety percent platinum and ten percent iridium, measured at the melting 

point of ice. That bar was a standard from 1889 to 1960. 

Today the meter is defined by the distance light travels in a vacuum in 1/299,792,458 of a second. 

Thus, the meter is based on postulated speed of light. 

Historical context of the meter can be found at http://physics.nist.gov/cuu/Units/meter.html 

1.2.2 Time 

Between middle ages and 1960 the second was defined as 1/86,400 of a mean solar day. The exact 

definition of "mean solar day" was left to astronomical theories. However, measurement showed that 

irregularities in the rotation of the Earth could not be taken into account by the theory and has the 

effect that this definition does not allow the required accuracy to be achieved. 

Now the second is defined as the time it takes for 9,192,631,770 periods of the transition between 

two split levels of the ground state of the cesium-133 atom. 

By the way, in science we still have troubles to have a good definition of time. Webster defines "a 

time" as "a period," and the latter as "a time," which doesn't seem to be very useful.  Here are a couple 
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quotes from great scientists: “The only reason for time is so that everything doesn't happen at once” 

Albert Einstein, "Time is what happens when nothing else happens" Richard Feynman. 

1.2.3 Mass 

At the end of the 18th century, a kilogram was the mass of a cubic decimeter (1 liter) of water. In 

1889, the 1st The General Conference on Weights and Measures (Conférence Générale des Poidset 

Mesures, CGPM) sanctioned the international prototype of the kilogram, made of platinum-iridium, 

and declared: This prototype shall henceforth be considered to be the unit of mass.  

The 3d CGPM (1901), in a declaration intended to end the ambiguity in popular usage concerning the 

word "weight," confirmed that: The kilogram is the unit of mass; it is equal to the mass of the 

international prototype of the kilogram. 

1.2.4 How large? 

Many physicists find it helpful to have an intuitive feel for the sizes of magnitudes. This is especially 

true if you grew up using the English system of units. 

Table 1.2 For orientation 

Quantity Units Good to know 

mass  kilogram The mass of a 1-L bottle of water 

distance meter An average height of a man in the US is 1.8 m 

distance kilometer If you are an average person you can walk 1 km in 

about 12 minutes 

speed meter/second An average person walk with a speed of 1.4 m/s 

energy joule An apple that falls from a table has about 1 J of 

kinetic energy  

power watt An average laptop uses from 50 to 70 W 

 

1.2.5 Derived units 

Most other units are derived or based on fundamental (base) units. Examples of derived units: area 

(m2), speed (m/s), and mass density (kg/m3). 

We use variables to represent the values of physical quantities and relationships between them. For 

many quantities we use standard notations (letter, symbols), like 𝑚 for mass, 𝑣 for velocity, 𝑡 for time, 

𝑝 for momentum, 𝐸  for energy, 𝜔 for angular speed, etc. 

1.2.6 The British system of units 

These units (also called British Imperial system of units) are used only in the United States and remain 

in limited use in India, Malaysia, Sri Lanka, Hong Kong, and some Caribbean islands. British units are 

now officially defined in terms of SI units as follow Length: 1 inch = 2.54 cm (exactly),  
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Force: 1 pound = 4.448221615260 newtons (exactly).  The British unit of time is the second, defined 

the same way as in SI. There is no British system of electrical units. The British system has very 

complicated relations between base and derived units. 

Table 1.3 Linear measures in the British system of units 

Unit 1 Unit 2 

12 inches (in)  1 foot (ft) 

3 feet 1 yard (yd) 

5 1/2 yards 1 rod (rd) 

40 rods 1 furlong (fur) = 220 yards = 660 ft 

8 furlongs 1 statute mile (mi) = 1,760 yards 

5,280 feet 1 statute or land mile 

 

From lectures of Professor Lewin (Massachusetts Institute of Technology) “I find it extremely difficult 

to work with inches and feet. It's an extremely uncivilized system. I don't mean to insult you, but think 

about it - 12 inches in a foot, three feet in a yard. Could drive you nuts”. 

Going a bit beyond nuisance of the British system of units - think about it. What is the first day of a 

week? If it is Sunday why do we call it weekend! 

Note: you should try to think in SI units as much as you can! 

1.3 Unit Prefixes  

In physics, we explore the very small to the very large. The very small is a small fraction of a proton 

and the very large is the universe itself.  For example, the horizontal size of the Universe is about 

2.6*1026 m, the size of an electron is about 5.6*10-15 m. They span 45 orders of magnitude. In scientific 

notations: 1000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 = 1.0*1045. Once we 

have defined the fundamental units, it is easy to introduce large and smaller units for the same 

physical quantities. In the metric system these other units are related to the fundamental units by 

multipliers of 10 or 1/10.  

Table 1.4 Prefixes 

Factor Prefix Symbol Factor Prefix Symbol Factor Prefix Symbol 

𝟏𝟎−𝟐𝟒 yocto y 10−3 milli m 109 giga G 

𝟏𝟎−𝟐𝟏 zepto z 10−2 centi c 1012 tera T 

𝟏𝟎−𝟏𝟖 attpo a 10−1 deci d 1015 peta P 

𝟏𝟎−𝟏𝟓 femto a 101 deka da 1018 exa E 

𝟏𝟎−𝟏𝟐 pico p 102 hecto h 1021 zetta Z 

𝟏𝟎−𝟗 nano n 103 kilo k 1024 yotta Y 

𝟏𝟎−𝟔 micro 𝜇 106 mega M 10100 googol  
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Thus, 1 kilometer (1 km) is 1000 meters (1 km = 103 m), 1 centimeter (1 cm) is 1/100 meter (1 cm = 

10-2 m). 

The names of additional units are derived by adding a prefix to the name of the fundamental unit.  

Attention: Don’t drop the prefixes. For example 700 nm is less than 0.7 m. 

Prefixes are a convenient way to express large and small numbers, but use them with care. You are 

guaranteed consistency when all of the numbers you are entered into a calculation are in the SI units. 

For example, in calculations use meters not kilometers. 

1.4 Unit Consistency and Conversions 

We use equations to express relationships among physical quantities, represented by algebraic 

symbols. Each symbol always represents both a number and a unit. 

1.4.1 Dimensional Analysis  

An equation must be dimensionally consistent. Dimensional analysis is a powerful technique that can 

help you quickly determine how likely it is that you have done a problem correctly. You check that 

the dimensions of you algebraic answer matches what you expect before you substitute values to 

computer a numerical result. 

Any mechanical quantity can be represented as[𝐴] = 𝑀𝑥𝐿𝑦𝑇𝑧. 

Table 1.5 Dimensions of Some Mechanical Quantities 

Quantity Dimension Units 

length  𝐿 𝑚 

time 𝑇 s 

mass 𝑀 𝑘𝑔 

velocity 𝐿 ∙ 𝑇−1 𝑚 ∙ 𝑠−1 

acceleration 𝐿 ∙ 𝑇−2 𝑚 ∙ 𝑠−2 

volume 𝐿3 𝑚3 

density 𝑀 ∙ 𝐿−3 𝑘𝑔 ∙ 𝑚−3 

force 𝑀 ∙ 𝐿 ∙ 𝑇−2 𝑘𝑔 ∙ 𝑚 ∙ 𝑠−2 =newton 

energy 𝑀 ∙ 𝐿2 ∙ 𝑇−2 𝑘𝑔 ∙ 𝑚2 ∙ 𝑠−2 =joule 

 

Example 1: The period of a simple pendulum, the time for one complete oscillation, is given by 𝑇 =

2𝜋√𝐿/𝑔, where L is the length of the pendulum and 𝑔 is the acceleration due to gravity. Show that the 

dimension is consistent.  

𝑇 = √
𝐿

(𝐿 ∙ 𝑇−2)
= √𝑇2 = 𝑇 
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Example 2: A proof of Pythagorean Theorem using dimensional analysis. The area 𝐴 of the right-angle 

triangle is a function of the angle and the hypotenuse (for a right-angled triangle, only the hypotenuse 

length and one of the angles are needed to completely specify the triangle), or 𝐴𝑐 = 𝑓(𝑐, 𝛼). Since 

area’s dimension is [𝐴𝑟𝑒𝑎] = 𝐿2, then 𝑓(𝑐, 𝛼) = 𝑐2𝑔(𝛼), where 𝑔(𝛼) is a dimensionless function of the 

angle.  

 

For smaller triangles inside the original one we can write 𝐴𝑎 = 𝑎2𝑔(𝛼) and 𝐴𝑏 = 𝑏2𝑔(𝛼). It is obvious 

that 𝐴𝑐 = 𝐴𝑎 + 𝐴𝑏 or 𝑐2𝑔(𝛼) = 𝑎2𝑔(𝛼) + 𝑏2𝑔(𝛼), then 𝑐2 = 𝑎2 + 𝑏2. 

1.4.2 Unit Conversion 

We often need to change the units in which a physical quantity is expressed. We do so by a method 

called chain-link conversion. In this method we multiple the original value by a conversion factor (a 

ratio of units that is equal to unity). For example, 1 min = 60 s, then (1 min/60 s) =1 as well as  

(60 s/1 min) =1. 

Example: Let’s find number of minutes in 150 seconds: 

correct:  150 𝑠 = 150 𝑠 ∙ 1 = 150 𝑠 (
1 𝑚𝑖𝑛

60 𝑠
) = 2.5 𝑚𝑖𝑛 

incorrect: 150 𝑠 = 150 𝑠 ∙ 1 = 150 𝑠 (
60 𝑠

1 𝑚𝑖𝑛
) = 9000 𝑚𝑖𝑛  because you get 9000 𝑠2/𝑚𝑖𝑛 

Attention 1: to ensure that you have written the conversion factor properly, check that the units 

cancel as necessary between numerator and denominator.  

Attention 2: Some conversion cannot be easily carried out in a single step. Then, write each phase of 

a conversion separately. 

Example 1: There is no speed limit on the German autobahn, but recommended top speed is 

130 km/h. Let’s express this speed in miles per hour and meters per second,  

where 1 mile = 1.609 km = 1609 m, 1 km = 1000 m, 1 h = 3600 s. 

130 𝑘𝑚 ℎ⁄ = (
130 𝑘𝑚

1 ℎ
) (

1 𝑚𝑖𝑙𝑒

1.609 𝑘𝑚
) = 80.8 𝑚𝑝ℎ 

130 𝑘𝑚 ℎ =⁄ (
130 𝑘𝑚

1 ℎ
) (

1000 𝑚

1 𝑘𝑚
) (

1 ℎ

3600 𝑠
) = 36.1 𝑚 𝑠⁄  

Example 2: How many square centimeters in a square meter? (Note that 1 m = 100 cm) 

1 𝑚2 = (1 𝑚)2 = [1 𝑚 (
100 𝑐𝑚

1 𝑚
)]

2

= [100 𝑐𝑚]2 = 10,000 𝑐𝑚2 
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1.5 Uncertainty and Significant Figures 

Measurements always have uncertainties. The uncertainty is also called the error because it indicates 

the maximum difference there is likely to be between the measured value and the true value. We often 

indicate the accuracy of a measured value with the symbol ±, i.e. is a length of a pencil is given as 56.47 

± 0.02 mm, this means that the true value is unlikely to be less than 56.45  mm or greater than 

56.49 mm.  

There are statistical methods for determining the error in a calculation that are beyond the scope of 

this course. We will use a simplified approach called “significant figures.” 

For example, a distance is given as 137 km. It has three significant figures. By this we mean that the 

first two digits are known to be correct, while the third digit is uncertain, and the uncertainty is about 

1 km. 

Example: How many miles in 2000 meters? (1 mile = 1609 m)? In this example, when we say that the 

distance is 2000 meters, we mean, first, that it is neither 1999 meters nor 2001 meters, and, second, 

that we do not bother if the distance is more precisely, say, 1999 meters and 70 centimeters: we round 

it up to 2000 meters. In other words, 2000 meters in this context means some number between 

1999.5 and 2000.5 

Calculations give 

2000.5

1609
= 1.243318831572405 and 

1999.5

1609
= 1.242697327532629 

Comparing these numbers, we conclude that we should write 2000 𝑚 (
1 𝑚𝑖𝑙𝑒

1609 𝑚
) = 1.243 𝑚𝑖𝑙𝑒  

discarding further insignificant figures. 

1.5.1 Significant figures in multiplication or division 

Suppose that we measured one side of a rectangle and obtained that it equals 5.77 cm. The other side, 

for some reason, we measured with a cruder ruler and obtained that its length is 9.9 cm. If, to find the 

area, we simply multiply these numbers, the calculator gives (5.77 cm)*(9.9 cm) = 57.123 cm2.  

However, realizing that we deal with rounded numbers, to check what are possible outcomes, we 

multiply the lower admissible values (5.765 cm)*(9.85 cm) = 56.78525 cm2 and also the higher 

admissible values (5.775 cm)*(9.95 cm) = 57.46125 cm2. Thus, we have a rather wide range of values 

for the area. Keeping more than two figures clearly makes no sense. So, discarding insignificant 

figures and rounding to two figures, we obtain (5.77 cm)*(9.9 cm) = 57 cm2, where “57” is the properly 

rounded version of the original “57.123”. For further uses, “57” should be understood as a number 

between 56.5 and 57.5. 

A simple inspection shows that uncertainty in the value of the product is determined mainly by the 

uncertainty in the value 9.9 cm of the least precise measurement. 

Rule of thumb: do not keep more figures than in the least precise input term. 
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1.5.2 Significant figures in addition 

In the same way, if we simply add together two sides, we obtain (5.77 cm) + (9.9 cm)  = 15.67 cm.  

However, since we know that the length of the second side is in fact some number between 9.85 cm 

and 9.95 cm, we conclude that (5.77 cm)+(9.9 cm) = 15.7 cm.  

Rule of thumb: do not exceed precision of the least precise input term. 

Table 1.6 Using Significant Figures 

Operation Significant figures in result 

Multiplication or 

division  

No more than in the number with the fewest figures 

example: (0.745 × 2.2)/3.885 = 0.42. 

example: (1.32578 × 107)×(4.11×10-3) = 5.45×104 

Addition or subtraction determined by the number with the largest uncertainty (i.e., 

the fewest digits to the right of the decimal point) 

example: 27.253 + 138.2 – 11.74 = 153.6 

Leading zeros are not significant, i.e. 0.000159 carries three significant figures. Trailing zeros are 

considered significant unless the value is stated without a decimal point, i.e. the value 300 has one 

significant digit, the value 300. has three, the value 300.00 has five. When we calculate with very large 

or very small numbers, we can show significant figures much more easily by using scientific notation, 

sometimes called “powers-of-ten notation”. For example the distance from the earth to the moon is 

about 384,000,000 m = 3.84 × 108 m. In this form it is clear that we have three significant figures.  

Note: In most textbooks most numerical answers are given with three significant figures. 

1.6 Estimates and Order of Magnitude 

Quite often we face of the following situations 

 A problem in hand is too complicated to be solved accurately but we need some idea about a 

possible solution and we need it in reasonable time. 

 It seems that we do not have all the information for answering a question  

 We do not need as exact as possible solution but a guess can be useful even if it is uncertain by 

a factor of two or even ten. 

 We have solved a problem but we want to check if the solution to the problem is reasonable.  

 We are going to do something, and we need to estimate quickly either needed resources (time, 

money, materials) or possible outcome.  

 We cannot find an answer (or a credible link) asking Google 

Then we can (and should) use “order-of-magnitude estimate”. In many cases, the order of magnitude 

of a quantity can be estimated using reasonable assumptions and simple calculations. The physicist 

Enrico Fermi was a master at using order-of-magnitude estimations to generate answers for 

questions that seemed impossible to calculate because of complexity or lack of information.  
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Using order-of-magnitude estimations is not restricted to science but is commonly used in 

engineering, business, medicine, practically anywhere. When you master the order-of-magnitude 

estimations then you can see that very many episodes in movies from Hollywood are far from reality. 

For using the order-of-magnitude estimations we need to 

1. come up with as simple as possible model for our problem or question (“Make things as simple 

as possible, but not simpler” - Albert Einstein). Breaking dawn a problem into easier smaller 

problems may work as well. 

2. figure out what data do we need for our model 

3. get the required data using present knowledge, common sense, educated guess (by bracketing 

missing data and applying either geometric mean) or asking Google if possible 

4. carry out (normally very simple) calculations 

If we feel that our order-of-magnitude estimation is sensible we can stop here. There are a couple 

principal reasons when we fail, namely, oversimplified or wrong model and wrong estimation for 

data. 

Here are a couple of such questions that can be answered using reasonable assumptions. 

 How much money one needs to drive from Norfolk, VA to Los Angeles, CA? 

 How much coffee is consumed daily by ODU students?  

 What is the radius the radius of Earth? 

For mastering the art of estimation one may read  

 ”Guesstimation 2.0: Solving Today’s Problems on the Back of a Napkin”  

by Lawrence Weinstein, Princeton University Press (2012) 

 “How Many Licks?: Or, How to Estimate Damn Near Anything”  

by Aaron Santos,  Running Press (2009) 

One may find interesting to read “How to Measure Anything: Finding the Value of Intangibles in 

Business” by  Douglas W. Hubbard, 3rd edition, Wiley (2014) 

1.7 Vectors 

1.7.1 Coordinate systems 

Very many quantities in physics deal with locations in space, for example, a position of an object at 

different moments in time. We need to define a coordinate system to describe the position of a point 

in space relative to some origin. There are multiple types of coordinate systems. The most popular 

systems in physics are Cartesian, polar, cylindrical, and spherical coordinate systems. 
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Figure 1 Designation of points in a Cartesian coordinate system. Every point is labeled with 
coordinates(𝑥, 𝑦). 

Cartesian coordinates are also called rectangular coordinates. The origin corresponds to a point with 

coordinates (0,0).  

Sometimes it is more convenient to represent a point in a plane by its plane polar coordinates (𝑟, 𝜃), 

as shown in the next figure. 

 

Figure 2 The plane polar coordinates of a point are represented by the distance 𝑟 and the angle 𝜃. 

In this polar coordinate system, 𝑟 is the distance from the origin to the point having Cartesian 

coordinates (𝑥, 𝑦), and 𝜃is the angle between 𝑟 and a fixed axis. This fixed axis is usually the positive 

𝑥 axis, and 𝜃is usually measured counterclockwise from it. From trigonometry, one can easily find 

that 

𝑥 = 𝑟 cos 𝜃 (1.1) 

𝑦 = 𝑟 sin 𝜃 (1.2) 

and correspondingly  

r = √𝑥2 + 𝑦2 (1.3) 

𝜃 = atan (
𝑦

𝑥
) (1.4) 

Attention: These four expressions relating the coordinates (𝑥, 𝑦) to the coordinates (𝑟, 𝜃) apply only 

when 𝜃 is defined as an angle measured counterclockwise from the positive 𝑥 axis. 

Note that in this chapter we work with two dimensional coordinates (𝑥, 𝑦). A generalization for three 

dimensional (𝑥, 𝑦, 𝑧) system is straightforward. 
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1.7.2 Scalars and vectors 

In our daily lives we deal, as a rule, with quantities that are completely specified by its magnitude, a 

single number, together with the units in which it is measured. Such a quantity is called a scalar and 

examples include temperature, time, and density. 

However, there are very many physical quantities that require both a magnitude (≥ 0) and a direction 

in space to specify them completely. They are caller vectors. A familiar example is force, which has a 

magnitude (strength) and a direction of application. Vectors are also used to describe physical 

quantities such as velocity, displacement, momentum, electric field, and many more. A vector is 

usually indicated by either an arrow over a letter representing a physical quantity (e.g. �⃗�) or by a 

boldface letter (e.g. 𝒂). A vector can be conveniently represented as an arrow in space. 

 

Figure 3 Three vectors in 𝑥, 𝑦 plane 

The length of the arrow representing a vector �⃗� is called the length or the magnitude of 𝑎 (written as 

|𝑎| or just 𝑎 where 𝑎 ≥ 0). Note the use of 𝑎 to means the magnitude of �⃗�; for this reason it is important 

to make it clear whether you mean a vector or its magnitude (which is a scalar). The magnitude 

together with the angles provides a complete description of a vector. For example, in a two-

dimensional case a set of the two numbers 𝑎 and 𝜃 uniquely describe vector �⃗�.  

 

Figure 4 A vector in 𝑥𝑦 plane. 

The same vector can also be uniquely described with the components of the vector 𝑎𝑥 , 𝑎𝑦 where 

𝑎𝑥 = 𝑎 cos 𝜃 (1.5) 

𝑎𝑦 = 𝑎 sin 𝜃 (1.6) 

1.7.3 Addition and subtraction of vectors 

So far we only need to learn how to add two (or more vectors) and to multiple a vector by a scalar. 

Vector products (dot and cross) will be introduced later. 
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Two vectors �⃗�and �⃗⃗� are defined to be equal if they have the same magnitude and point in the same 

direction. That is, �⃗� = �⃗⃗� only if 𝑎 = 𝑏 and if �⃗� and �⃗⃗� point in the same direction along parallel lines.  

 

Figure 5 These two vectors are equal because they have equal lengths and point in the same 
direction. 

For example, two vectors in Figure 5 are equal even though they have different starting points. This 

property allows us to move a vector to a position parallel to itself in a diagram without affecting the 

vector. 

The rules for adding vectors are conveniently described by geometric methods. To add vector �⃗⃗� to 

vector �⃗�, first draw vector �⃗�, with its magnitude represented by a convenient scale, on graph paper 

and then draw vector �⃗⃗� to the same scale with its tail starting from the tip of �⃗�, as shown in Figure 6. 

The resultant vector 𝑐 = �⃗� + �⃗⃗� is the vector drawn from the tail of �⃗� to the tip of �⃗⃗�.  

 

Figure 6 A vector sum 𝑐 = �⃗� + �⃗⃗� (the triangle method of addition). 

When two vectors are added, the sum is independent of the order of the addition. (This fact may seem 

trivial, but as you will later, the order is important when vectors are multiplied). This can be seen 

from the geometric construction above and is known as the commutative law of addition: 

𝑐 = �⃗� + �⃗⃗� = �⃗⃗� + �⃗�. (1.7) 

An alternative graphical procedure for adding two vectors is called the parallelogram rule of addition. 

In this construction, the tails of the two vectors �⃗� and �⃗⃗� are joined together and the resultant vector 𝑐 

isthe diagonal of a parallelogram formed with �⃗� and �⃗⃗� as two of its four sides. 

 

Figure 7 A vector sum 𝑐 = �⃗� + �⃗⃗� (the parallelogram method of addition). 
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The negative of the vector �⃗� is defined as the vector that when added to �⃗� gives zero for the vector 

sum, that is �⃗� + (−�⃗�) = 0. The vectors �⃗� and −�⃗� have the same magnitude but point in opposite 

directions. 

The operation of vector subtraction makes use of the definition of the negative of a vector. We define 

the operation �⃗� − �⃗⃗� as vector −�⃗⃗� added to vector �⃗�: 

�⃗� − �⃗⃗� = �⃗� + (−�⃗⃗�). (1.8) 

If vector �⃗� is multiplied by a positive scalar quantity 𝑛, then the product 𝑛�⃗� is a vector that has the 

same direction as �⃗� and magnitude 𝑛𝑎. If vector �⃗� is multiplied by a negative scalar quantity −𝑛, then 

the product −𝑛�⃗� is directed opposite �⃗�. 

1.7.4 Multiplication by a scalar 

Multiplication of a vector by a scalar (not to be confused with the ‘scalar product’, to be discussed in 

section 6.3) gives a vector in the same direction as the original but of a proportional magnitude. This 

can be seen in figure. 

 

The scalar may be positive, negative or zero. (It can also be complex in some applications). Clearly, 

when the scalar is negative we obtain a vector pointing in the opposite direction to the original vector. 

Having defined the operations of addition, subtraction and multiplication by a scalar, we can now 

introduce unit vectors and components. 

1.7.5 Unit vectors and components of a vector 

While geometric methods for adding or subtracting vectors are rather simple, they are not practical 

for solving problems. Using vector components is a much more accurate way with less room for 

making a mistake. 

 

Figure 8 Two unit vectors 𝑖̂ and 𝑗̂. 

A unit vector is a vector that has a magnitude of exactly 1 and points in a particularly direction. It 

lacks both dimensions and unit. Its sole purpose is to point – that is, to specify a direction. The unit 

vectors in the positive directions of the 𝑥, 𝑦 and 𝑧 axes are labeled as 𝑖̂, 𝑗̂ and �̂�. 
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Consider a vector �⃗� lying in the 𝑥𝑦 plane and making an arbitrary angle 𝜃 with the positive 𝑥 axis. 

 

This vector �⃗� may then be written as a sum of two vectors 𝑎𝑥 �̂� and 𝑎𝑦𝑗̂ (remember Figure 7 - the 

parallelogram rule for adding two vectors), each parallel to a different coordinate axis 

�⃗� = 𝑎𝑥 �̂� + 𝑎𝑦𝑗̂ (1.9) 

A vector in two-dimensional space thus requires two components to describe fully both its direction 

and its magnitude. For example, a displacement in space may be thought of as the sum of 

displacements along the 𝑥, and 𝑦 directions. 

Let’s remind here the definitions for the vector components (equations (1.5) and (1.6)) 

𝑎𝑥 = 𝑎 cos 𝜃 ,   𝑎𝑦 = 𝑎 sin 𝜃 

These components can be positive or negative. Note that the signs of the components 𝑎𝑥 and 𝑎𝑦 

depend on the angle 𝜃. When solving problems, you can specify a vector �⃗� either with its components 

𝑎𝑥 and 𝑎𝑦 or with its magnitude and direction 𝑎 and 𝜃. 

1.7.6 Vector algebra with vector components 

 We can consider the addition and subtraction of vectors in terms of their components. The sum of 

two vectors �⃗� and �⃗⃗� is found by simply adding their components, i.e. 

𝑐 = �⃗� + �⃗⃗� = 𝑎𝑥 �̂� + 𝑎𝑦𝑗̂ + 𝑏𝑥 �̂� + 𝑏𝑦𝑗̂ = (𝑎𝑥 + 𝑏𝑥)�̂� + (𝑎𝑦 + 𝑏𝑦)𝑗̂ = 𝑐𝑥𝑖̂ + 𝑐𝑦𝑗 ̂

We see that the components of the resultant vector 𝑐 are 

𝑐𝑥 = 𝑎𝑥 + 𝑏𝑥 

𝑐𝑦 = 𝑎𝑦 + 𝑏𝑦 
(1.10) 

And their difference of two vectors can be written by subtracting their components, 

𝑐 = �⃗� − �⃗⃗� = 𝑎𝑥 �̂� + 𝑎𝑦𝑗̂ − 𝑏𝑥 �̂� − 𝑏𝑦𝑗̂ = (𝑎𝑥 − 𝑏𝑥)�̂� + (𝑎𝑦 − 𝑏𝑦)𝑗̂ = 𝑐𝑥𝑖̂ + 𝑐𝑦𝑗 ̂
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𝑐𝑥 = 𝑎𝑥 − 𝑏𝑥 

𝑐𝑦 = 𝑎𝑦 − 𝑏𝑦 
(1.11) 

We obtain the magnitude of 𝑐 and the angle it makes with the 𝑥 axis from its components, using the 

relationships 

𝑐 = √𝑐𝑥
2 + 𝑐𝑦

2 = √(𝑎𝑥 + 𝑏𝑥)2 + (𝑎𝑦 + 𝑏𝑦)
2

 (1.12) 

tan 𝜃 =
𝑐𝑦

𝑐𝑥
=

𝑎𝑥 + 𝑏𝑥

𝑎𝑦 + 𝑏𝑦
 (1.13) 

Multiplication of a vector by a scalar 𝜆 is written as 

𝑐 = 𝜆�⃗� = 𝜆𝑎𝑥𝑖̂ + 𝜆𝑎𝑦𝑗̂ (1.14) 

Note: Scalars and vectors do not change their basic properties if the coordinate system used to 

describe them is rotated. This is fundamentally their most important feature. The laws of physics 

written in terms of scalars and vectors do not change simply because we choose to change the 

orientation of our coordinate systems. 
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2 Motion in One Dimension 

2.1 Motion 

Many people would like to place the beginnings of physics with the work done 400 years ago by 

Galileo, and to call him the first physicist. Until that time, the study of motion had been a philosophical 

one based on arguments that could be thought up in one's head. Most of the arguments had been 

presented by Aristotle and other Greek philosophers, and were taken as "proven." Galileo was 

skeptical, and did an experiment on motion which was essentially this: He allowed a ball to roll down 

an inclined trough and observed the motion. He did not, however, just look; he measured how far the 

ball went in how long a time. By the way, Galileo's first experiments on motion were done by using his 

pulse to count off equal intervals of time. 

In order to find the laws governing the various changes that take place in bodies as time goes on, we 

must be able to describe the changes and have some way to record them. The simplest change to 

observe in a body is the apparent change in its position with time, which we call motion. Let us 

consider some solid object with a permanent mark, which we shall call a point, which we can observe. 

We shall discuss the motion of the little marker, which might be the radiator cap of an automobile or 

the center of a falling ball, and shall try to describe the fact that it moves and how it moves. 

These examples may sound trivial, but many subtleties enter into the description of change. Some 

changes are more difficult to describe than the motion of a point on a solid object, for example the 

speed of drift of a cloud that is drifting very slowly, but rapidly forming or evaporating. 

The study of the motion of objects and the related concepts of force and energy form the field called 

mechanics. Mechanics is customarily divided into two parts: kinematics, which is the description of 
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how objects move without regard to its cause, and dynamics, which deals with forces and why objects 

move as they do, thus dynamics studies principles that relate motion to its cause.  

So far we are going to examine some general properties of a motion that is restricted in the following 

ways. 

1. Object moves without rotating. Such motion is called translational motion. 

2. We consider the motion itself without its cause, i.e. kinematics of motion. 

3. The motion is along a straight-line only, which is one-dimensional (1D) motion. The line may 

be horizontal, vertical, or slanted but it must be straight.  

4. The moving object is either a particle (a point-like object that does not have spatial extent) or 

an object such that every portion moves in the same direction and at the same rate. We simply 

think of some kind of small objects – small, that is, compared with the distance moved. 

Note that studying first motion in 1D provides a solid foundation for understanding of motion because 

all basic variables of motion (position, displacement, velocity, acceleration) can be easier defined and 

understood in 1D space. 

2.2 Reference Frames, Position and Displacement 

First, we need to define a frame of reference (or a coordinate system) to describe the position of a 

point in space. A coordinate system consists of 

 An origin at a particular point in space  

 A set of coordinate axes with scales and labels  

 Choice of positive direction for each axis (unit vectors) 

There are multiple types of coordinate systems: Cartesian, polar, cylindrical, spherical and more. 

Coordinate transformations provide formulae for the coordinates in one system in terms of the 

coordinates in another system. Cartesian one dimensional (1D) or two dimensional (2D) coordinate 

systems are typically used in general physics courses.  

 

Figure 9 An example of two dimensional Cartesian coordinate systems 

To locate an object means to find its position relative to some reference point, often the origin. It is 

clear that position of an object is a vector, since we need more than one number to locate it. Most 



2. Motion in One Dimension 

19 

 

common notation for a position vector is 𝑟 that can be represented in the unit vector notations with 

components as 𝑟 = 𝑥𝑖̂ + 𝑦𝑗̂ + 𝑧�̂�.  

Attention: In this chapter we will be working with motion in one dimension, when 𝑦 = 0 and 𝑧 = 0. 

Then, instead of writing 𝑟 = 𝑥𝑖 ̂we will work just with the component 𝑥. This component contains 

both the magnitude |𝑥| and direction (positive or negative).  The positive direction of the axis is the 

direction of increasing numbers (coordinates), which is toward the right for 𝑥 axis (it corresponds to 

𝜃 = 00). The opposite direction is the negative direction (corresponding to 𝜃 = 1800). 

 

2.2.1 Position 

Even in one dimensional (1D) case, as we noted above, the position is a vector.  Generally, we will 

denote the position of the object as a vector �⃗�. However, we will only do it when we need to stress the 

vector nature of position. Most often we will denote the position coordinate of the object with respect 

to the choice of origin by 𝑥(𝑡). The position coordinate is a function of time and can be positive, zero, 

or negative, depending on the location of the object.  Thus +𝑥 means positive direction, and – 𝑥 is the 

negative one.                                                         

 

Figure 10 In this example the position of the red point is +2.5 m relative to the origin. 

2.2.2 Time Interval 

A time interval is the difference between two moments in time  Δ𝑡 = 𝑡2 − 𝑡1.  

2.2.3 Displacement 

A change from one position 𝑥1 to another position 𝑥2 is called a displacement. Displacement is a vector 

quantity that has both a direction and a magnitude 

Δ�⃗� = �⃗�2 − �⃗�1 (2.1) 

However, as we mentioned above, in 1D case we can drop the vector symbol above vector quantities 

using + and – signs to identify the direction, namely Δ𝑥 = 𝑥2 − 𝑥1. 
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Figure 11 Positions of an object at two times 𝑡1 and 𝑡2 and its displacement 

Note the importance of the sign, for example for 𝑥1  =  5 and 𝑥2  =  +7 the displacement is +7 −  5 =

 2, but for 𝑥1  =  5 and 𝑥2  =  −7 the displacement is −7 − (5)  =  −12. 

Attention: in physics “displacement” and “distance” have different definitions. Thus, “distance” is a 

scalar and means the total ground covered while traveling, e.g. odometer reading, but the 

“displacement” is a vector from where you started to where you end up.  

Results of observations of motions can be conveniently presented as a table, or by means of a graph. 

 

Figure 12 Example of 1D motion (position as a function of time) 

2.3 Velocity and Speed 

The terms velocity and speed are often used interchangeably in ordinary language. But introducing a 

mathematical description of motion we make a clear distinction between the two. 

The term "speed" refers to how far an object travels in a given time interval regardless of direction. If 

a car travels 240 kilometers (km) in 3 hours, we say its average speed was 80 km/h.  

In general; the average speed of an object is defined as 

𝑠𝑎𝑣𝑔 =
𝑡𝑜𝑡𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑡2 − 𝑡1
 (2.2) 

Because average speed does not include direction, it lacks any algebraic sign, i.e. it is always positive.  

The average velocity is a vector defined as “how fast”, or the displacement divided by the time 

interval 
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�⃗�𝑎𝑣𝑔 =
Δ�⃗�

Δ𝑡
=

�⃗�2 − �⃗�1

𝑡2 − 𝑡1
. (2.3) 

Again, as we mentioned above, in 1D case we can drop the vector symbol above vector quantities 

using + and – signs to identify the direction, thus in this chapter we can use 

𝑣𝑎𝑣𝑔 =
Δ𝑥

Δ𝑡
=

𝑥2 − 𝑥1

𝑡2 − 𝑡1
 (2.4) 

as the definition for average velocity. 

The average velocity can be even equal to zero if an object ended up in the same position where it 

started. For example, driving from home to a class and later coming back home will result in zero 

displacement thus giving zero average velocity.  

 

Figure 13 Calculation of average velocity 

Note: Sometimes 𝑠𝑎𝑣𝑔 is the same (except for the absence of sign) as 𝑣𝑎𝑣𝑔. However, when an object 

doubles back on its path the two can be quite different. 

 

Figure 14 Average velocity at different time intervals. 
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In example above (Figure 14) the red, blue, and green straight lines represent the object motion as if 

it was moving at constant average velocity (equation (2.4)) for different time intervals. So, for various 

time intervals we get 𝑣27  =  9 𝑚/𝑠, 𝑣25  =  7 𝑚/𝑠, 𝑣23  =  5 𝑚/𝑠. As the time interval becomes 

smaller, the lines that represent those average velocities approach the tangent to the curve at the time 

of interest 𝑡 = 2 𝑠 and 𝑣22 = 4 𝑚/𝑠. 

The definitions of average speed or average velocity look as simple ones, but there are indeed some 

subtleties in reasoning about speed. 

Example: At the point where an old lady in the car is caught by a cop, the cop comes up to her and 

says, "Lady, you were going 60 miles an hour!" She says, "That's impossible, sir, I was travelling for 

only seven minutes. It is ridiculous - how can I go 60 miles an hour when I wasn't going an hour?" 

How would you answer her if you were the cop? 

The instantaneous velocity is a vector defined as “how fast” a particle is moving at a given instant. 

�⃗�(𝑡) = lim
Δ𝑡→0

Δ�⃗�

Δ𝑡
= lim

Δ𝑡→0

�⃗�(𝑡 + Δ𝑡) − �⃗�(𝑡)

Δ𝑡
=

𝑑�⃗�

𝑑𝑡
 (2.5) 

Yet again, in 1D case we can drop vector notations using + and – for directions, then we can write 

𝑣(𝑡) = lim
Δ𝑡→0

Δ𝑥

Δ𝑡
= lim

Δ𝑡→0

𝑥(𝑡 + Δ𝑡) − 𝑥(𝑡)

Δ𝑡
=

𝑑𝑥

𝑑𝑡
 (2.6) 

The 𝑥 -component of instantaneous velocity at time 𝑡 is given by the slope of the tangent line to the 

curve of position vs. time curve at time 𝑡 

 

Figure 15 The instantaneous speed is the magnitude of instantaneous velocity. 

2.4 Acceleration 

Acceleration is the quantity that indicates how a particle’s velocity changes with time (acceleration is 

the rate of change of velocity).  

The average acceleration is the vector quantity that measures a change in velocity over a particular 

time interval. 
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�⃗�𝑎𝑣𝑔 =
�⃗�2 − �⃗�1

𝑡2 − 𝑡1
=

Δ�⃗�

Δ𝑡
 (2.7) 

The instantaneous acceleration (or simply acceleration) is the derivative of the velocity with 

respect to time 

�⃗� = lim
Δ𝑡→0

Δ�⃗�

Δ𝑡
= lim

Δ𝑡→0

�⃗�(𝑡 + Δ𝑡) − �⃗�(𝑡)

Δ𝑡
=

𝑑�⃗�

𝑑𝑡
=

𝑑

𝑑𝑡
(

𝑑�⃗�

𝑑𝑡
) =

𝑑2�⃗�

𝑑𝑡2
 (2.8) 

or we can write it as 

�⃗� =
𝑑�⃗�

𝑑𝑡
=

𝑑2�⃗�

𝑑𝑡2
 (2.9) 

Note that here we could write the second set of equations for 1D case, now without vectors, like we 

did before.  

 

Figure 16 Instantaneous acceleration 

A common unit of acceleration is meter per second per second: 𝑚/(𝑠𝑠) or 𝑚/𝑠2. Large accelerations 

are sometimes expressed in terms of 𝑔 units, with = 9.8 𝑚 𝑠2⁄  . Soon we will see that 𝑔 is the free-fall 

acceleration. 

Attention: Acceleration and velocity may have the same or different signs!  If the signs are the same 

then an object is speeding up; if the signs are different, then an object is slowing down. 

Example: The positions of two cars at successive 1.0-second time intervals are represented in the 

figures below.  

What can conclude about the car’s speed and acceleration for the first car? 

 

What can conclude about the car’s speed and acceleration for the second car? 
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2.5 Motion with constant velocity 

Let’s consider a simple type of motion when the velocity is constant (e.g. driving a car with 55 mph in 

the same direction). The acceleration is equal to zero in this case, i.e. 𝑎 = 0. When the velocity is 

constant, the average and instantaneous velocity are equal, and we can write with some change in 

notations as 

𝑣 = 𝑣𝑎𝑣𝑔 =
𝑥 − 𝑥0

𝑡 − 0
 (2.10) 

Here 𝑥0 is the position at time 𝑡 = 0, and 𝑥 is the position at any later time 𝑡. We can recast this 

equation as 

𝑥 = 𝑥0 + 𝑣𝑎𝑣𝑔𝑡 (2.11) 

As one can see, the position is a linear function of the time 

 

Figure 17 Position as a function of time for notion with constant velocity (𝑎 = 0). 

2.6 Motion with constant acceleration 

Many practical situations occur in which the acceleration is constant or close enough that we can 

assume it is constant. For example, a car accelerating after a traffic light turns green, a taking off 

airplane, or a falling body. In this case, the velocity changes with constant rate.  

Let’s recall definitions for the instantaneous velocity and acceleration 

𝑣 =
𝑑𝑥

𝑑𝑡
 (2.12) 

𝑎 =
𝑑𝑣

𝑑𝑡
 (2.13) 

The first equation (2.12) can be written as 𝑑𝑥 = 𝑣𝑑𝑡 and the second equation (2.13) as 𝑑𝑣 = 𝑎𝑑𝑡. 

Integrating both sides of the second equation gives ∫ 𝑑𝑣 = ∫ 𝑎𝑑𝑡 with 𝑣 = 𝑎𝑡 + 𝐶1. Since at time 𝑡 =

0  𝐶1 = 𝑣0 then we can write 

𝑣 = 𝑣0 + 𝑎𝑡 
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Now we integrate the first equation ∫ 𝑑𝑥 = ∫ 𝑣𝑑𝑡 with the equation above for the velocity  ∫ 𝑑𝑥 =

∫(𝑣0 + 𝑎𝑡)𝑑𝑡 to get 

𝑥 = 𝑣0𝑡 +
𝑎𝑡2

2
+ 𝐶2 

From the initial condition 𝑥 = 𝑥0 at 𝑡 = 0 follows 𝐶2 = 𝑥0, then  

𝑥 = 𝑥0 + 𝑣0𝑡 +
𝑎𝑡2

2
 

Thus, everything we need to know to describe motion under constant acceleration is contained in just 

two simple equations (everything else you may need for solving problems can be derived from these 

equation using algebra!) 

𝑥(𝑡) = 𝑥0 + 𝑣0𝑡 +
𝑎𝑡2

2
 (2.14) 

𝑣(𝑡) = 𝑣0 + 𝑎𝑡 (2.15) 

These equations are the basic equations for motion with constant acceleration. Reiterating again, these 

equations can be used to solve any constant acceleration problem in case of 1D motion. 

Attention: You need to have at least as many equations as unknown variables to find a unique solution. 

The two above equations can only be solved if there are only two unknown variables. 

Just as a reminder, these two equation use 𝑡0 = 0 as the reference time, so the variable 𝑡0 does not 

appear in either case. 

The figures below shows the position, velocity and (constant) acceleration as a function of time 

 

The position 𝑥(𝑡) of a particle moving with constant acceleration 

 

 

Its velocity 𝑣(𝑡) given at each point by the slope of the curve in (a) 

 

 

 

Its (constant) acceleration, equal to the (constant) slope of the curve of 𝑣(𝑡) 
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Let’s consider contributions of every term in equation for position 𝑥 and velocity 𝑣 

 

Figure 18 Contributions of terms for𝑥 when 𝑥0 = 10 𝑚, 𝑣0 = 2 𝑚 ⁄ 𝑠 and 𝑎 = 1 𝑚 ⁄ 𝑠2. 

 

 

Figure 19 Velocity as a function of time 𝑣 = 𝑣0 + 𝑎𝑡  (for 𝑣0 = 2 𝑚 ⁄ 𝑠 and𝑎 = 1 𝑚 ⁄ 𝑠2 ) 
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Attention: Deceleration does not mean the acceleration is negative. A deceleration results in an 

object’s speed decreasing in magnitude. An object is decelerating – slowing down – when its 

acceleration and velocity have opposite signs. Here are two examples. 

Example 1: where 𝑣0 = 1 𝑚 𝑠⁄ , and 𝑎 = 1 𝑚 𝑠2⁄ have the same sign (direction) 

 

 

Example 2: where initially velocity and acceleration have opposite signs  

𝑣0 = −6 𝑚 𝑠⁄ , 𝑎 = +1 𝑚 𝑠2⁄  (note that after 𝑡 = 6 𝑠 the velocity has the same sign as acceleration) 
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It is often useful to have a relationship between position, velocity and (constant) acceleration that 

does not involve the time. To obtain this we first solve the first basic equation for time 

𝑡 =
𝑣 − 𝑣0

𝑎
 

and then substitute the result into the second equation 

𝑥 = 𝑥0 + 𝑣0 (
𝑣 − 𝑣0

𝑎
) +

1

2
𝑎 (

𝑣 − 𝑣0

𝑎
)

2

 

2𝑎(𝑥 − 𝑥0) = 2𝑣0𝑣 − 2𝑣0
2 + 𝑣2 − 2𝑣𝑣0 + 𝑣0

2 

and finally 

𝑣2 = 𝑣0
2 + 2𝑎(𝑥 − 𝑥0) (2.16) 

This equation is useful if we do not know 𝑡 and are not required to find it (𝑡 can be called a “missing 

variable” in this case).  

We can also eliminate the acceleration from the basic equations (2.14) and (2.15) to produce an 

equation in which acceleration 𝑎 does not appear (𝑎 is a “missing variable”) 

𝑥 − 𝑥0 =
1

2
(𝑣0 + 𝑣)𝑡 (2.17) 

The power of physics is in generalization of complicated phenomena with one or only a few equations 

in terms of small number of variables. Here we have our first example of that capability. Just TWO 

equations describe all one dimensional motion with constant accelerations. 

SUMMARY: Let’s write again the two basic equations describing 1D motion of a particle with constant 

acceleration 

𝑥(𝑡) = 𝑥0 + 𝑣0𝑡 +
𝑎𝑡2

2
 (2.18) 

𝑣(𝑡) = 𝑣0 + 𝑎𝑡 (2.19) 

together with the two auxiliary equations that are easily derived from the equations above, namely 

𝑣2 = 𝑣0
2 + 2𝑎(𝑥 − 𝑥0) (2.20) 

𝑥 − 𝑥0 =
1

2
(𝑣0 + 𝑣)𝑡 

(2.21) 

 

2.7 Freely Falling Bodies 

The most familiar example of motion with (nearly) constant acceleration is a body falling under the 

influence of the earth's gravitational attraction. Such motion has held the attention of philosophers 

and scientists since ancient times. In the fourth century B.C., Aristotle thought (erroneously) that 

heavy bodies fall faster than light bodies, in proportion to their weight. Nineteen centuries later, 
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Galileo argued that a body should fall with a downward acceleration that is constant and independent 

of its weight. 

Experiment shows that if the effects of the air can be neglected, Galileo is right; all bodies at a 

particular location fall with the same downward acceleration, regardless of their size or weight.  

If in addition the distance of the fall is small compared with the radius of the earth, and if we ignore 

small effects due to the earth's rotation, the acceleration is constant. The idealized motion that results 

under all of these assumptions is called free fall, although it includes rising as well as falling motion. 

The constant acceleration of a freely falling body is called the acceleration due to gravity, and we 

denote its magnitude with the letter g. We will frequently use the approximate value of g at or near 

the earth's surface: g = 9.8 m/s2. 

The exact value varies with location, so we will often give the value of g at the earth's surface to only 

two significant figures. Because g is the magnitude of a vector quantity, it is always a positive number.  

On the surface of the moon, the acceleration due to gravity is caused by the attractive force of the 

moon rather than the earth, and g = l.6 m/s2. Near the surface of the sun, g = 270 m/s2. 

Attention: Objects accelerate downward under the influence of gravity, but the value of g is positive. 

Accordingly, the equations for the freely falling bodies are easily written using (2.18) for the position 

𝑦(𝑡) = 𝑦0 + 𝑣0𝑡 −
𝑔𝑡2

2
 (2.22) 

and (2.19) for the velocity 

𝑣(𝑡) = 𝑣0 − 𝑔𝑡 (2.23) 

with a quite practical auxiliary equation  

𝑣2 = 𝑣0
2 − 2𝑔(𝑦 − 𝑦0) (2.24) 

Here is a link to a wonderful experiment -free fall for a hammer and a feather on the moon 

http://www.youtube.com/watch?v=5C5_dOEyAfk 

  

http://www.youtube.com/watch?v=5C5_dOEyAfk
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Example: position, velocity and acceleration as functions of time for 𝑣0 = 10 𝑚 𝑠⁄ , 𝑔 = 9.8 𝑚 𝑠2⁄  
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2.8 Most common problems  

Most problems in introductory physics on one dimensional motion can be classified as 

Case 1: One object, one time interval 

Then all we need is the two basic equations 

𝑥 = 𝑥0 + 𝑣0𝑡 +
𝑎𝑡2

2
 

𝑣 = 𝑣0 + 𝑎𝑡 

Remember that the two auxiliary equations (2.20) and (2.21) are easily derived from the basic 

equations.  

Case 2: One object, two time intervals 

In this case we use the basic equations two times, first for the first time interval, and later for the 

second interval, where the results from the first interval are the initial conditions for the second 

interval. This for the first interval (from time 𝑡0 to time 𝑡1) 

𝑥1 = 𝑥0 + 𝑣0𝑡1 +
𝑎0𝑡1

2

2
 

𝑣1 = 𝑣0 + 𝑎0𝑡1 

and then for the second interval (from time 𝑡1 to time 𝑡2) 

𝑥2 = 𝑥1 + 𝑣1𝑡2 +
𝑎1𝑡2

2

2
 

𝑣2 = 𝑣1 + 𝑎1𝑡2 

Case 3: Two objects, one time interval 

Then we have a system of equations for two objects that share the same time 

𝑥1 = 𝑥01 + 𝑣01𝑡 +
𝑎1𝑡2

2
 

𝑣1 = 𝑣01 + 𝑎1𝑡 

𝑥2 = 𝑥02 + 𝑣02𝑡 +
𝑎2𝑡2

2
 

𝑣2 = 𝑣02 + 𝑎2𝑡 

There are very many variations for “two object problems”. As a rule solutions can be derived from the 

equations above (after some simple algebra). 

One of examples for such problems is a “collision” problem, when one object chases a second object, 

and later they are at the same point in space (𝑥1 = 𝑥2) at the same moment in time 𝑡𝑐. 

𝑥01 + 𝑣01𝑡𝑐 +
𝑎1𝑡𝑐

2

2
= 𝑥02 + 𝑣02𝑡𝑐 +

𝑎2𝑡𝑐
2

2
 

Generally, time 𝑡𝑐 is unknown, and you need to solve quadratic equations to find it 
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𝑎2 − 𝑎1

2
𝑡𝑐

2  + (𝑣20 − 𝑣10)𝑡𝑐 + (𝑥02 − 𝑥01) = 0 

If the initial separation between two objects is zero 𝑥02 − 𝑥01 = 0, then you solve a linear equation. 

2.9 Examples 

Example 2-1 

The catapult of the aircraft carrier USS Abraham Lincoln accelerates an F/A-18 Hornet jet fighter from 

rest to a takeoff speed of 173 mph in a distance of 307 ft. Assume constant acceleration. 

a) Calculate the acceleration of the fighter in m/s. 

b) Calculate the time required for the fighter to accelerate to takeoff speed. 

SOLUTION: 

1. Physics – one-dimensional motion with constant acceleration for one object and one time interval 

 

2. The basic equations for 1D motion with constant acceleration 

𝑥 = 𝑥0 + 𝑣0𝑡 +
𝑎𝑡2

2
 

𝑣 = 𝑣0 + 𝑎𝑡 

3. Using given data 𝑥0 = 0 𝑚 and 𝑣0 = 0 𝑚/𝑠 , we may rewrite the basic equations as 

𝑥 =
𝑎𝑡2

2
 

𝑣 = 𝑎𝑡 

4. There are two unknowns in the system above, namely the acceleration  𝑎 and the time 𝑡. From the 

second equation we have 𝑡 = 𝑣/𝑎. Substituting it into the first equation gives  

𝑥 =
1

2
∙ 𝑎 ∙

𝑣2

𝑎2
=

𝑣2

2𝑎
,      𝑡ℎ𝑒𝑛       𝑎 =

𝑣2

2𝑥
,      

using this solution with 𝑡 = 𝑣/𝑎 

𝑡 =
𝑣

𝑎
= 𝑣 ∙

2𝑥

𝑣2
=

2𝑥

𝑣
 

Now we have two analytic solutions for the unknowns. 

5. Calculations: 

The initial data in SI units (we use 1 ft = 0.3048 m, 1 mile = 1609 m, 1 h = 3600 s) 
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307 𝑓𝑡 = 307 𝑓𝑡 (
0.3048 𝑚

1 𝑓𝑡
) = 93.6 𝑚 

173 𝑚𝑝ℎ = 173 
𝑚𝑖𝑙𝑒

ℎ
(

1609 𝑚

1 𝑚𝑖𝑙𝑒
) (

1 ℎ

3600 𝑠
) = 77.3 𝑚/𝑠 

calculations 

𝑎 =
𝑣2

2𝑥
=

(77.3 𝑚 𝑠⁄ )2

2 × 93.6 𝑚
= 31.9 𝑚 𝑠2⁄  ,             𝑡 =  

2𝑥

𝑣
=

2 × 93.6 𝑚

77.3 𝑚/𝑠 
= 2.42 𝑠 

6. Let’s evaluate the answer. 

Units and dimensions:   

𝑎 =
𝑣2

2𝑥
→ [

𝑚2

𝑠2
∙

1

𝑚
] = [

𝑚

𝑠2]   𝑂𝐾!         𝑡 =
2𝑥

𝑣
→ [𝑚 ∙

𝑠

𝑚
] = [𝑠]  𝑂𝐾! 

Both the time and acceleration have proper units and dimensions. 

The takeoff time 𝑡 = 2.42 𝑠 looks as a reasonable numerical value. 

Example 2-2 

You are driving down the highway late one night at 58 mph when a deer steps into the road 50 m 

(about 164 ft) in front of you. Your reaction time before stepping on the brakes is 0.5 s, and the 

maximum deceleration of your car is 9.1 m/s2. How much distance is between you and the deer when 

you come to stop? 

SOLUTION: 

1. Physics – one-dimensional motion with constant acceleration for one object but two time intervals 

2. The basic equations for 1D motion with constant acceleration 

𝑥 = 𝑥0 + 𝑣0𝑡 +
𝑎𝑡2

2
 

𝑣 = 𝑣0 + 𝑎𝑡 

3. Note that we have two phases of the motion 

Phase 1: “thinking distance” or travelling with constant speed during the reaction time 𝑡1 

𝑥1 = 𝑣0𝑡1 

Phase 2: “braking distance” or motion with constant deceleration 

𝑥2 = 𝑣0𝑡2 −
𝑎𝑡2

2

2
 

0 = 𝑣0 − 𝑎𝑡2 
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From the last two equations 

𝑥2 =
𝑣0

2

2𝑎
 

4. The total stopping distance 

𝑥 = 𝑥1 + 𝑥2 = 𝑣0𝑡1 +
𝑣0

2

2𝑎
 

5. Calculations 

58 𝑚𝑝ℎ = 55 
𝑚𝑖𝑙𝑒

ℎ
(

1609 𝑚

1 𝑚𝑖𝑙𝑒
) (

1 ℎ

3600 𝑠
) = 25.92 𝑚/𝑠 

𝑥 = 25.92 𝑚 𝑠⁄ ∙ 0.5 𝑠 +
(25.92 𝑚 𝑠⁄ )2

2 ∙ 9.8 𝑚 𝑠2⁄
= 49.9 𝑚 

So the car stopped 0.1 𝑚 in front of the deer. 

6. We have got both proper dimensions and reasonable numerical results. 

Example 2-3 

A car speeding at 90 mph passes a still police car which immediately takes off in hot pursuit. Assume 

that the speeder continues at a constant speed but the police car moves with constant acceleration. 

The technical specification states the police car can accelerate from 0 mph to 60 mph in 8.7 s. 

a) How long would it take for the police car to overtake the speeder? 

b) Estimate the distance (in meters and miles) of the hot pursuit. 

c) Estimate the police car’s speed at that moment the police car overtakes the speeder. 

SOLUTION 

1. Physics – one dimensional motion with constant acceleration for two objects 

2. The basic equations (for two objects) 

𝑥1 = 𝑥10 + 𝑣10𝑡 +
𝑎1𝑡2

2
                     𝑥2 = 𝑥20 + 𝑣20𝑡 +

𝑎2𝑡2

2
 

𝑣1 = 𝑣10 + 𝑎1𝑡                                       𝑣2 = 𝑣20 + 𝑎2𝑡 

Here we call index 1 for the first object (let it be the speeder), and index 2 for the second object (the 

police car) 

3. The basic equation can be simplified using given data and conditions, namely 

The data 

 at initial time 𝑡 = 0 both cars have the same position 𝑥10 = 0 𝑚, 𝑥20 = 0 𝑚 

 the speeder keeps moving with a constant speed, i.e. 𝑎1 = 0 𝑚/𝑠2 

 the police cars is initially at rest, i.e. 𝑣20 = 0 𝑚/𝑠 
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The condition (the police car overtakes the speeder) 

 at some time 𝑡 = 𝑡𝑓 both cars are at the same position on the road, i.e. 𝑥1 = 𝑥2 

Then the original basic equations can be written as 

𝑥1 = 𝑣10𝑡                         𝑥2 =
𝑎2𝑡2

2
 

𝑣1 = 𝑣10                            𝑣2 = 𝑎2𝑡 

4. Using the condition 𝑥1 = 𝑥2 we have 

𝑣10𝑡 =
𝑎2𝑡2

2
 

The last equation has two unknowns, namely 𝑡 and 𝑎2. The acceleration of the police car can be found 

from the given data (the police car can accelerate from 0 mph to 60 mph in 8.7 s) using the definition 

for the average acceleration 

𝑎𝑎𝑣𝑔 =
Δ𝑣

Δ𝑡
 

Then solving the equation 𝑣10𝑡 =
𝑎2𝑡2

2
 for the unknown time we get 

𝑡 =
2𝑣10

𝑎2
 

 

Having the time, we can easily find the distance of the hot pursuit 

𝑥1 = 𝑣10 ∙
2𝑣10

𝑎2
=

2𝑣10
2

𝑎2
    𝑜𝑟     𝑥2 =

𝑎2𝑡2

2
=

𝑎2

2
∙

22 ∙ 𝑣10
2

𝑎2
=

2𝑣10
2

𝑎2
     (𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑎𝑠 𝑥1) 

Thus 

𝑥 =
2𝑣10

2

𝑎2
 

Using 𝑣2 = 𝑎2𝑡 we get 

𝑣2 = 𝑎2 ∙
2𝑣10

𝑎2
= 2𝑣10 

𝑣2 = 2𝑣10 

5.  Calculations 

First we should switch to SI units using: 1 mile = 1609 m, 1 h = 3600 s 

90 𝑚𝑝ℎ = 90 
𝑚𝑖𝑙𝑒

ℎ
(

1609 𝑚

1 𝑚𝑖𝑙𝑒
) (

1 ℎ

3600 𝑠
) = 40 𝑚/𝑠 
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60 𝑚𝑝ℎ = 60 
𝑚𝑖𝑙𝑒

ℎ
(

1609 𝑚

1 𝑚𝑖𝑙𝑒
) (

1 ℎ

3600 𝑠
) = 27 𝑚/𝑠 

The police car acceleration  

𝑎2 =
27 𝑚 𝑠⁄ − 0 𝑚 𝑠⁄

8.7 𝑠
= 3.1 𝑚 𝑠2⁄  

𝑡 =
2𝑣10

𝑎2
=

2 ∙ 40 𝑚/𝑠 

3.1 𝑚 𝑠2⁄
= 26 𝑠 

𝑥 =
2𝑣10

2

𝑎2
=

2 ∙ (40 𝑚/𝑠)2

3.1 𝑚 𝑠2⁄
= 1030 𝑚 

𝑣2 = 2𝑣10 = 80 𝑚/𝑠 

6. Let’s evaluate the results 

The dimensions and units are correct. 

Both the time and distance of the pursuit seem realistic.  

How about the speed of the police car? Since we are more comfortable with mph or km/h we can 

write that 80 𝑚 𝑠⁄ = 180 𝑚𝑝ℎ. This is very high (and risky) speed! It is rather unlikely that an average 

police car can go so fast (unless it is a Ferrari or Lamborghini). 

Despite the numerical solutions seem correct, in real life different pursuit tactics should be used 

(decreasing the acceleration when the speed is above 100 mph that would result in a longer pursuit 

time, or calling for a roadblock ahead of the speeder, etc.). 

Example 2-4 

The engineer of a passenger train traveling at 30.0 m/s sights a freight train whose caboose is 100 m 

ahead on the same track. The freight train is traveling at 15.0 m/s in the same direction as the 

passenger train. The engineer of the passenger train immediately applies the brakes, causing a 

constant acceleration of -1.0 m/s2, while the freight train continues with constant speed.  

a) Will the cows nearby witness a collision? If so, determine how far from the initial position of 

the passenger train and at what time the collision occurs. 

b) If not, determine the distance of closest approach between two trains 

SOLUTION 

1. Physics – one dimensional motion with constant acceleration for two objects 

2. The basic equations (for two objects) 

𝑥1 = 𝑥10 + 𝑣10𝑡 +
𝑎1𝑡2

2
                     𝑥2 = 𝑥20 + 𝑣20𝑡 +

𝑎2𝑡2

2
 

𝑣1 = 𝑣10 + 𝑎1𝑡                                       𝑣2 = 𝑣20 + 𝑎2𝑡 
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Here we call index 1 for the passenger train, and index 2 for the cargo train  

3. The basic equation can be simplified using given data and conditions, namely 

The data 

 at initial time 𝑡 = 0 the passenger train is at 𝑥10 = 0 but the freight train is at 𝑥20 

 the freight train moves with a constant speed, i.e. 𝑎2 = 0 

The condition (a collision) 

 at some time 𝑡 = 𝑡𝑓 both trains are at the same position i.e. 𝑥1 = 𝑥2 

Then the original basic equations for the positions can be written as 

𝑥1 = 𝑣10𝑡 +
𝑎1𝑡2

2
           𝑥2 = 𝑥20 + 𝑣20𝑡 

4. Using the condition 𝑥1 = 𝑥2 we have 

𝑣10𝑡 +
𝑎1𝑡2

2
= 𝑥20 + 𝑣20𝑡,         

𝑎1𝑡2

2
+ (𝑣10 − 𝑣20)𝑡 − 𝑥20 = 0 

This is a quadratic equation for 𝑡. 

5. Calculations 

Solving the equation for 𝑎 = −1.0 𝑚/𝑠2, 𝑣10 − 𝑣20 = 15 𝑚/𝑠, and 𝑥20 = 100 𝑚 gives two solutions 

𝑡1 = 10.0 𝑠, 𝑡2 = 20.0 𝑠. The first solutions corresponds to the collision. If the trains were travelling 

on parallel tracks, the second solution would correspond for the trains to run parallel again. 

For 𝑡1 = 10.0 𝑠 the position of the trains (relative to the point where the engineer of the passenger 

train saw the problem 𝑥10 = 0) is 𝑥1 = 250 𝑚 

6. Let’s evaluate the results 

Both the time and distance of the pursuit seem realistic.  

Attention. If solving quadratic equation for time 𝑡 you are getting complex roots (i.e. a negative number 

under square root) then there is no collision between the objects. In this case the distance between the 

trains as a function of time is 

𝑥2 − 𝑥1 = 𝑥20 + 𝑣20𝑡 − 𝑣10𝑡 −
𝑎1𝑡2

2
            

Differentiating over time 𝑡 and setting 𝑑(𝑥2 − 𝑥1)/𝑑𝑡 = 0 gives equation to find the time for the 

closest approach 

𝑑(𝑥2 − 𝑥1)

𝑑𝑡
= 𝑣20 − 𝑣10 − 𝑎1𝑡 = 0,   𝑡 =

𝑣10 − 𝑣20

𝑎1
 

As one can see, at such distance the velocities of both trains are equal, or 𝑣10 + 𝑎1𝑡 = 𝑣20. Having this 

time you can easily find the distance of the closest approach between two trains. 

  



2.9 Examples 

38 

 

Example 2-5 

An apple (a fruit or a computer) is dropped from a bridge that is 52.0 m above the river. Neglecting 

air resistance  

a) How long does the apple take to reach the water? 

b) What is its speed just as it strikes the water surface? 

SOLUTION: 

1. Physics – one-dimensional motion vertical with constant free-fall acceleration (𝑎 = −𝑔) 

2. The basic equations  

𝑦 = 𝑦0 + 𝑣0𝑡 −
𝑔𝑡2

2
 

𝑣 = 𝑣0 − 𝑔𝑡 

3. The basic equations can be simplified using the given conditions (𝑣0 = 0, 𝑦 = 0). (We choose the 

river surface as our zero level). Then 

0 = 𝑦0 −
𝑔𝑡2

2
 

𝑣 = −𝑔𝑡 

4. Solving the first equation gives the time 

𝑡 = √
2𝑦0

𝑔
 

then from the second equation 

𝑣 = −𝑔 ∙ √
2𝑦0

𝑔
= −√2𝑦0𝑔 

5. Calculations 

𝑡 = √
2𝑦0

𝑔
= √

2 ∙ 52 𝑚

9.8 𝑚 𝑠2⁄
= 3.26 𝑠           𝑣 = −√2𝑦0𝑔 = −√2 ∙ 52 𝑚 ∙ 9.8 𝑚 𝑠2⁄ = −31.9 𝑚 𝑠⁄  

6. The time looks reasonable (from experience). We certainly have correct units for both time and 

velocity. 
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Example 2.6  

If the apple was thrown vertically upward from the same bridge with a speed of 10.0 m/s 

a) How high above its starting point would the apple go? 

b) In how many seconds after being thrown upward would the apple strike the water below? 

SOLUTION: 

1. Physics – one-dimensional motion vertical with constant free-fall acceleration 

2. The basic equations  

𝑦 = 𝑦0 + 𝑣0𝑡 −
𝑔𝑡2

2
 

𝑣 = 𝑣0 − 𝑔𝑡 

3-4. The problem has two parts, namely motion to the highest point, and total motion to the river.  

a) For the first part the basic equations can be rewritten as 

𝑦𝑡𝑜𝑝 = 𝑦0 + 𝑣0𝑡 −
𝑔𝑡2

2
 

0 = 𝑣0 − 𝑔𝑡 

The first equation has two unknowns, but the second equation has only one unknown. Solving the 

second equation gives the time to the top point 

𝑡 = 𝑣0/𝑔 

Using this time in the first equation provides the distance 

𝑦𝑡𝑜𝑝 = 𝑦0 + 𝑣0

𝑣0

𝑔
−

𝑔

2

𝑣0
2

𝑔2
= 𝑦0 +

1

2

𝑣0
2

𝑔
 

thus, from the bridge the apple goes as high as 

Δ𝑦 =
𝑣0

2

2𝑔
 

b) For the second part the final vertical position is zero (the river) 

0 = 𝑦0 + 𝑣0𝑡 −
𝑔𝑡2

2
 

𝑣 = 𝑣0 − 𝑔𝑡 

The first equation has only one unknown, namely the time that we are looking for. This is a quadratic 

equation. 

5. Calculations 
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𝑎) Δ𝑦 =
𝑣0

2

2𝑔
=

(10 𝑚 𝑠⁄ )^2

2 ∙ 9.8 𝑚 𝑠2⁄  
= 5.10 𝑚 

b) the quadratic equation has two solutions, 𝑡1 = −2.39 𝑠, 𝑡2 = 4.43 𝑠.  

Out of two solutions only the second satisfies the given conditions that the apple hits the water after 

it was thrown from the bridge. The first solution satisfies another condition that the apple was at the 

river level before it reached the bridge with the given speed. This could happen if the apple was 

thrown from the water surface with an appropriate velocity. 

6. The time looks reasonable (a bit large time when the apple was thrown upward). We certainly have 

correct units for both time and speed. 

Example 2-7 

A 75-kg person jumps from a fourth-story window 15.0 m above a 

firefighter's safety net. The survivor stretches the net 1.0 m before 

coming to rest,  

a) How long was the survivor in free fall? 

b) What was his speed just as he reached the net? 

c) What was the average deceleration experienced by the 

survivor on the net (in g units)? 

d) What would you do to make it “safer” (that is to generate a 

smaller deceleration)? Would you stiffen or loosen the net? 

Explain. 

e) How would your answers change if it was a 1,500 kg 

hippopotamus? 

SOLUTION 

1. Physics – one dimensional motion with constant acceleration 

2. The basic equations for 1D motion with constant acceleration 

𝑦 = 𝑦0 + 𝑣0𝑡 −
𝑔𝑡2

2
 

𝑣 = 𝑣0 − 𝑔𝑡 

3. From the given information follows that we have two phases of motion, the first one is from the 

window to the net, and the second one is the stopping by stretching the net. Let’s call the window as 

the initial position. The net is located at level 1, and the end position is at level 2. Then the velocity at 

the end of the first phase is the initial velocity for the second phase. Since the initial velocity was 

0 𝑚/𝑠, and the final velocity at level 2 was 𝑣2 = 0 𝑚/𝑠, 

then for the first phase of motion 
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𝑦1 = 𝑦0 −
𝑔𝑡1

2

2
𝑣1 = −𝑔𝑡1 

and for the second phase of motion 

𝑦2 = 𝑦1 + 𝑣1𝑡2 +
𝑎2𝑡2

2

2
∙ 𝑣2 = 0 = 𝑣1 + 𝑎2𝑡2 

4. We can easily solve the first set of equation to find both the time 𝑡1 and velocity 𝑣1 

𝑡1 = √
2(𝑦0 − 𝑦1)

𝑔
      𝑎𝑛𝑑   𝑣1 = −𝑔√

2(𝑦0 − 𝑦1)

𝑔
=  √2(𝑦0 − 𝑦1)𝑔 

Now we consider the second set of equations. From 0 = 𝑣1 + 𝑎2𝑡2 we have 𝑡2 = − 𝑣1 𝑎2⁄  (it looks like 

we have a problem here with negative time, but remember that 𝑣1 is negative!). Then the first 

equation reads 

𝑦2 − 𝑦1 = 𝑣1𝑡2 +
𝑎2𝑡2

2

2
= 𝑣1 (−

𝑣1

𝑎2
) +

𝑎2

2

𝑣1
2

𝑎2
2 = −

𝑣1
2

𝑎2
+

𝑣1
2

2𝑎2
= −

𝑣1
2

2𝑎2
   𝑜𝑟  𝑣1

2 = 2𝑎2(𝑦1 − 𝑦2) 𝑎𝑛𝑑 𝑎2

=
𝑣1

2

2(𝑦1 − 𝑦2)
 

At this moment we can write analytic solutions for all questions 

(a) How long was the survivor in free fall? 

𝑡1 = √
2(𝑦0 − 𝑦1)

𝑔
 

(b) What was his speed just as he reached the net? 

𝑣1 =  √2(𝑦0 − 𝑦1)𝑔 

(c) What was the average deceleration experienced by the survivor on the net (in terms of gravity 

"g")? 

𝑎2 =
𝑣1

2

2(𝑦1 − 𝑦2)
=

2(𝑦0 − 𝑦1)𝑔

2(𝑦1 − 𝑦2)
=

(𝑦0 − 𝑦1)

(𝑦1 − 𝑦2)
𝑔 

(d) What would you do to make it “safer” (that is to generate a smaller deceleration)? Would you 

stiffen or loosen the net? Explain 

It is clear from the equation for 𝑎2 that increasing the stopping distance (𝑦1 − 𝑦2) will decrease the 

deceleration, making safer landing.  Therefore, loosening the net will make it "safer".   

(e) How would your answers change if it was a 1,500 kg hippopotamus? 

All our answer does not depend on mass of an object. Therefore, there results are going to be the same 

for any object if the effect of air resistance can be neglected. 
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5. Calculations 

All the initial data were given in SI units (lucky us)  

𝑡1 = √
2(𝑦0 − 𝑦1)

𝑔
= √

2 ∙ 15 𝑚

9.8 𝑚 𝑠2⁄
= 1.7 𝑠 

𝑣1 = √2(𝑦0 − 𝑦1)𝑔 = √2 ∙ 15 𝑚 ∙ 9.8 𝑚 𝑠2⁄ = 17 𝑚/𝑠 

𝑎2 =
(𝑦0 − 𝑦1)

(𝑦1 − 𝑦2)
𝑔 =

15 𝑚

1 𝑚
𝑔 = 15𝑔 

6. Let’s evaluate our results 

The dimensions and units are correct. 

The free fall time seems right. For evaluating the “landing” speed we may use 𝑚𝑝ℎ units 

17 𝑚 𝑠⁄ = 17
𝑚

𝑠
(

1 𝑚𝑖𝑙𝑒

1609 𝑚
) (

3600 𝑠

1 ℎ
) = 38 𝑚𝑝ℎ 

It looks like a speed one would expect (fast and dangerous). 

The deceleration is high 15𝑔 but the number is correct. It means that landing on a safety at given 

conditions is probably unpleasant experience.  
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3 Motion in Two Dimensions 

 

Knowing the basics of two-dimensional motion will allow us to examine a wide variety of motions, 

ranging from a simple projectile motion to the motion of satellites, or orbit to the motion of electrons 

in a uniform electric field.  

3.1 Position, displacement, velocity and acceleration in 2D and 3D 

For motion in two or three dimensions we can extend the ideas from 1D motion for displacement, 

velocity and acceleration.  

3.1.1 The displacement 

Using the vector algebra we may define a position vector 𝑟, which is a vector that extends from a 

reference point (usually the origin of a coordinate system) to the particle. In the unit-vector notation, 

it can be written 

𝑟 = 𝑥𝑖̂ + 𝑦𝑗̂ + 𝑧�̂� (3.1) 

where 𝑥𝑖,̂ 𝑦𝑗̂, and 𝑧�̂� are the vector components of 𝑟, and the coefficients 𝑥, 𝑦 and 𝑧 are its scalar 

components. The coefficients 𝑥, 𝑦 and 𝑧 give the particle's location along the coordinate axes and 

relative to the origin; that is, the particle has the rectangular coordinates (𝑥, 𝑦, 𝑧).  

Going from two to three dimension motion is just adding an additional coordinate 𝑧. For clarity we 

will mostly concentrate on 2D motion in (𝑥, 𝑦) plane. 
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As a particle moves, its position vector changes in such a way that the vector always extends to the 

particle from the reference point (the origin). If the position vector changes, say, from 𝑟1⃗⃗⃗ ⃗ to 𝑟2⃗⃗⃗⃗  during 

a certain time interval, then the particle's displacement Δ𝑟 during that time interval is 

Δ𝑟 = 𝑟2⃗⃗⃗⃗ − 𝑟1⃗⃗⃗ ⃗ (3.2) 

Using the unit-vector notation, we can rewrite this displacement as 

Δ𝑟 = (𝑥2�̂� + 𝑦2𝑗̂) − (𝑥1𝑖̂ + 𝑦1𝑗̂) 

or as 

Δ𝑟 = (𝑥2 − 𝑥1)𝑖̂ + (𝑦2 − 𝑦1)𝑗̂ (3.3) 

where coordinates (𝑥1, 𝑦1) correspond to position vector 𝑟1⃗⃗⃗ ⃗ and coordinates (𝑥2, 𝑦2) correspond to 

position vector 𝑟2⃗⃗⃗⃗ . We can also rewrite the displacement by substituting Δ𝑥 = (𝑥2 − 𝑥1) and Δ𝑦 =

(𝑦2 − 𝑦1). 

Δ𝑟 = Δ𝑥𝑖̂ + Δ𝑦𝑗̂ 

3.1.2 The average velocity and instantaneous velocity 

If a particle moves through a displacement Δ𝑟 in a time interval Δ𝑡, then its average velocity �⃗�𝑎𝑣𝑔 is  

�⃗�𝑎𝑣𝑔 =
𝑟2 − 𝑟1

𝑡2 − 𝑡1
=

Δ𝑟

Δ𝑡
. 

This tells us the direction of �⃗�𝑎𝑣𝑔 must be the same as that of Δ𝑟. Using the component form we can 

write 

�⃗�𝑎𝑣𝑔 =
Δ𝑥𝑖̂ + Δ𝑦𝑗̂

Δ𝑡
=

Δ𝑥

Δ𝑡
𝑖̂ +

Δ𝑦

Δ𝑡
𝑗̂ (3.4) 

 

The instantaneous velocity �⃗� is defined as the limit of the average velocity 

�⃗� = lim
Δ𝑡→0

Δ𝑟

Δ𝑡
=

𝑑𝑟

𝑑𝑡
. (3.5) 

That is, the instantaneous velocity equals the derivative of the position vector with respect to time. 

The direction of the instantaneous velocity vector at any point in a particle’s path is along a line 

tangent to the path at that point and in the direction of motion. 

In unit-vector form 

�⃗� =
𝑑𝑟

𝑑𝑡
=

𝑑

𝑑𝑡
(𝑥𝑖̂ + 𝑦𝑗̂) =

𝑑𝑥

𝑑𝑡
𝑖̂ +

𝑑𝑦

𝑑𝑡
𝑗̂ (3.6) 

or 

�⃗� = 𝑣𝑥𝑖̂ + 𝑣𝑦𝑗 ̂ (3.7) 

where the scalar components of �⃗� are 
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𝑣𝑥 =
𝑑𝑥

𝑑𝑡
,        𝑣𝑦 =

𝑑𝑦

𝑑𝑡
. (3.8) 

3.1.3 Average acceleration and instantaneous acceleration 

When a particle's velocity changes from �⃗�1 to �⃗�2in a time interval Δ𝑡, its average acceleration during 

Δ𝑡 is 

�⃗�𝑎𝑣𝑔 =
�⃗�2 − �⃗�1

𝑡2 − 𝑡1
=

Δ�⃗�

Δ𝑡
 (3.9) 

The instantaneous acceleration a is defined as the limiting value of the ratio Δ�⃗�/Δ𝑡, or the 

instantaneous acceleration equals the derivative of the velocity vector with respect to time. 

�⃗� = lim
Δ𝑡→0

Δ�⃗�

Δ𝑡
=

𝑑�⃗�

𝑑𝑡
. (3.10) 

Important: If the velocity changes in either magnitude or direction (or both), the particle must have 

an acceleration. 

In the unit vector notation  

�⃗� =
𝑑

𝑑𝑡
(𝑣𝑥𝑖̂ + 𝑣𝑦𝑗̂) =

𝑑𝑣𝑥

𝑑𝑡
𝑖̂ +

𝑑𝑣𝑦

𝑑𝑡
𝑗̂ = 𝑎𝑥 �̂� + 𝑎𝑦𝑗̂ (3.11) 

where 

𝑎𝑥 =
𝑑𝑣𝑥

𝑑𝑡
,        𝑎𝑦 =

𝑑𝑣𝑦

𝑑𝑡
 

Thus, we can find the scalar components of �⃗� by differentiating the scalar components of �⃗�. 

3.2 Motion with constant acceleration in 2D 

Let’s consider a case when acceleration in a plane is constant. In 2D Cartesian coordinates 

�⃗� = 𝑎𝑥𝑖̂ + 𝑎𝑦𝑗̂ = 𝑐𝑜𝑛𝑠𝑡1𝑖̂ + 𝑐𝑜𝑛𝑠𝑡2𝑗 ̂

Since in terms of velocity 

𝑑𝑣𝑥

𝑑𝑡
𝑖̂ +

𝑑𝑣𝑦

𝑑𝑡
𝑗̂ = 𝑎𝑥 �̂� + 𝑎𝑦𝑗̂ 

then 

𝑑𝑣𝑥

𝑑𝑡
= 𝑎𝑥 = 𝑐𝑜𝑛𝑠𝑡1 

 
𝑑𝑣𝑦

𝑑𝑡
= 𝑎𝑦 = 𝑐𝑜𝑛𝑠𝑡2 

Then we see that motion in 𝑥-direction is independent from motion in 𝑦-direction (but the time is still 

a common parameter). 
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Important: Very many standard university physics textbooks claim that “horizontal and vertical 

motions are independent”. Generally it is not true. It is only correct for a set of very special cases.  

Motion with constant acceleration along both 𝑥 and 𝑦 coordinates is one of those cases. 

The equations derived in Chapter 2 for motion in one dimension with constant acceleration can be 

applied separately to each of the perpendicular component of two-dimensional motion. If we let �⃗�0 =

𝑣𝑥0�̂� + 𝑣𝑦0𝑗̂ be the initial velocity, then for the 𝑥 and 𝑦 components of the position 

𝑥 = 𝑥0 + 𝑣𝑥0𝑡 +
𝑎𝑥𝑡2

2
 

𝑦 = 𝑦0 + 𝑣𝑦0𝑡 +
𝑎𝑦𝑡2

2
 

(3.12) 

and for their velocities  

𝑣𝑥 = 𝑣𝑥0 + 𝑎𝑥𝑡  
𝑣𝑦 = 𝑣𝑦0 + 𝑎𝑦𝑡 

(3.13) 

The component form of the equations for the position (3.12) and for the velocity (3.13) show us that 

two-dimensional motion at constant acceleration is equivalent to two independent motions—one in 

the 𝑥 direction and one in the 𝑦 direction – having constant accelerations 𝑎𝑥 and 𝑎𝑦. 

The equations for components can be rewritten in the vector form as 

𝑟 = 𝑟0 + �⃗�0𝑡 +
�⃗�𝑡2

2
 (3.14) 

�⃗� = �⃗�0 + �⃗�𝑡 (3.15) 

In practical situation we usually use the component forms (equations (3.12) and (3.13)). 

To be as general as possible we could consider three-dimensional motion. However, in many 

interesting situations, a lot of the interesting physics can be studied using only two dimensions. 
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3.3 Projectile motion 

We will limit our consideration to a simple projectile motion in 𝑥𝑦 plane due to free-fall acceleration 

neglecting the effects of air resistance and wind (that generally may affect both horizontal motion as 

well as vertical motion). Thus with these two assumptions 

1. The free-fall acceleration 𝑔 is constant over the range of motion and is directed downward 

(This assumption is reasonable as long as the range of motion is small compared with the 

radius of the Earth. In effect, this assumption is equivalent to assuming that the Earth is flat 

over the range of motion considered). 

2. The effect of air resistance is negligible. (This assumption is generally not justified, especially 

at high velocities and will be discussed later. However, for very many types of projectiles 

moving with reasonable speeds the effect of air resistance is small) 

3.3.1 Kinematic equations for simple projectile motion 

Because air resistance is neglected, we know that 𝑎𝑦 = −𝑔 (as in one-dimensional free fall) and that 

𝑎𝑥 = 0. Furthermore, let us assume that at 𝑡 = 0, the projectile leaves the origin (𝑥0, 𝑦0) with speed 

𝑣0, as shown in Figure 20. The vector �⃗�0 makes an angle 𝜃0 with the horizontal. 

 

Figure 20 The components of �⃗�0 are 𝑣0𝑥 and 𝑣0𝑦. 

Therefore, the initial 𝑥 and 𝑦 components of velocity �⃗�0 are 

𝑣0𝑥 = 𝑣0 cos 𝜃0 (3.16) 

𝑣0𝑦 = 𝑣0 sin 𝜃0 (3.17) 

Substituting 𝑎𝑥 = 0 and 𝑎𝑦 = −𝑔 into (3.12) we find that the x component of the velocity is constant 

because no horizontal acceleration exists: 

𝑣𝑥 = 𝑣0𝑥 (3.18) 

The 𝑦 component of the velocity varies with time according to 

𝑣𝑦(𝑡) = 𝑣𝑦0 − 𝑔𝑡 (3.19) 

Let’s note again that 𝑣𝑥 does not depend on 𝑣𝑦 and 𝑣𝑦 does not depend on 𝑣𝑥: The horizontal and 

vertical components of projectile motion are independent. 
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According to equation (3.13), the displacements 𝑥 and 𝑦 are given by 

𝑥 = 𝑥0 + 𝑣𝑥0𝑡 

𝑦 = 𝑦0 + 𝑣𝑦0𝑡 −
𝑎𝑦𝑡2

2
. 

(3.20) 

The notation 𝑥(𝑡) and 𝑦(𝑡) simply emphasizes that 𝑥 and 𝑦 are functions of time. 

 

Figure 21 The path of a projectile, showing velocity components at different times. 

Equations ((3.18) - (3.20)) form a complete set of equations for solving any simple projectile motion 

problem. 

The general equation for the path 𝑦(𝑥) of a projectile can be obtained from equations (3.20) by 

eliminating the variable 𝑡 

𝑡 =
𝑥 − 𝑥0

𝑣𝑥0
 

that gives  

𝑦 − 𝑦0 = 𝑣𝑦0 (
𝑥 − 𝑥0

𝑣𝑥0
) −

1

2
𝑔 (

𝑥 − 𝑥0

𝑣𝑥0
)

2

 

or after some rearrangement 

𝑦 − 𝑦0 =
𝑣𝑦0

𝑣𝑥0

(𝑥 − 𝑥0) −
1

2

𝑔

𝑣𝑥0
2

(𝑥 − 𝑥0)2. (3.21) 

This equation is of the form 𝑦 = 𝑎𝑥 + 𝑏𝑥2, which is the equation for a parabola.   

Using ((3.16) and (3.17)) we may rewrite ((3.21)) as 

𝑦 − 𝑦0 = tan (𝜃)(𝑥 − 𝑥0) −
𝑔(𝑥 − 𝑥0)2

2𝑣0
2 cos2 𝜃

 (3.22) 

Equation ((3.22)) is useful enough when 𝑡 (time) is no interest. 
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3.3.2 A couple interesting cases 

Case 1: Horizontal range of a projectile on a flat surface (How far?) 

You toss a ball into the air with initial speed 𝑣0 and at initial angle 𝜃 from the horizontal. (For 

simplicity we will use 𝜃 instead of 𝜃0 for the initial angle). Neglecting any effect due to air resistance, 

how far has the ball travelled horizontally when it returns to the initial launch height? 

 

From the kinematic equations of motion follows 

for the position                      for the velocity 

𝑥 = 𝑥0 + 𝑣0 cos(𝜃) 𝑡                           𝑣𝑥 = 𝑣0 cos(𝜃) 

𝑦 = 𝑦0 + 𝑣0 sin(𝜃) 𝑡 −
𝑔𝑡2

2
              𝑣𝑦 = 𝑣0 sin(𝜃) − 𝑔𝑡 

The condition “returns to the initial launch height” means 𝑦 = 𝑦0, then equation for 𝑦 

0 = 𝑣0 sin(𝜃) 𝑡𝑡𝑜𝑡𝑎𝑙 −
𝑔 𝑡𝑡𝑜𝑡𝑎𝑙

2

2
, 

where 𝑡𝑡𝑜𝑡𝑎𝑙 denotes the time of flight for the ball to complete the flight 

𝑡𝑡𝑜𝑡𝑎𝑙 =
2𝑣0 sin(𝜃)

𝑔
. (3.23) 

When this specific time is substituted into equation for 𝑥 

(𝑥 − 𝑥0)𝑟𝑎𝑛𝑔𝑒 = 𝑣0 cos(𝜃)
2𝑣0 sin(𝜃)

𝑔
=

2𝑣0
2 sin(𝜃) cos (𝜃)

𝑔
 

using the identity sin(2𝜃) = 2 sin(𝜃) cos (𝜃) we can find the range 

𝑅 = (𝑥 − 𝑥0)𝑟𝑎𝑛𝑔𝑒 =
𝑣0

2 sin(2𝜃)

𝑔
. (3.24) 

By the way, solving for the range we also got the total time of flight 𝑡𝑡𝑜𝑡𝑎𝑙 (equation (3.23)). 

Let’s also find the velocity at the ground. Using the time of flight we may find the vertical component 

of the velocity at the impact 

𝑣𝑦 = 𝑣0 sin(𝜃) − 𝑔
2𝑣0 sin(𝜃)

𝑔
= −𝑣0 sin(𝜃) 
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Then the total impact speed is 

𝑣𝑖𝑚𝑝𝑎𝑐𝑡 = √(𝑣0 cos(𝜃))2 + (−𝑣0 sin(𝜃))2 = 𝑣0 (3.25) 

The impact speed is the same as the initial speed. 

Let’s find out what angle provides the largest range if the ball returns to the initial launch height? 

Assume that the initial position 𝑥0 = 0 then  

𝑅 =
𝑣0

2 sin(2𝜃)

𝑔
. (3.26) 

The largest range corresponds 

𝑑𝑅

𝑑𝜃
= 2

𝑣0
2

𝑔
cos(2𝜃) = 0. 

The minimum value of cos(2𝜃) = 0 occurs when 2𝜃 = 900. Therefore, 𝑅 is a maximum when 𝜃 =

450. Figure 22 illustrates various trajectories for a projectile having a given initial speed but launched 

at different angles. As you can see, the range is a maximum for 𝜃 = 450. In addition, for any 𝜃 other 

than 450, a point having cartesian coordinates (𝑅, 0) can be reached by using either one of two 

complementary values of 𝜃, such as 75° and 15°. Of course, the maximum height and time of flight for 

one of these values of 𝜃 are different from the time of flight for the complementary value. 

 

Figure 22 A projectile fired from the origin with an initial speed of 50 m/s at various angles of 
projection. Note that complementary values of 𝜃 result in the same value of x (range). 
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Case 2: Maximum Height of a Projectile (How high?) 

You toss a ball into the air with initial speed 𝑣0 and at initial angle 𝜃 from the horizontal. Neglecting 

any effect due to air resistance, how high does the ball go before coming back down? 

 

 

The kinematic equations of motion (again) 

for the position                      for the velocity 

𝑥 = 𝑥0 + 𝑣0 cos(𝜃) 𝑡                          𝑣𝑥 = 𝑣0 cos(𝜃) 

𝑦 = 𝑦0 + 𝑣0 sin(𝜃) 𝑡 −
𝑔𝑡2

2
              𝑣𝑦 = 𝑣0 sin(𝜃) − 𝑔𝑡 

At the highest point on the trajectory 𝑣𝑦 = 0 then from 0 = 𝑣0 sin(𝜃) − 𝑔𝑡 

𝑡𝑝𝑒𝑎𝑘 =
𝑣0 sin(𝜃)

𝑔
 (3.27) 

Let’s note that this time is half of the total time of flight (equation (3.23)).  We can now substitute this 

time into equation for 𝑦 

(𝑦 − 𝑦0)𝑝𝑒𝑎𝑘 = 𝑣0 sin(𝜃)
𝑣0 sin(𝜃)

𝑔
−

𝑔

2
(

𝑣0 sin(𝜃)

𝑔
)

2

 

=
𝑣0

2 sin2(𝜃)

𝑔
−

1

2

𝑣0
2 sin2(𝜃)

𝑔
=

1

2

𝑣0
2 sin2(𝜃)

𝑔
 

and finally 

(𝑦 − 𝑦0)𝑝𝑒𝑎𝑘 = ℎ =
1

2

𝑣0
2 sin2(𝜃)

𝑔
. 

Assume that the initial position 𝑦0 = 0 then 

ℎ =
𝑣0

2 sin2(𝜃)

2𝑔
. (3.28) 

What 𝑥-coordinate corresponds to the peak position? We can find that by using 𝑡𝑝𝑒𝑎𝑘 in 𝑥 =

𝑣0 cos(𝜃)𝑡 

𝑥 = 𝑣0 cos(𝜃)
𝑣0 sin(𝜃)

𝑔
=

1

2

𝑣0
2 sin(2𝜃)

𝑔
=

1

2
𝑅 
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where 𝑅 is the range of a projectile. Thus, the highest point on the trajectory corresponds to the half 

of the range. The same results we can get by differentiating the trajectory (3.22) 

𝑑𝑦

𝑑𝑥
=

𝑑

𝑑𝑥
(tan (𝜃)𝑥 −

𝑔𝑥2

2𝑣0
2 cos2 𝜃

)  = tan(𝜃) −
𝑔𝑥

𝑣0
2 cos2 𝜃

= 0 

𝑥 =
sin(𝜃)

cos(𝜃)

𝑣0
2

𝑔
cos2 𝜃 =

1

2

𝑣0
2 sin(2𝜃)

𝑔
=

1

2
𝑥𝑟𝑎𝑛𝑔𝑒 

Note:  

 

Case 3: Hitting a ball from a cliff 

In very many problems an object is launched from one vertical position and lands at another, i.e. 𝑦 ≠

𝑦0. You hit a ball off cliff at an initial speed 𝑣0 and at initial angle 𝜃 from the horizontal. How far from 

the base of the cliff does the ball travel before hitting the ground? 

 

Now there is nothing to simplify in the original system of equations 

𝑥 = 𝑥0 + 𝑣0 cos(𝜃) 𝑡                           𝑣𝑥 = 𝑣0 cos(𝜃) 

𝑦 = 𝑦0 + 𝑣0 sin(𝜃) 𝑡 −
𝑔𝑡2

2
              𝑣𝑦 = 𝑣0 sin(𝜃) − 𝑔𝑡 

We may solve the problem by finding solutions of the quadratic equation for 𝑡  

𝑦 = 𝑦0 + 𝑣0 sin(𝜃) 𝑡 −
𝑔𝑡2

2
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Having the time we can easily find the distance from 𝑥 = 𝑥0 + 𝑣0 cos(𝜃) 𝑡.   

Or we can derive equation for the trajectory (see equation (3.22)) 

𝑦 − 𝑦0 = tan(𝜃) (𝑥 − 𝑥0) −
𝑔(𝑥 − 𝑥0)2

2𝑣0
2 cos2 𝜃

.   

Since the choice of the initial position is always ours to make, we can set 𝑥0 = 0 and 𝑦 − 𝑦0 = ℎ. Then 

rewriting the last equation for the trajectory 

𝑔

2𝑣0
2 cos2 𝜃

𝑥2 − (tan 𝜃)𝑥 − ℎ = 0. 

This is a quadratic equation 

𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 

The general solution to a quadratic equation is 

𝑥 =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
 

So, in this case the roots are 

𝑥 =

tan 𝜃 ± √(− tan 𝜃)2 − 4 (
𝑔

2𝑣0
2 cos2 𝜃

) (−ℎ)

2 (
𝑔

2𝑣0
2 cos2 𝜃

)
. 

There are two solutions of the quadratic equation. The larger value corresponds to the distance of 

interest. The smaller value describes a case if the ball was launched from the ground distance 

𝑥𝑏𝑎𝑐𝑘“behind” the cliff. 

It is easy to show that for ℎ = 0 this equation gives the range for 𝑦 = 𝑦0 namely our equation (3.26) 

𝑥 =
𝑣0

2 sin(2𝜃)

𝑔
. 

Attention: If a projectile lands at an elevation lower than the initial elevation, the maximum horizontal 

displacement is achieved when the projection angle is different from 450. We can find the angle that 

maximize the range of a projectile launched with speed 𝑣0 from height ℎ above the ground by setting 

𝑑𝑥 𝑑𝜃⁄ = 0. After about a full page of of algebra and trigonometry the answer is 

𝜃𝑚𝑎𝑥 =
1

2
cos−1 (

1

1 + 𝑣0
2 𝑔ℎ⁄

). 

For ℎ > 0 the angle 𝜃𝑚𝑎𝑥 is less than 450. 
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3.3.3 Effects of air resistance for fast moving objects 

For fast moving objects the effect of air resistance can be very significant.  

(a) the largest canon (Paris gun or Paris-Geschütz) in World War I (calculations by Alex G) 

 

(b) a trajectory of a golf ball (calculations by Alex G) 

 

(c) free-fall with air resistance 

The acceleration in 𝑦 direction is no longer a constant, its magnitude decreases as speed increases. 

When vertical acceleration reaches zero, an object reaches a terminal velocity. 
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3.4 Motion in a circle 

When a particle moves along a curved path, its velocity changes the direction. This means that the 

particle must have a component of acceleration perpendicular to the path, even if the speed is 

constant. Acceleration is defined as 

�⃗� =
𝑑�⃗�

𝑑𝑡
, 

where both acceleration and velocity are vectors. We can write �⃗� = 𝑣𝑣  as a magnitude 𝑣 multiplied 

by a direction 𝑣. Since the derivative of a product is 

𝑑

𝑑𝑡
(𝑥𝑦) =

𝑑𝑥

𝑑𝑡
𝑦 +

𝑑𝑦

𝑑𝑡
𝑥 

then for the acceleration 

�⃗� =
𝑑�⃗�

𝑑𝑡
=

𝑑𝑣

𝑑𝑡
𝑣 +

𝑑𝑣

𝑑𝑡
𝑣 (3.29) 

The expression clearly shows that acceleration is nonzero when either speed 𝑑𝑣 𝑑𝑡⁄  or direction 

𝑑𝑣 𝑑𝑡⁄  or both are changing. 

3.4.1 A uniform circular motion 

A particle is in uniform circular motion if it travels around a circle or a circular arc at constant 

(uniform) speed. To find the magnitude and direction of the acceleration for uniform circular 

motion we consider a particle moving at constant speed 𝑣 around a circle of radius 𝑟.  

 

Recall that velocity �⃗� of a moving particle is always tangent to the particle’s path at the particle’s 

position. It means �⃗� is perpendicular to the radius 𝑟. Then, as one can see from figure above, the angle 

𝜃 that �⃗� make with the vertical at 𝑝 equals the angle 𝜃 that radius 𝑟 makes with the 𝑥 axis. 

The velocity in the component form can be written as  

�⃗� = 𝑣𝑥𝑖̂ + 𝑣𝑦𝑗̂ = (−𝑣 sin 𝜃)𝑖̂ + (𝑣 cos 𝜃)𝑗̂. 

Now we replace sin 𝜃 with 𝑦𝑝/𝑟 and cos 𝜃 with 𝑥𝑝/𝑟 thus getting 
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�⃗� = (−𝑣
𝑦𝑝

𝑟
) 𝑖̂ + (𝑣

𝑥𝑝

𝑟
) 𝑗̂ 

Consequently the acceleration is (remember that we use 𝑣 is a constant) 

�⃗� =
𝑑�⃗�

𝑑𝑡
= (−

𝑣

𝑟

𝑑𝑦𝑝

𝑑𝑡
) 𝑖̂ + (

𝑣

𝑟

𝑑𝑥𝑝

𝑑𝑡
) 𝑗̂ 

but 

𝑑𝑦𝑝

𝑑𝑡
= 𝑣𝑦 = 𝑣 cos 𝜃 ,         

𝑑𝑥𝑝

𝑑𝑡
= 𝑣𝑥 = −𝑣 sin 𝜃 

then finally  

�⃗� = (−
𝑣2

𝑟
cos 𝜃) 𝑖̂ + (−

𝑣2

𝑟
sin 𝜃) 𝑗̂. 

 

The magnitude of the acceleration is 

𝑎 = √𝑎𝑥
2 + 𝑎𝑦

2 =
𝑣2

𝑟
√(cos 𝜃)2 + (sin 𝜃)2 =

𝑣2

𝑟
 

which is constant! Such acceleration is called centripetal acceleration. 

(3.30) 

Let’s analyze the direction of the acceleration. 

tan 𝜙 =
𝑎𝑦

𝑎𝑥
=

−
𝑣2

𝑟 sin 𝜃

−
𝑣2

𝑟 cos 𝜃
= tan 𝜃 

Thus, 𝜙 = 𝜃 which means that �⃗� is directed along the radius 𝑟 toward the circle’s center. Finally, the 

acceleration of an object moving in uniform circular motion (centripetal acceleration) in vector form 

�⃗� =
𝑣2

𝑟
�̂� (3.31) 
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In addition, during this acceleration (it happens at constant speed!), the particle travels the 

circumference (a distance of 2𝜋𝑟) in time  

𝑇 =
2𝜋𝑟

𝑣
 (3.32) 

3.4.2 A nonuniform circular motion 

In a general case of a nonuniform circular motion (speed is not a constant) there are two components 

of acceleration, namely 𝑎⊥ and 𝑎∥ 

𝑎⊥ =
𝑣2

𝑟
𝑎∥ =

𝑑|�⃗�|

𝑑𝑡
 

We will talk about that in later chapters (Kinematics and dynamics of rotational motion). 

 

3.5 Relative motion in one and two dimensions 

Suppose two cars are moving in the same direction with speeds of 50 𝑚𝑝ℎ and 60 𝑚𝑝ℎ. To a 

passenger in the slower car, the speed of the faster car is 10 𝑚𝑝ℎ. Of course, a stationary observer 

will measure the speed of the faster car to be  60 𝑚𝑝ℎ, not  10 𝑚𝑝ℎ. Which observer is correct? They 

both are! This simple example demonstrates that the velocity of an object depends on the frame of 

reference in which it is measured. 

Let’s first consider a relative motion in one dimension with a car A (stationary), a car B (moving 

relative to A with constant speed 𝑣𝐵𝐴) and a ball P (moving with constant speed 𝑣𝑃𝐵 relative to B).  

 

What are the ball’s position and speed relative to A? In this case it is clear that 

𝑥𝑃𝐴 = 𝑥𝑃𝐵 + 𝑥𝐵𝐴 

Differentiating we get 

𝑑

𝑑𝑡
𝑥𝑃𝐴 =

𝑑

𝑑𝑡
𝑥𝑃𝐵 +

𝑑

𝑑𝑡
𝑥𝐵𝐴 

or 𝑣𝑃𝐴 = 𝑣𝑃𝐵 + 𝑣𝐵𝐴. The acceleration 

𝑑

𝑑𝑡
𝑣𝑃𝐴 =

𝑑

𝑑𝑡
𝑣𝑃𝐵 +

𝑑

𝑑𝑡
𝑣𝐵𝐴 

In a general case  
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𝑎𝑃𝐴 = 𝑎𝑃𝐵 + 𝑎𝐵𝐴 

however for 𝑣𝐵𝐴 = 𝑐𝑜𝑛𝑠𝑡 we have 

𝑎𝑃𝐴 = 𝑎𝑃𝐵 

Thus the velocity of a particle depends on a reference frame. But observers on different reference 

frames (that move at constant velocity relative to each other) will measure the same acceleration for 

a moving particle. 

We can easily do the same for relative motion in two dimensions 

 

showing that  

𝑟𝑃𝐴 = 𝑟𝑃𝐵 + 𝑟𝐵𝐴 

�⃗�𝑃𝐴 = �⃗�𝑃𝐵 + �⃗�𝐵𝐴 

�⃗�𝑃𝐴 = �⃗�𝑃𝐵 

As for one-dimensional motion, observers on different frames of reference that that move at constant 

velocity relative to each other will measure the same acceleration for a moving particle. 
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3.6 Most common problems involving projectile motion 

Type 1: “the same ground level” or 𝑦 = 𝑦0.  

This is rather a simple case because the time of flight can 

easily be found from 

0 = 𝑣0 sin(𝜃) 𝑡𝑓𝑙𝑖𝑔ℎ𝑡 −
𝑔𝑡𝑓𝑙𝑖𝑔ℎ𝑡

2

2
 

Then you have simple algebra calculations. 

The highest point on the trajectory corresponds to 𝑣𝑦 = 𝑣0 sin(𝜃) − 𝑔𝑡 = 0  

Type 2: “zero horizontal launch” or 𝜃 = 00.  

This is the easiest type of projectile motion problems with very 

easy to solve algebra for the system of equations 

𝑥 = 𝑣0𝑡          𝑣𝑥 = 𝑣0 

0 = 𝑦0 −
𝑔𝑡2

2
𝑣𝑦 = −𝑔𝑡 

 

Type 3: “a general case” with a nonzero launch angle and when 𝑦 > 𝑦0 or 𝑦 < 𝑦0.  

Quite often you may need to solve a quadratic equation if 

you are looking for time or distance. For example, 

depending on the given data, the time of flight can be 

found right away from  

𝑦 = 𝑦0 + 𝑣0 sin(𝜃) 𝑡 −
𝑔𝑡2

2
 

If finding 𝑣0 is your goal, then the problem can be reduced 

to simple algebra, but if you need to find the initial angle 𝜃, you may need to be engaged into 

trigonometry. 
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3.7 Examples 

Example 3-1 

A 10 pound cat leaps horizontally from a 3.1 m – high window with a speed of 5.0 m/s. Disregard the 

air resistance. 

a) How far from the base of the house will she land? 

b) How long will be the flight time? 

SOLUTION: 

1. Physics – projectile motion in a plane 

 

2. The basic equations for projectile motion in a plane (note that the mass of the cat does not matter!) 

𝑥 = 𝑥0 + 𝑣0 cos(𝜃) 𝑡                          𝑣𝑥 = 𝑣0 cos(𝜃) 

𝑦 = 𝑦0 + 𝑣0 sin(𝜃) 𝑡 −
𝑔𝑡2

2
              𝑣𝑦 = 𝑣0 sin(𝜃) − 𝑔𝑡 

3. Using given data  𝜃 = 00 and 𝑥0 = 0, 𝑦 = 0  the equation above can be written in the following 

form 

𝑥 = 𝑣0𝑡                  (1𝑥)                  𝑣𝑥 = 𝑣0              (2𝑥) 

0 = 𝑦0 −
𝑔𝑡2

2
(1𝑦)                         𝑣𝑦 = −𝑔𝑡           (2𝑦)  

4. There are two unknowns in equations (1𝑥) and (1𝑦), namely 𝑥and 𝑡. The first equation (1𝑥) has 

two unknowns but the second has only one unknown – the time 

Solving (1𝑦) for time and using it in (1𝑥) gives 

𝑡𝑓𝑙𝑖𝑔ℎ𝑡 = √
2𝑦0

𝑔
𝑥𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑣0√

2𝑦0

𝑔
 

5. Calculations: 

𝑡𝑓𝑙𝑖𝑔ℎ𝑡 = √
2 ∙ 3.1 𝑚

9.8 𝑚 𝑠2⁄
= 0.8 𝑠        𝑥𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 5.0 𝑚 𝑠⁄ ∙ 0.8 𝑠 = 4 𝑚                            
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6. Let’s evaluate the results 

The dimensions and units are correct. The numerical results look realistic for a regular cat. 

 

Example 3-2 

In The Dukes of Hazzard (2005), a 1969 Dodge Charger (3256.0 lbs) went 175.0 ft after taking off 

from a ramp inclined at 300 degrees. In the movie the ramp was about 6.0 ft tall. 

 

a) How fast should the car be traveling (in mph) at the end of the ramp to make the 175 ft jump 

(counting from the end of the ramp)?  

b) How much time would the jump take? 

c) How high would be the highest point of the trajectory? 

SOLUTION: 

1. Physics – projectile motion 

2. The basic equations for projectile motion in a plane  

𝑥 = 𝑥0 + 𝑣0 cos(𝜃) 𝑡                           𝑣𝑥 = 𝑣0 cos(𝜃) 

𝑦 = 𝑦0 + 𝑣0 sin(𝜃) 𝑡 −
𝑔𝑡2

2
              𝑣𝑦 = 𝑣0 sin(𝜃) − 𝑔𝑡 

3. The problem is quite general with nothing to simplify 
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4. Let’s analyze the number of unknowns in every equation. for the positions 𝑥 and 𝑦. The both 

equations have the same two unknowns, namely 𝑣0and 𝑡. From the first equation 

𝑡 =
𝑥 − 𝑥0

𝑣0 cos 𝜃
 

Substituting it into the second equation gives 

𝑦 − 𝑦0 = 𝑣0 sin 𝜃
𝑥 − 𝑥0

𝑣0 cos 𝜃
−

𝑔(𝑥 − 𝑥0)2

2𝑣0
2 cos2 𝜃

.   

This equations has only one unknown 𝑣0 that can be easily found 

𝑣0
2 =

1

2

𝑔(𝑥 − 𝑥0)2

[(𝑥 − 𝑥0) tan 𝜃 − (𝑦 − 𝑦0)] cos2 𝜃
. 

Let’s test our solution in case when 𝑦 − 𝑦0 = 0 (disregard the size of the ramp). From the equation 

above we can derive  

𝑣0
2 =

1

2

𝑔(𝑥 − 𝑥0)2

(𝑥 − 𝑥0) sin 𝜃 cos 𝜃
=

𝑔(𝑥 − 𝑥0)

sin 2𝜃
 

that is the equation for the horizontal range on a flat surface (correct). Now we have the speed and 

the time. The highest point on the trajectory can be found from the condition 𝑣𝑦 = 0 at this point. So 

0 = 𝑣0 sin(𝜃) − 𝑔𝑡 

and 𝑡 = 𝑣0 sin(𝜃) /𝑔. Then we use this time in the equation for 𝑦. 

5. Calculations 

The initial data in SI units (we use 1 ft = 0.3048 m) 

175 𝑓𝑡 = 175 𝑓𝑡 (
0.3048 𝑚

1 𝑓𝑡
) = 53.3 𝑚6 𝑓𝑡 = 6 𝑓𝑡 (

0.3048 𝑚

1 𝑓𝑡
) = 1.8 𝑚 

The results are The speed 𝑣0 = 24.6 𝑚 𝑠⁄  

𝑎)𝑣0 = 24 𝑚 𝑠⁄ = 53 𝑚𝑝ℎ     𝑏) 𝑡 = 2.6 𝑠    𝑐) ℎ = 9.1 𝑚 

6. All units and dimensions are correct. The numbers seem realistic. 
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Example 3-3 

You throw an apple from the upper edge of 220-m vertical dam with a speed of 25.0 m/s at 30.00 

above the horizon. Ignore air resistance. 

a) How long after throwing the apple will you see it? 

b) How far from the base of the dam will the apple strike the water surface? 

c) What will be the speed of the apple when entering water 

SOLUTION: 

1. Physics – projectile motion 

2. The basic equations for projectile motion in a plane  

𝑥 = 𝑥0 + 𝑣0 cos(𝜃) 𝑡                          𝑣𝑥 = 𝑣0 cos(𝜃) 

𝑦 = 𝑦0 + 𝑣0 sin(𝜃) 𝑡 −
𝑔𝑡2

2
              𝑣𝑦 = 𝑣0 sin(𝜃) − 𝑔𝑡 

3. The problem is quite general with nothing to simplify 

 

4. Let’s analyze the number of unknowns in every equation. The first equation has two unknowns, 

namely distance 𝑥 and time 𝑡, and the second equation has one unknown (time 𝑡). Thus we can solve 

the second (quadratic) equation for time that looks like 𝑎𝑡2 + 𝑏𝑡 + 𝑐 = 0 where 𝑎 = − 𝑔 2⁄ ,   𝑏 =

𝑣0 sin(𝜃) ,    𝑐 = 𝑦0 − 𝑦. The rots are 

𝑡 =
−𝑣0 sin(𝜃) ± √𝑣0

2 sin2(𝜃) + 2𝑔(𝑦0 − 𝑦)

−𝑔
 

then 𝑥 = 𝑥0 + 𝑣0 cos(𝜃) 𝑡 will give the distance. 

The final speed is 𝑣 = √𝑣𝑥
2 + 𝑣𝑦

2  where 𝑣𝑥 = 𝑣0 cos(𝜃) and 𝑣𝑦 = 𝑣0 sin(𝜃) − 𝑔𝑡 

5. Calculations 

The quadratic equation for the time has two roots, namely 𝑡 = −5.55 𝑠, and 𝑡 = 8.10 𝑠. The positive 

solution corresponds to the time we are looking for (do you know why? What does the negative 

solution mean?). 
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The distance 𝑥 = 0.0 𝑚 + 25 𝑚 𝑠⁄ ∗ cos 300 ∗ 8.10 𝑠 = 175 𝑚 

The speed 𝑣 = 70.3 𝑚 𝑠⁄  

𝑎) 𝑡 = 8.10 𝑠     𝑏) 𝑥 = 175 𝑚    𝑐) 𝑣 = 70.3 𝑚/𝑠 

6. All units and dimensions are correct. The numbers seem realistic. 

 

Example 3-4 

The Chickens are playing with the Turkeys in football and the score is tied. A placekicker is sent out 

for the Chickens with instructions from the coach to kick a field goal from 45.0 m out. The top of the 

cross bar on the goalpost is 3.05 m above the level playing field. The moment of truth arrives and the 

ball leaves the ground at an angle of 30.00 to the horizontal.  

a) What is the minimum speed that the ball must have to make the field goal?  

b) How long does it take the ball to reach the cross bar? 

SOLUTION: 

1. Physics – projectile motion in a plane 

2. The basic equations for projectile motion in a plane  

𝑥 = 𝑥0 + 𝑣0 cos(𝜃) 𝑡                  𝑣𝑥 = 𝑣0 cos(𝜃) 

𝑦 = 𝑦0 + 𝑣0 sin(𝜃) 𝑡 −
𝑔𝑡2

2
      𝑣𝑦 = 𝑣0 sin(𝜃) − 𝑔𝑡 

3. It looks like we have to deal with the basic equations 

without simplifying them.  

We can only set 𝑥0 = 0 𝑚and 𝑦0 = 0 𝑚. 

4. Let’s work with equations for 𝑥and 𝑦.These two equations have two unknowns, namely 𝑡and 𝑣0. 

From the first equation 

𝑡 =
𝑥 − 𝑥0

𝑣0 cos(𝜃)
 

then the second equation reads 

𝑦 = 𝑦0 + 𝑣0 sin(𝜃)
𝑥 − 𝑥0

𝑣0 cos(𝜃)
−

𝑔

2
(

𝑥 − 𝑥0

𝑣0 cos(𝜃)
)

2

= 𝑦0 + sin(𝜃)
𝑥 − 𝑥0

cos(𝜃)
−

𝑔

2

(𝑥 − 𝑥0)2

𝑣0
2 cos2(𝜃)

 

and after some algebra 

𝑣0
2 =

1

2

𝑔(𝑥 − 𝑥0)2

[(𝑥 − 𝑥0) tan 𝜃 − (𝑦 − 𝑦0)] cos2 𝜃
 

5. Calculations: 
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𝑣0
2 = 0.5

9.8 𝑚 𝑠2 ∙  (45.0 𝑚)2⁄

[45 𝑚 ∙ tan 300 − (3.05 𝑚 − 0 𝑚)] cos2 300
= 577 𝑚2 𝑠2⁄ 𝑣0 = 24.0 𝑚 𝑠⁄  

𝑡 = 2.16 𝑠 

6. Looking back: The dimensions and units are correct. The speed (24 m/s or 54 mph) looks 

challenging but reasonable. The time seems correct. 
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Example 3-5* 

Flying in crosswind 

The compass of an airplane indicates that it is headed due north, and its airspeed indicator shows that 

it is moving through the air at speed 240 km/h. If there is a wind of 100 km/h from west to east, 

a) What is the velocity of the airplane relative to the ground? 

SOLUTION: 

1. Physics – Relative motion in a plane with constant velocities 

2. Equations 

�⃗�𝑃𝐸 = �⃗�𝑃𝐴 + �⃗�𝐴𝐸  

3. and 4. We can find the solution immediately from the equation above 

using geometry of vector components. Let’s use vector components as the 

most general approach 

�⃗�𝑃𝐴 = 0𝑥 + 𝑣𝑃𝐴�̂��⃗�𝐴𝐸 ,   �⃗�𝐴𝐸 = 𝑣𝐴𝐸𝑥 + 0�̂�,      

�⃗�𝑃𝐸 = (0 + 𝑣𝐴𝐸)�̂� + (𝑣𝑃𝐴 + 0)�̂� 

𝑣𝑃𝐸 = √(0 + 𝑣𝐴𝐸)2 + (𝑣𝑃𝐴 + 0)2,        𝛼 = arctan 𝑣𝐴𝐸 𝑣𝑃𝐴⁄  

Here we use 𝑥 and �̂� as notations for unit vectors in 𝑥- and 𝑦-directions. 

5. Calculations 

Since we are not asked about specific units of velocity, we may proceed with km/h 

𝑣𝑃𝐸 = √(240 𝑘𝑚 ℎ⁄ )2  + (100 𝑘𝑚 ℎ⁄ )2 = 260 𝑘𝑚/ℎ 

𝛼 = arctan 𝑣𝐴𝐸 𝑣𝑃𝐴⁄ = arctan 100 240⁄ = 230 

6. The dimensions and units look right (it is rather unlikely to make an error with this simple 

problem). The numerical results seem reasonable. 
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Example 3-6* 

Flying in crosswind II 

An airspeed indicator shows that an airplane is moving through the air at speed 240 km/h.  If there 

is a wind of 100 km/h from west to east 

a) In what direction should the pilot head to travel due north.  

b) What will be his velocity relative to the earth? 

SOLUTION: 

1. Physics – Relative motion in a plane with constant velocities 

2. Equations 

�⃗�𝑃𝐸 = �⃗�𝑃𝐴 + �⃗�𝐴𝐸  

3. and 4. We can find the solution using vector components. Let’s use vector 

components as the most general approach 

�⃗�𝑃𝐴 = −𝑣𝑃𝐴 sin 𝛽 𝑥 + 𝑣𝑃𝐴 cos 𝛽 �̂�             �⃗�𝐴𝐸 = 𝑣𝐴𝐸�̂� + 0�̂�,      

�⃗�𝑃𝐸 = (𝑣𝐴𝐸 − 𝑣𝑃𝐴 sin 𝛽)�̂� + (𝑣𝑃𝐴 cos 𝛽 + 0)�̂� 

sin 𝛽 = 𝑣𝐴𝐸/ 𝑣𝑃𝐴 

Here we use 𝑥 and �̂� as notations for unit vectors in 𝑥- and 𝑦-directions. 

By the way, using equation for the angle 𝛽 iy is easy to show that  

𝑣𝑃𝐸 = 𝑣𝑃𝐴 cos 𝛽 = √𝑣𝑃𝐴
2 − 𝑣𝐴𝐸

2  

5. Calculations 

𝑣𝑃𝐸 = √(240 𝑘𝑚 ℎ⁄ )2 − (100 𝑘𝑚 ℎ⁄ )2 = 218 𝑘𝑚/ℎ 

𝛽 = arcsin 100 240⁄ = 250 

6. The dimensions and units look right (it is rather unlikely to make an error with this simple 

problem). The numerical results seem reasonable 
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4 Newton’s Laws of Motion 

4.1 Dynamics 

Kinematics equations of motion (specifically motion with constant acceleration) are essentially 

mathematical equations. The equations do not have any physics or causes of motion. 

Dynamics of motion describes motion together with its cause. The discovery of the laws of dynamics, 

or the laws of motion, was a dramatic moment in the history of science. Before Sir Isaac Newton's 

time (1642 – 1727), the motions of things like the planets were a mystery, but after Newton there was 

complete understanding. The motions of objects around us (from a grain of sand to stars and planets), 

could all be analyzed completely after Newton's laws were enunciated. 

Galileo made a great advance in the understanding of motion when he discovered the principle of 

inertia: if an object is left alone, or not disturbed, it continues to move with a constant velocity in a 

straight line if it was originally moving, or it continues to stand still if it was just standing still (looks 

counterintuitive, isn’t it).  It required a certain imagination to find the right rule, and that imagination 

was supplied by Galileo. 

Of course, the next thing which is needed is a rule for finding how an object changes its speed if 

something is affecting it. That is the contribution of Newton. Newton wrote down three laws 

(published in 1687): The First Law was a mere restatement of the Galilean principle of inertia just 

described. The Second Law gave a specific way of determining how the velocity changes under 

different influences called forces. The Third Law is a relationship between the forces that two 

interacting bodies exert on each other. 



4.2 Force and Interaction 

70 

 

Newton’s laws are truly fundamental, for they cannot be deduced or proved from other principles. 

Newton’s laws are based on observations made by many scientists before Newton. 

Newton’s laws are the foundation of classical mechanics. 

There are two situations when Newtonian mechanics cannot be applied, namely if the speed of 

interacting bodies is comparable with the speed of light (then we use Einstein’s special theory of 

relativity), and if the interacting bodies are comparable with (or smaller than) atomic scale (then we 

use quantum mechanics). We can view Newtonian mechanics as a special case of the two above 

fundamental theories. However, Newtonian mechanics can be applied to vast majority of situations, 

especially on our Human scale. 

4.2 Force and Interaction 

Although it is interesting and worthwhile to study the physical laws simply because they help us to 

understand and to use nature, one ought to stop every once in a while and think, "What do they really 

mean?" Well, we can intuitively sense the meaning of force. In physics, the answer is simple: "If a body 

is accelerating, then there is a force on it." 

Since forces always come in pairs we can also say that a force is an interaction between two bodies or 

a body and its environment. 

In nature, there are three only fundamental forces (gravity, electroweak force and strong force).  All 

three forces originate from long-distance interactions at microscopic level.  

Since the electromagnetic part of the weak part of the electroweak force act on different scales it is 

convenient for multiple applications to consider them as two distinct forces. 

 

Figure 23 Relative strength and the range of interaction of the four fundamental forces. 

Many scientists think that all the fundamental forces are the manifestations of a single force which 

has yet to be discovered. 
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Quick comments: in many textbook one may find multiple definitions for a force. As a rule, most 

definitions are useless like a discussion what definition of a word is better. Also it is common to talk 

about contact forces and long-range forces. A contact force is a simplified model of reality. 

Important. Force is a vector �⃗�.  

In University physics we often use the Cartesian coordinate system. Then, in two dimensional case 

�⃗� = �⃗�𝑥 + �⃗�𝑦 = 𝐹𝑥�̂� + 𝐹𝑦�̂� (4.1) 

where �⃗�𝑥 and �⃗�𝑦 are component vectors along 𝑥 − and 𝑦 −directions, and 𝑥 and �̂� are unit vectors. 

 

 

 

Any number of forces applied at a point on a body has the same effect as a single force equal to the 

vector sum of the forces – the superposition of forces 

�⃗� = �⃗�1 + �⃗�2 + ⋯ �⃗�𝑛 = ∑ �⃗�𝑖

𝑛

𝑖

 (4.2) 

The resulting force �⃗� is called the net force. The component version of the superposition principle can 

be written as 

𝐹𝑥 = 𝐹𝑥1 + 𝐹𝑥2 + ⋯ 𝐹𝑥𝑛 = ∑ 𝐹𝑥𝑖

𝑛

𝑖

 (4.3) 

𝐹𝑦 = 𝐹𝑦1 + 𝐹𝑦2 + ⋯ 𝐹𝑦𝑛 = ∑ 𝐹𝑦𝑖

𝑛

𝑖

 (4.4) 

The magnitude and direction of the net force can be found from 
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𝐹 = √𝐹𝑥
2 + 𝐹𝑦

2 ,       tan 𝜃 = 𝐹𝑦 𝐹𝑥⁄   (4.5) 

Forces act independently of each other: neither of them is modified by being applied at the same time 

as the other. Superposition works for any number of forces. 
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4.3 Newton’s First Law 

 

 

 

Here is an equivalent statement: In the absence of forces, a stationary particle remains stationary and 

a moving particle continues to move with unchanging speed in the same direction. 

4.3.1 Inertial frames 

Newton’s formulation has two important implications: 

1. Reference frames that move with constant velocities relative to each other are equivalent. 

These are called inertial frames of reference 

2. Forces are the same in all inertial frames 

State of rest from point-of-view of one observer is a state of constant velocity from point-of-view of 

another. It isn’t mere motion that we need to explain – it is the change in state of motion 

(acceleration). 

If non-zero net force is applied to a particle - all inertial observers see the same effect, viz. force is 

parallel to acceleration. 

If acceleration is the same in all inertial frames, then force will be the same in all inertial frames 

All forces behave in the same way: they all produce accelerations parallel to their directions. 

4.4 Newton’s Second Law 

 

 

 

�⃗� = 𝑚�⃗� (4.6) 

In this equation �⃗� denotes the vector sum of all forces on the particle and �⃗� is the particle’s 

acceleration. 

�⃗� =
𝑑�⃗�

𝑑𝑡
=

𝑑2𝑟

𝑑𝑡2
 

Second Law effectively defines mass:  acceleration and force can be measured independently mass is 

then determined from Newton’s second law. 

Mass in Newton’s second law is a measure of inertia. It is a scalar quantity called inertial mass. Mass 

is an inherent property of an object and is independent of the object’s surroundings and of the method 

used to measure it. 

In the absence of external force, a particle moves with constant velocity �⃗� 

For any particle of mass 𝑚, the net force �⃗� on the particle is always 

equal to the mass 𝑚 times the particle’s acceleration: 
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Mass: The notation: 𝑚, the SI Unit: 𝑘𝑔.   

Force: The notation: �⃗�, the SI unit: 𝑛𝑒𝑤𝑡𝑜𝑛.  We can use the standard kg to define the SI unit of force 

as 

1 𝑁 =  1 𝑘𝑔 ∙ 𝑚 𝑠2⁄  

Important: 

1. Newton’s second law is a vector equation.  

In practical applications it is convenient to use it in component form 

∑𝐹𝑥 = 𝑚𝑎𝑥 

∑𝐹𝑦 = 𝑚𝑎𝑦 

2. The statement of Newton’s second law refers to external forces, i.e. forces exerted on the body 

by other bodies in its environment 

3. The mass 𝑚 in �⃗� = 𝑚�⃗� is constant 

4. Newton’s second law is valid only in inertial frames of reference. 

Note: Newton formulated his second law in terms of momentum, i.e.  

�⃗� =
𝑑𝑝

𝑑𝑡
  where  �⃗� = 𝑚�⃗� 

the rate of change of the momentum of a body is directly proportional to the net force acting on it, 

and the direction of the change in momentum takes place in the direction of the net force 

4.4.1 Mass and Weight 

There is a difference to be understood between the weight of an object and its inertia. (How hard it is 

to get it going is one thing, and how much it weighs is something else.) Weight and inertia are 

proportional, and on the earth's surface are often taken to be numerically equal, which causes certain 

confusion. On Mars, weights would be different but the amount of force needed to overcome inertia 

would be the same.  

We use the term mass as a quantitative measure of inertia, and we may measure mass, for example, 

by swinging an object in a circle at a certain speed and measuring how much force we need to keep it 

in the circle. In this way we find a certain quantity of mass for every object.  

Weight of a body is the force on it by the gravity �⃗�𝑔 = �⃗⃗⃗⃗� = 𝑚�⃗�. Thus, the weight is a vector. Its SI unit 

is a newton (in British units the unit of weight is a pound).  

When we buy in a grocery store - do we buy mass or weight?  

Good to know: On Earth 𝑔 depends on your altitude. On other planets, gravity will likely have an 

entirely new value, for example, on the moon 1.62 m/s2, or 0.165*𝑔. 

Attention: objects in orbit are not actually weightless; they do have weight since they do experience 

the force due to gravity, and are accelerated by it. Their state is correctly described as free-fall, when 

objects and everything in their environment is falling under the influence of gravity. 
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Attention: Heavier objects do not fall faster. It is the acceleration that defines how fast (not the force), 

namely �⃗� = �⃗�𝑔 𝑚 = 𝑚�⃗� 𝑚⁄ = �⃗�⁄  (the same acceleration for all objects in the absence of air 

resistance). 

4.5 Newton’s Third Law 

A force of interaction on a body is always the result of interaction with another body, so forces always 

come in pairs. 

 

 

 

 

 

or “For every Action, there is an equal but opposite Reaction”. 

Note that  

1. Both Action and Reaction forces are the same physical origin 

2. Action and Reaction act on different objects (�⃗�21 acts on 1, and �⃗�12 acts on 2) 

 

Figure 24 The horse-and-cart dilemma. The horse pulls on the cart, and the cart pulls back with a 
force of equal magnitude. So, how can the pair ever get moving? The net force on the horse involves 
forces from different third-laws pairs. Their magnitudes are not equal and the horse experiences a 
net force in the forward direction. 

If object 1 exerts a force �⃗�21 on object 2, then object 2 always exerts 

force �⃗�12 on object 1 given by 

�⃗�12 = −�⃗�21 
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4.6 Free body diagrams 

A free-body diagram is a graphical representation of all the forces acting on an object. Free-body 

diagrams are a powerful tool for solving problems. IDEA - replace an actual environment of an object 

as a set of forces acting on that object   

 

Free-body diagrams show all forces acting on a particular body. 

𝐹 = �⃗�1 + �⃗�2 + ⋯ �⃗�𝑛 = ∑ �⃗�𝑖

𝑛

𝑖

 

Key ideas for drawing a free-body diagram: 

1. Include ALL forces acting on the body matter. 

2. When a problem includes more than one body – draw a separate free-body diagram for each 

body. 

3. Not to include: any forces that the body exerts on any other body. 

4. Not to include: non-existing forces (no object – no force). 

When constructing a free-body diagram, it is a good idea to choose your coordinate system so that 

the motion of an object is along one of the axes.  

Attention: So far we consider only translational motion (bodies cannot rotate), when all points of a 

body move with the same velocity (in the same direction with the same speed). Rotation of rigid 

bodies will be considered in chapters 9 – 11.  
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4.7 Examples 

Example 4-1 

An advertisement claims that a particular automobile can “stop on a dime”.  What net force would 

actually be necessary to stop a 1000-kg automobile (about 2,200 lb) travelling at 55 mph in a distance 

equal to the diameter of a dime, which is 1.6 cm?  

SOLUTION: 

1. Physics – Newton’s second law and one dimensional motion with constant acceleration 

2. The basic equations 

�⃗� = 𝑚�⃗� 

𝑥 = 𝑥0 + 𝑣0𝑡 +
𝑎𝑡2

2
 

𝑣 = 𝑣0 + 𝑎𝑡 

3. The motion is one dimensional, therefore we can use 𝐹 = 𝑚𝑎, and the final velocity of the car is 𝑣 =

0. 

To find the force we need to know the acceleration, which we can find from the kinematic equations 

4. From the third equation 𝑡 = −𝑣0/𝑎, then the second equation is 

𝑥 = 𝑥0 − 𝑣0 (
𝑣0

𝑎
) +

1

2
𝑎 (

𝑣0

𝑎
)

2

 

2𝑎(𝑥 − 𝑥0) = −2𝑣0
2 + 𝑣0

2 

𝑣0
2 = −2𝑎(𝑥 − 𝑥0) 

The final velocity of the car is 0 m/s, then   

𝑎 = −
𝑣0

2

2(𝑥 − 𝑥0)
 

The magnitude of the net force then is 

𝐹 = 𝑚
𝑣0

2

2(𝑥 − 𝑥0)
 

5. Calculations 

The initial data in SI units (we use 1 mile = 1609 m, 1 m = 100 cm, 1 h = 3600 s) 

55 𝑚𝑝ℎ = 55 
𝑚𝑖𝑙𝑒

ℎ
 (

1609 𝑚

1 𝑚𝑖𝑙𝑒
) (

1 ℎ

3600 𝑠
) = 24.59 𝑚/𝑠 

1.6 𝑐𝑚 = 1.6 𝑐𝑚 (
1 𝑚

100 𝑐𝑚
) = 0.016 𝑚 
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𝐹 = 1000 𝑘𝑔
(24.6 𝑚 𝑠⁄ )2

2 ∗ 0.016 𝑚
= 1.89 ∙ 107𝑁 

6. Looking back. 

The units are correct. The force is huge but on the other hand the stopping distance is very short 

(shorter than hitting a tree!). Therefore, the result looks reasonable but not the advertisement. 

Example 4-2 

Two boxes are lined up so that they are touching each other as 

shown in Figure. Box A has a mass of 20 kg, box B has a mass of 

30 kg. An external force F=100 N pushes on box A toward the 

right. 

a) find the acceleration of the boxes 

b) find the force that box A exerts on box B 

SOLUTION: 

1. Physics – Newton’s laws of motion for two objects 

2. The basic equations 

𝐹𝐴,𝑛𝑒𝑡 = 𝑚𝐴𝑎        𝐹𝐵,𝑛𝑒𝑡 = 𝑚𝐵𝑎  

3. Let’s draw free-body diagrams (one for every block) 

 

4. From the third law �⃗�𝐵𝐴 = −�⃗�𝐴𝐵, then 

𝐹𝐴,𝑛𝑒𝑡 = 𝐹 − 𝐹𝐵𝐴 = 𝑚𝐴𝑎 

𝐹𝐵,𝑛𝑒𝑡 = 𝐹𝐴𝐵 = 𝑚𝐵𝑎 

Solving the system of equations for unknowns gives 

𝑎 =
𝐹

𝑚𝐴 + 𝑚𝐵
 

𝐹𝐴𝐵 =
𝑚𝐵

𝑚𝐴 + 𝑚𝐵
𝐹 

5. Calculations 

𝑎 =
100 𝑁

20 𝑘𝑔 + 30 𝑘𝑔
= 2 𝑚 𝑠2⁄  
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𝐹𝐴𝐵 =
30 𝑘𝑔

20 𝑘𝑔 + 30 𝑘𝑔
100 𝑁 = 60 𝑁 

6. Looking back 

The units are correct. The magnitude of 𝐹𝐴𝐵 itself does not tell much, but we see that 𝐹𝐴𝐵 < 𝐹 as 

expected (because the external force �⃗� pushes two boxes and has to be large that the action-reaction 

force between the blocks. 

Example 4-3 

Two masses 𝑚1 and 𝑚2 situated on a frictionless, horizontal surface are connected by a light string. 

A force �⃗� is exerted on one of the masses to the right. Determine the acceleration of the system and 

the tension T in the string. 

 

SOLUTION: 

1. Physics – Newton’s laws of motion for two objects 

2. The basic equations 

𝐹1,𝑛𝑒𝑡 = 𝑚1𝑎        𝐹2,𝑛𝑒𝑡 = 𝑚2𝑎  

3. Let’s draw free-body diagrams (one for every block) 

 

Then for the first block 

𝑇 = 𝑚1𝑎 

and for the second block 

𝐹 − 𝑇 = 𝑚2𝑎 

4. Thus we get two equations with two unknowns 𝑇 and 𝑎. The solutions are 

𝑎 =
𝐹

𝑚1 + 𝑚2
, 𝑇 =

𝑚1

𝑚1 + 𝑚2
𝐹 
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5. Calculations – no numbers, nothing to calculate 

6. Looking back 

The dimensions are correct. Let’s also note that the solutions are remarkably similar to example 4-2. 

Example 4-4 

An aerostat of mass 𝑚 starts coming down with a constant acceleration 𝑎. Determine the ballast mass 

to be dumped for the aerostat to reach the upward acceleration of the same magnitude. The air drag 

is to he neglected. 

SOLUTION: 

1. Physics – Newton’s laws of motion for one object with two forces 

2. The basic equations 

𝐹𝑛𝑒𝑡 = 𝑚𝑎 

3. Let’s draw free-body diagram 

where �⃗�𝑔 = 𝑚�⃗� is the force of gravity and �⃗�𝑢𝑝 is the lifting force. Then when the 

aerostat goes down 

𝐹𝑢𝑝 − 𝑚𝑔 = −𝑚𝑎 

and for goinf up we drop a mass 𝑚′  

𝐹𝑢𝑝 − (𝑚 − m′)𝑔 = (𝑚 − 𝑚′)𝑎 

4. Thus we have two equations with two unknowns, namely 𝐹𝑢𝑝 and 𝑚′. 

From the first equation 𝐹𝑢𝑝 = 𝑚𝑔 − 𝑚𝑎, then the second equation reads 

𝑚𝑔 − 𝑚𝑎 − (𝑚 − m′)𝑔 = (𝑚 − 𝑚′)𝑎. 

Solving for 𝑚′ gives 

𝑚′ = 2𝑚
𝑎

𝑔 + 𝑎
 

5. Calculations (no numbers – no calculations) 

6. Looking back 

The dimension of the answer [mass] is correct.  
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5 Applying Newton’s Laws 

5.1 Forces 

A true understanding of Newton's laws requires a discussion of specific forces. In this chapter we deal 

with following forces 

 Gravitational force �⃗�𝑔 

 Normal force �⃗⃗⃗� 

 Tension �⃗⃗� 

 Frictional force 𝑓𝜇 

 Spring force �⃗�𝑠 

5.1.1 Gravitational force 

A gravitational force on a body is a pull that is directed toward a second body. In this chapter we do 

not discuss the nature of this force, and we usually consider that the second body is Earth.  

The magnitude: 

𝐹𝑔 = 𝑚𝑔 (5.1) 

The direction is directly toward the center of Earth (toward the ground) 
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5.1.2  Normal force 

When a body presses against a surface, the surface deforms and pushes on the body with a normal 

force that is perpendicular to the surface. The normal force prevents the object from penetrating the 

surface. 

The magnitude: the component, perpendicular to the surface of contact, of the force exerted on an 

object (usually the force of gravity and any additional external force) 

The direction: perpendicular and away from the surface 

Example:        A box on a flat surface   A box on an incline 

 

Note: 𝑚𝑔 cos 𝜃 is the component of the force of gravity perpendicular to the surface. It can be easily 

seen using geometry of similar triangles.  

Attention: If there is external force acting on a body, then the magnitude of the normal force can be 

written as 

𝑁 = 𝑚𝑔 cos 𝜃 ± 𝐹𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙,⊥ (5.2) 

where 𝐹𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙,⊥ is a perpendicular component of some external force (" + " corresponds to a force 

pushing against the surface, and "– " is for a force pulling the object from the surface). 

5.1.3 Tension force 

Tension is the pulling force exerted by a string, cable, chain, rope, or a similar object on a body. 

Normally the string is considered massless (comparing to the mass of body) and unstretchable (it is 

only a connection between bodies). 

 

The symbol for the magnitude: 𝑇 

The direction: away from the body and along the string 
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5.1.4 Frictional force 

Microscopically, friction is a very complicated phenomenon.  

Macroscopically, at large-scale level, it is relatively simple. 

Phenomenologically (empirically), to a fairly good approximation, the frictional force is proportional 

to magnitude of normal force, and has a more or less constant coefficient 

𝑓 = 𝜇𝑁 (5.3) 

where 𝜇 is called the coefficient of friction, and 𝑁 is the normal force. Although this coefficient is not 

exactly constant, the formula is a good empirical rule for judging approximately the amount of force 

that will be needed in certain practical or engineering circumstances. If the normal force or the speed 

of motion gets too big, the law fails because of the excessive heat generated. It is important to realize 

that each of these empirical laws has its limitations, beyond which it does not really work. 

Static friction (a body does not move): 

1. If the body does not move, then the static frictional force  𝑓𝑠   and the component of �⃗�   that is 

parallel to the surface balance each other. 

2. The magnitude of  𝑓𝑠 has a maximum value that is given by 𝑓𝑠,𝑚𝑎𝑥 = 𝜇𝑠𝑁 

where 𝜇𝑠 is a coefficient of static friction, and 𝑁 is the magnitude of the normal force on the body from 

the surface.   

Direction: parallel to the surface, and is directed opposite the component of an external force. 

One must overcome (exceed) the force of static friction it in order to initiate motion of the body along 

the surface. 

Here is a simple way to determine the coefficient of 

static friction. Let’s consider an object on an incline. 

When block is not moving, friction force compensates 

𝑥 −component of gravitational force:  

𝑓𝑠 = 𝑚𝑔 sin 𝜃 

However by definition 𝑓𝑠 = 𝜇𝑠𝑁 = 𝜇𝑠𝑚𝑔 cos 𝜃  then 

 𝑚𝑔 sin 𝜃 = 𝜇𝑠𝑚𝑔 cos 𝜃. Let’s 𝜃𝑚𝑎𝑥 is the largest angle 

when the block is still not moving, then 

𝜇𝑠 = tan 𝜃𝑚𝑎𝑥 (5.4) 

Thus, equation (5.4) provides a way to measure a value of static frictional coefficient. 

Note that 𝜇𝑠 can be greater than 1. 
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Kinetic friction (a sliding body) 

If the body begins to slide along the surface, the magnitude of the frictional force rapidly decreases to 

a value 𝑓𝑘 given by 

𝑓𝑘 = 𝜇𝑘𝑁 

where 𝜇𝑘 is the coefficient of kinetic friction. Note that the kinetic friction does not depend on speed. 

Direction: always opposite to the direction of velocity 

Useful note: Frictional force is independent of the area of contact between the body and the surface. 

Approximate coefficients of static and kinetic friction can be found in many textbooks as well as on 

the Web.  

Overall: 

 

Rolling Friction1   

It’s a lot easier to move a loaded filing cabinet across a horizontal floor using a cart with wheels than 

to slide it. How much easier? We can define a coefficient of rolling friction which is the horizontal 

force needed for constant speed on a flat surface divided by the upward normal force exerted by the 

surface, or 𝑓𝑟 = 𝜇𝑟𝑁. Transportation engineers call the tractive resistance. Typical values of are 

0.002 to 0.003 for steel wheels on steel rails and 0.01 to 0.02 for rubber tires on concrete. These 

values show one reason railroad trains are generally much more fuel efficient than highway trucks. 

                                                             

1 from University Physics by Young and Freedman 



5. Applying Newton’s Laws 

85 

 

5.1.5 Fluid resistance and terminal speed 

A fluid is anything that can flow - generally either a gas or a liquid. A body moving through a fluid 

exerts a force on the fluid to push it out of the way. By Newton’s third law, the fluid pushes back on 

the body with an equal and opposite force. 

The direction of the fluid resistance force acting on a body is always opposite the direction of the 

body's velocity relative to the fluid. The magnitude of the fluid resistance force usually increases with 

the speed of the body through the fluid. This is very different from the kinetic friction force between 

two surfaces in contact, which we can usually regard as independent of speed. 

For very low speeds, the magnitude 𝑓 of the fluid resistance force is approximately proportional to the 

body's speed 𝑣: 

𝑓 = 𝑏𝑣 

where 𝑏 is a proportionality constant that depends on the shape and size of the body and the 

properties of the fluid. 

In motion through air at high speeds (e.g. the speed of a tossed tennis ball or faster), the resisting force 

is approximately proportional to 𝑣2 rather than to 𝑣. It is then called air drag or simply drag. The 

magnitude of the drag force is related to the relative speed by 

𝑓 =
1

2
𝐶𝜌𝐴𝑣2 

where 𝐶 is experimentally determined drag coefficient, 𝜌 is the air density (mass per volume) and 𝐴 

is the effective cross-sectional area of the body (the area of a cross section taken perpendicular to the 

velocity �⃗�). The drag coefficient 𝐶 (typical values range from 0.4 to 1.0) is not truly a constant for a 

given body, because if 𝑣 varies significantly, the value of 𝐶 can vary as well. Here, we ignore such 

complications. 

 

When an object falls from rest through air, the drag force 𝑓 is directed upward; its magnitude 

gradually increases from zero as the speed of the body increases. This upward force opposes the 

downward gravitational force on the body.  

𝑓 − 𝑚𝑔 = −𝑚𝑎 
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where 𝑚 is the mass of the body. If the body falls enough, 𝑓 eventually equals 𝑚𝑔, this means that 𝑎 =

0 and so the body's speed no longer increases. The body then falls at a constant speed, called the 

terminal speed 𝑣𝑡. From 

1

2
𝐶𝜌𝐴𝑣2 = 𝑚𝑔 

follows 

𝑣𝑡 = √
2𝑚𝑔

𝐶𝜌𝐴
 

This expression for terminal speed explains why heavy objects in air tend 

to fall faster than light objects. Two objects with the same physical size but 

different mass (say, a table-tennis ball and a lead ball with the same radius) 

have the same value of 𝐴 but different values of 𝑚. The more massive object 

has a higher terminal speed and falls faster. The same idea explains why a 

sheet of paper falls faster if you first crumple it into a ball; the mass is the 

same, but the smaller size makes 𝐴 smaller thus smaller drag force 𝑓  (less 

air drag for a given speed) and 𝑣𝑡 larger.  

Note: normally in introductory physics classes we do not deal with the drag 

force. However, knowing about it is vital for understanding effects of air resistance in everyday life. 

5.1.6 Spring Force 

When a spring is stretched from its unstressed length by a distance 𝑥, the force it exerts is found 

experimentally to be 

𝐹𝑠 = −𝑘(𝑥 − 𝑥0) (5.5) 

where the positive constant k, called the spring constant, is a measure of the stiffness of the spring, 

and 𝑥0 is the equilibrium position (normally counted as 𝑥0 = 0). A negative value of 𝑥 means the 

spring has been compressed a distance |𝑥| from its unstressed length. The negative sign means that 

when the spring is stretched (or compressed) in one direction, the force it exerts is in the opposite 

direction. This relation is known as Hooke’s law. For small displacements, nearly all restoring forces 

obey Hooke’s law. 
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5.2 Dynamics of circular motion 

In chapter 3 we talked about uniform circular motion when a body moves in a circle (or a circular arc) 

at constant speed 𝑣. In this case the body has a centripetal acceleration (directed toward the center of 

the circle) of constant magnitude 

𝑎 =
𝑣2

𝑅
 (5.6) 

where 𝑅 is the radius of the circle. 

A centripetal force accelerates a body by changing the direction of the body’s velocity without 

changing the body’s speed. 

The magnitude of a centripetal force (or a net centripetal force) is 

𝐹𝑛𝑒𝑡 = 𝑚
𝑣2

𝑅
 (5.7) 

Because the speed 𝑣 is constant, so are also the magnitudes of the acceleration and the force. 

However, the direction of the centripetal acceleration and force are not constant; they vary 

continuously so as to always to point toward the center of the circle. 

Tension in the string causes the ball to 

move in circular path with constant 

speed. 

Important: tension (force) pulls the 

ball toward the center, rather than 

prevent it from moving in a straight 

line. 

If the string breaks, the ball would 

move along a straight line tangent to 

circular path. 

 

Important: when released (see the difference in trajectories) 
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5.3 Few guidelines for solving most common problems in “Applying Newton’s Laws” 

As always, it is very productive to follow this procedure for problem solving. 

1. Name the type of physics most likely related to the problem in hand. Draw a diagram if needed. 

2. Write down the "basic" equations for the physics of the problem. 

3. Simplify (when possible) the "basic" equations using given data and conditions. 

4. Solve the "adjusted" equation for the unknown(s) using algebra, trigonometry and calculus. 

5. Achieve a numerical answer using your symbolic solution and the proper units. 

6. Step back, and evaluate your answer in terms of units, dimensions, and most importantly, 

common sense. 

Since this subject offers so many variations of problems, let elaborate more on most important steps, 

namely steps 2 and 3 in the above list. 

Many problems on “Applying Newton’s Laws” are either “pure force problems” or a combination “a 

force problem” + “a motion with constant acceleration problem”. In the following we are going to 

concentrate “force problems”. Here are most important points that may help you to develop a 

systematic approach to attacking problems from simple ones to more challenging. 

Point 1: Ask yourself a question - How many objects do I need to consider? Normally, in physics 231 

we deal with one or two objects (having three or four objects are much less common problems).  

Point 2: Draw free-body diagrams. One diagram for every object! You may find it helpful to check 

every force from the table below. And if you do have it, then put it on your free-body diagram with a 

proper direction. 

Summary of forces 

Force Magnitude Direction 

Gravity 𝐹𝑔 = 𝑚𝑔 toward the ground 

Normal 𝑁

= 𝑚𝑔 cos 𝜃 ± 𝐹𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙,⊥ 

perpendicular to the surface (and away)     

Tension 𝑇 along the string 

Friction (static) 𝑓𝑠,𝑚𝑎𝑥 ≤ 𝜇𝑠𝑁 
opposite the component of external force and 

parallel to the surface 

Friction (kinetic) 𝑓𝑘 = 𝜇𝑘𝑁 always opposite to the direction of velocity 

Centripetal force 𝐹𝑐 = 𝑚
𝑣2

𝑟
 toward the center of rotation 

Spring (or elastic) 𝐹𝑠 = −𝑘(𝑥 − 𝑥0) opposite to stretch/compression direction 
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Point 3: Choose proper coordinate system for every object. Normally we work with the Cartesian 

coordinate system.  Choosing wisely helps to reduce algebra and trigonometry load. 

For most problems we use the regular orientation (horizontal direction for 𝑥 and vertical one for 𝑦). 

 

However, for incline problems we choose a ‘rotated’ coordinate system  

 

Sure, you may solve incline problems with the regular orientation as well, but then you have much 

more trigonometry on your hands. 

Point 4: Once we identify all forces and their directions, we write Newton’s second law �⃗�𝑛𝑒𝑡 = 𝑚�⃗� for 

every 𝑥 −  and 𝑦 − component of every object.  

𝐹𝑛𝑒𝑡,𝑥 = ∑𝐹𝑥 = 𝑚𝑎𝑥  

𝐹𝑛𝑒𝑡,𝑦 = ∑𝐹𝑦 = 𝑚𝑎𝑦 

For objects in equilibrium (that are stationary objects or objects moving with constant velocity) we 

apply �⃗� = 0, or �⃗�𝑛𝑒𝑡 = 0. Most problems in Physics I deal with either linear motion or rotational 

motion. For uniform rotational motion we write Newton’s second law as  

𝐹𝑛𝑒𝑡 = 𝑚
𝑣2

𝑟
 

More explicitly, for linear problems (objects moving along a straight line) we have 

4a: One object: 

𝐹𝑛𝑒𝑡,𝑥 = 𝑚𝑎𝑥 

𝐹𝑛𝑒𝑡,𝑦 = 𝑚𝑎𝑦 

4b: Two connected objects (one set of equations for every object).  

𝐹𝑛𝑒𝑡1,𝑥 = 𝑚𝑎1𝑥                      𝐹𝑛𝑒𝑡2,𝑥 = 𝑚𝑎2𝑥 

𝐹𝑛𝑒𝑡1,𝑦 = 𝑚𝑎1𝑦                      𝐹𝑛𝑒𝑡2,𝑦 = 𝑚𝑎2𝑦 
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Attention: the objects share the same tension (if they are connected by a massless cable) and the same 

acceleration in proper directions, for example a magnitude of  an acceleration for the first object along 

𝑥 can be equal to acceleration for the second object along 𝑦, or 𝑎1,𝑥 = 𝑎2,𝑦. Also, remember Newton’s 

third law or action-reaction pairs for interacting objects and watch for directions of motion. 

4c: For uniform rotational motion (one object only) 

horizontal plane      or        vertical plane 

𝐹𝑛𝑒𝑡,𝑥 = ±
𝑚𝑣2

𝑟
                𝐹𝑛𝑒𝑡,𝑦 = ±

𝑚𝑣2

𝑟
 

Here are a couple cases representing many common problem.  

Case 5-1: an object on a surface pulling along by force of tension  

 

We have one object with four forces acting upon it, and we use the regular coordinate system, then 

𝐹𝑛𝑒𝑡,𝑥 = 𝑇 cos 𝜃 − 𝑓𝑘 = 𝑚𝑎        

𝐹𝑛𝑒𝑡,𝑦 = 𝑁 + 𝑇 sin 𝜃 − 𝑚𝑔 = 0 

with 𝑓𝑘 = 𝜇𝑘𝑁. Then we solve the system for unknowns (pure algebra). Note that, if the object is not 

moving then 𝑎 = 0, and instead of 𝑓𝑘 we use 𝑓𝑠. 

Case 5-2: an object on an incline moving downhill  

 

One object, three forces, a rotated coordinate system 

𝐹𝑛𝑒𝑡,𝑥 = 𝑚𝑔 sin 𝜃 − 𝑓𝑘 = 𝑚𝑎 

𝐹𝑛𝑒𝑡,𝑦 = 𝑁 − 𝑚𝑔 cos 𝜃 = 0    

with 𝑓𝑘 = 𝜇𝑘𝑁 
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Case 5-3: an object attached to two cables (one cable case is way too simple) 

There is one object + three forces (gravity and two tensions).  

The equations 

𝐹𝑛𝑒𝑡,𝑥 = 𝑇2 sin 𝜃2 − 𝑇1 sin 𝜃1 = 0              

𝐹𝑛𝑒𝑡,𝑦 = 𝑇1 cos 𝜃1 + 𝑇2 cos 𝜃2 − 𝑚𝑔 = 0 

Then we solve for unknowns (normally 𝑇1 and 𝑇2). Note that the angles can be 

counted either from vertical (like in the figure) or from horizontal. 

 

Case 5-4: two connected objects (and moving) 

Two objects, many forces (four on the first object and 

two on the second), regular coordinate system 

For the first object 

𝐹𝑛𝑒𝑡1,𝑥 = 𝑇 − 𝑓1 = 𝑚1𝑎 

𝐹𝑛𝑒𝑡1,𝑦 = 𝑁1 − 𝑚1𝑔 = 0 

For the second object 

𝐹𝑛𝑒𝑡2,𝑥 = 0                                 

𝐹𝑛𝑒𝑡2,𝑦 = 𝑇 − 𝑚2𝑔 = −𝑚2𝑎 

The definition for the frictional force provides one more 

equation 

𝑓1 = 𝜇1𝑁1 

Then we solve the system for unknowns.  

 If the first body was on incline like on the figure below, then we keep everything the same for the 

second object, but we need to do the 

following changes for the first one. First 

we choose a rotated coordinates for the 

first body. Then the equations are 

𝐹𝑛𝑒𝑡1,𝑥 = 𝑇 − 𝑓1 − 𝑚1𝑔 sin 𝜃 = 𝑚1𝑎     

𝐹𝑛𝑒𝑡1,𝑦 = 𝑁1 − 𝑚1𝑔 cos 𝜃 = 0   

with  𝑓1 = 𝜇1𝑁1 
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Case 5-5: A ball on a rope that is in circular uniform motion in a horizontal plane, with the rope 

making an angle to the horizontal. 

One object, two forces, uniform circular motion 

Equations 

−𝑇 cos 𝜃 = −
𝑚𝑣2

𝑟
        𝑎𝑙𝑜𝑛𝑔 𝑥 

𝑇 sin 𝜃 − 𝑚𝑔 = 0            𝑎𝑙𝑜𝑛𝑔 𝑦 
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5.4 Examples 

Example 5-1 

A passenger of mass 𝑚 stands on a platform scale in an elevator cab.  

c) Find a general solution for the scale reading, whatever the vertical motion of the cab 

d) What does the scale read is the cab is moving upward at a constant 1.5 m/s2 and 𝑚=80 kg. 

1. Physics – 1D (vertical motion), newton’s laws of motion 

2. Newton’s second law 

�⃗� = 𝑚�⃗� 

3. Scales measure weight by reading 𝑁 (weight is directed 

down but the normal force is up and perpendicular to the 

surface of the scale) 

The free-body diagram can be seen on the left 

Equation of motion (in 𝑦 −direction 𝐹𝑛𝑒𝑡,𝑦 = 𝑚𝑎𝑦) 

𝑁 − 𝑚𝑔 = ±𝑚𝑎 

for any choice of acceleration (𝑎 is positive for upward acceleration and negative for downward 

acceleration). 

4. The equation can be easily solved as   

𝑁 = 𝑚(𝑔 ± 𝑎) 

5. Calculations for upward motion  

𝑁 = 80 𝑘𝑔 ∙ (9.8 + 1.5) 𝑚 𝑠2⁄ = 904 𝑁 

Example 5-2 

A curious student dangles her cell phone from a thin piece of string while the jetliner she is in takes 

off. She notices that the string makes and angle of 250 with respect to the vertical while the aircraft 

accelerates for takeoff, which takes about 18 seconds. Estimate the takeoff speed of the aircraft 

SOLUTION: 

1. Physics – one dimensional motion with constant acceleration and Newton’s second law. 

2. For one 1D motion with constant acceleration 

𝑥 = 𝑥0 + 𝑣0𝑡 +
𝑎𝑡2

2
        𝑣 = 𝑣0 + 𝑎𝑡 

and Newton’s second law 

�⃗� = 𝑚�⃗� 
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3. If we knew the acceleration we could estimate the speed from using the kinematic equations. 

Free-body diagram for the cell phone 

The system of equations 

∑𝐹𝑥 = 𝑇 sin 𝜃 = 𝑚𝑎 

∑𝐹𝑦 = 𝑇 cos 𝜃 − 𝑚𝑔 = 0 

4. The linear system of equations has two unknowns 𝑇 and 𝑎. From the second equation 𝑇 =

𝑚𝑔/ cos 𝜃, then 

𝑎 =
𝑇 sin 𝜃

𝑚
=

𝑚𝑔 sin 𝜃

𝑚 cos 𝜃
= 𝑔 tan 𝜃 

Using the second kinematic equation we have 

𝑣 = 𝑎𝑡 = 𝑔 tan 𝜃 ∙ 𝑡 

5. Calculations 

𝑣 = 9.8 𝑚 𝑠2⁄ ∙ tan 250 ∙ 18 𝑠 = 82 𝑚 𝑠⁄  

6. We have right units for the speed.  

The takeoff speed of 82 m/s is about 295 km/h (or 183 mph). It sounds as a realistic speed for a 

medium size airplane.  

Example 5-3 

Suppose you try to move a crate pulling upward on the rope at 

an angle 300 above the horizontal. How hard do you have to 

pull to keep the crate moving with constant velocity? Is it 

easier or harder than puling horizontally? Assume: the crate is 

50 kg and the coefficient of kinetic friction is 0.4. 



5. Applying Newton’s Laws 

95 

 

SOLUTION: 

1. Physics – Newton’s laws 

2. Newton’s second law (in component form) for motion with constant velocity 

∑𝐹𝑥 = 0 

∑𝐹𝑦 = 0 

3. There is one object with four forces acting upon it: gravity, normal, tension, friction 

Let’s draw a free-body diagram for the crate 

 

The system of equations 

∑𝐹𝑥 = 𝑇 cos 𝜃 − 𝑓𝑘 = 0 

∑𝐹𝑦 = 𝑁 + 𝑇 sin 𝜃 − 𝑚𝑔 = 0 

the kinetic frictional force is defined as   

𝑓𝑘 = 𝜇𝑘𝑁 

4. The linear system with two equations has two unknowns 𝑇 and 𝑁. 

The system can easily be solved using substitution. From 2nd equation 

𝑁 = 𝑚𝑔 − 𝑇 sin 𝜃 

then 𝑓𝑘 = 𝜇𝑘(𝑚𝑔 − 𝑇 sin 𝜃) and from equation for the x-component 

𝑇 cos 𝜃 − 𝜇𝑘𝑚𝑔 + 𝜇𝑘𝑇 sin 𝜃 = 0 

𝑇(cos 𝜃 + 𝜇𝑘 sin 𝜃) = 𝜇𝑘𝑚𝑔 

𝑇 =
𝜇𝑘𝑚𝑔

cos 𝜃 + 𝜇𝑘 sin 𝜃
 

5. Calculations 

𝑇 =
0.4 ∙ 50𝑘𝑔 ∙ 9.8 𝑚 𝑠2⁄

cos 300 + 0.4 ∙ sin 300
= 184 𝑁 
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6. The units are correct (newton for the force).  

If the angle was 00 then the needed tension would be 196 N. Thus we need less force pulling at some 

angle. It is interesting to find what pulling angle would need less force. It happens when cos 𝜃 +

𝜇𝑘 sin 𝜃 takes the largest value  

𝑑

𝑑𝜃
(cos 𝜃 + 𝜇𝑘 sin 𝜃) = 𝜇𝑘 cos 𝜃 − sin 𝜃 = 0 

and tan 𝜃 = 𝜇𝑘. For 𝜇𝑘 = 0.4 the angle is about 220, and the smallest force is 182 N. 

Example 5-4 

A runaway truck with failed brakes is moving 108 km/h just before the driver steers the truck up the 

runaway ramp with an inclination of 300. Assume that the coefficient of friction between the ramp 

and the truck is 0.6. 

a) What minimum length L must the ramp have to stop along it?  

b) How long (in seconds) does it take for the truck to stop? 

c) Does the minimum length L increase, decrease, or remain the same for a small passenger car? 

SOLUTION 

1. Physics – 1D motions with constant acceleration along the ramp, Newton’s second law 

2. For one 1D motion with constant acceleration 

𝑥 = 𝑥0 + 𝑣0𝑡 +
𝑎𝑡2

2
        𝑣 = 𝑣0 + 𝑎𝑡 

and Newton’s second law 

�⃗� = 𝑚�⃗� 

3. First we need to find the deceleration of the truck on the ramp. Then we can solve the kinematic 

problem to find the stopping distance and time. 

The free-body diagram includes all three forces acting 

on the truck (gravity, normal, and friction). We choose 

the coordinate system as a rotated one with the x-

coordinate parallel to the ramp. 

The system of equations 

∑𝐹𝑥 = −𝑚𝑔 sin 𝜃 − 𝑓𝑘 = 𝑚𝑎 

∑𝐹𝑦 = 𝑁 − 𝑚𝑔 cos 𝜃 = 0 

The kinetic frictional force is defined as  

𝑓𝑘 = 𝜇𝑘𝑁 
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4. The linear system of equations has two unknowns (acceleration and normal force). Solving the 

system of equation for the acceleration gives (note: from simple geometry follows that the black 𝜃 is 

equal to the green 𝜃 angle) 

𝑁 = 𝑚𝑔 cos 𝜃 

−𝑚𝑔 sin 𝜃 − 𝜇𝑘𝑚𝑔 cos 𝜃 = 𝑚𝑎 

𝑎 = −𝑔(sin 𝜃 + 𝜇𝑘 cos 𝜃) 

Now we can work with the kinematic equations. Note that 𝑎 is the deceleration and the kinetic 

equations 

𝑥 = 𝑥0 + 𝑣0𝑡 +
𝑎𝑡2

2
        𝑣 = 𝑣0 − 𝑎𝑡 

Since the final velocity of the truck is zero at the end of the ramp, then we can easily find the stopping 

time and then the distance 

𝑡 = −
𝑣0

𝑎
,   𝑥 = −𝑣0

𝑣0

𝑎
+

𝑎

2

𝑣0
2

𝑎2
= −

𝑣0
2

2𝑎
     

𝑥 =
𝑣0

2

2𝑔(sin 𝜃 + 𝜇𝑘 cos 𝜃)
 

5. Calculations 

In SI units  

108 𝑘𝑚 ℎ⁄  = 108 
𝑘𝑚

ℎ
 (

1000 𝑚

1 𝑘𝑚
) (

1 ℎ

3600 𝑠
) = 30 𝑚/𝑠 

𝑎 = 9.8 𝑚 𝑠2⁄ ∙ (sin 300 + 0.6 ∙ cos 300) = 10 𝑚 𝑠2⁄  

𝑡 =
30 𝑚 𝑠⁄  

10 𝑚 𝑠2⁄
= 3 𝑠         𝑥 =

(30 𝑚 𝑠⁄ )2

2 ∙ 10 𝑚 𝑠2⁄
= 45 𝑚 

6. Proper units for the time and distance. Both the time and distance look realistic. 

What if the truck was going downhill? How does friction affect the stopping distance? In this case the 

direction of the frictional force is in the opposite and then  

∑𝐹𝑥 = 𝑚𝑔 sin 𝜃 − 𝑓𝑘 = 𝑚𝑎 

∑𝐹𝑦 = 𝑁 − 𝑚𝑔 cos 𝜃 = 0 

𝑚𝑔 sin 𝜃 − 𝜇𝑘𝑚𝑔 cos 𝜃 = 𝑚𝑎 

𝑎 = 𝑔(sin 𝜃 − 𝜇𝑘 cos 𝜃) 

finally 

𝑥 =
𝑣0

2

2𝑔(𝜇𝑘 cos 𝜃 − sin 𝜃)
 

The truck cannot stop if  𝜇𝑘 cos 𝜃 − sin 𝜃 ≤ 0. 
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Example 5-5  

A 12.0-kg box (𝑚1) is connected to an empty 2.00-kg bucket (𝑚2) by 

a cord running over a very light frictionless pulley. There is no 

appreciable friction on the box, since somebody spilled oil on the 

table. The box starts from rest.  

a) Find the acceleration of the box and the bucket.  

b) What is the tension in the cord? 

SOLUTION: 

1. Physics: Newton’s laws for two connected objects. 

2. Second Newton’s law for 2D case 

∑𝐹𝑥 = 𝑚𝑎𝑥 ,        ∑𝐹𝑦 = 𝑚𝑎𝑦 

3. We have two connected objects; therefore we have to write the second law for every object. 

Let’s start with free-body diagrams 

The system of equations for two objects 

𝑇 = 𝑚1𝑎                        𝑚1𝑎𝑙𝑜𝑛𝑔 𝑥 

𝑁1 − 𝑚1𝑔 = 0              𝑚1 𝑎𝑙𝑜𝑛𝑔 𝑦 

𝑇 − 𝑚2𝑔 = −𝑚2𝑎       𝑚2 𝑎𝑙𝑜𝑛𝑔 𝑦      

4. Note that according to Newton’s third law the tension in the 

cable in the same for both objects (if the cable does not have 

mass). The linear system of three equations has three 

unknowns. Solving by substitution gives 

𝑎 =
𝑚2

𝑚2 + 𝑚1
𝑔           𝑇 =

𝑚2𝑚1

𝑚2 + 𝑚1
𝑔 

5. Calculations 

𝑎 =
2 𝑘𝑔

2 𝑘𝑔 + 12 𝑘𝑔
9.8 𝑚 𝑠2⁄ = 1.4 𝑚 𝑠2⁄ ,           𝑇 = 12 𝑘𝑔 ∙  1.4 𝑚 𝑠2⁄ =  16.8 𝑁 

6. Looking back 

We have proper units for the acceleration and tension. The numbers do not tell much if we can trust 

the results, but we may consider an extreme case when 𝑚1 = 0, then 𝑎 = 9.8 𝑚 𝑠2⁄    𝑇 = 0 𝑁. 

Correct. If 𝑚2 = 0, then 𝑎 = 0 also correct.  
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Example 5-6  

Bank robbers have pushed a 1000 kg safe to a third-story floor-to-

ceiling window. They plan to break the window and lower the safe 

10.0 m to their truck. Not being too clever, they stack up 500 kg of 

furniture, tie a rope between the safe and the furniture, and place 

the rope over a pulley. Then they push the safe out of the window. 

The coefficient of kinetic friction between the furniture and the 

floor is 0.5. The rope would break if the force on it exceeds 5000 N. 

a) Does the rope break?  

b) What is the acceleration of the safe? 

c) What is the safe’s speed when it hits the truck? 

SOLUTION: 

1. Physics: Newton’s laws for two connected objects. This problem is practically identical to problem 

in example 5-5 but with friction. 

2. Second Newton’s law for 2D case for every object 

∑𝐹𝑥 = 𝑚𝑎𝑥 ,        ∑𝐹𝑦 = 𝑚𝑎𝑦 

and 1D motion with constant acceleration 

𝑣2 = 𝑣0
2 + 2𝑎(𝑦 − 𝑦0) 

3. We have two connected objects; therefore we have to write the second law for every object. Let’s 

start with free-body diagrams 

For the first object (the furniture) 

𝐹𝑛𝑒𝑡1,𝑥 = 𝑇 − 𝑓1 = 𝑚1𝑎 

𝐹𝑛𝑒𝑡1,𝑦 = 𝑁1 − 𝑚1𝑔 = 0 

For the second object (the safe) 

𝐹𝑛𝑒𝑡2,𝑥 = 0                                 

𝐹𝑛𝑒𝑡2,𝑦 = 𝑇 − 𝑚2𝑔 = −𝑚2𝑎 

The definition for the frictional force provides one more 

equation 

𝑓1 = 𝜇1𝑁1 

4. Note that according to Newton’s third law the tension 

in the cable in the same for both objects (if the cable does not have mass). From 𝐹𝑛𝑒𝑡1,𝑦 = 𝑁1 − 𝑚1𝑔 =

0 we have 𝑁1 = 𝑚1𝑔, then 𝑓1 = 𝜇1𝑁1 = 𝜇1𝑚1𝑔.  And we have a system of two equations with two 

unknowns 

𝑇 − 𝜇1𝑚1𝑔 = 𝑚1𝑎 
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𝑇 − 𝑚2𝑔 = −𝑚2𝑎 

Solving by substitution gives 

𝑎 =
𝑚2 − 𝜇1𝑚1

𝑚2 + 𝑚1
𝑔           𝑇 =

𝑚2𝑚1

𝑚2 + 𝑚1

(1 + 𝜇1)𝑔 

The speed can be found from  

𝑣2 = 𝑣0
2 + 2𝑎(𝑦 − 𝑦0) 

where we use 𝑎 from equation above if the rope does not break, or 𝑎 = 𝑔 = 9.8 𝑚/𝑠2 if the rope 

breaks. 

5. Calculations   

 𝑇 = 4900 𝑁,     𝑎 = 4.9 𝑚/𝑠2 

Thus, the rope does NOT break. The safe’s speed at the end is 

𝑣 = 9.9 𝑚/𝑠2 

6. Looking back 

We have proper units for the acceleration and tension. In the absence of friction (𝜇1 = 0) our 

equations for the acceleration and tensions are identical to equations from example 5-5. 
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Example 5-7 

Two masses 𝑚1 and 𝑚2  are connected by a light string that passes over a 

frictionless pulley, as in Figure.  

Determine  

a)  the tension in the string,  

b)  the acceleration of each object,  

c)  the force that the ceiling exerts on the hook 

SOLUTION: 

1. Physics: Newton’s laws for two connected objects. (Atwood machine) 

2. Second Newton’s law for 2D case for every object 

3. We have two connected objects; therefore we have to write the second 

law for every object. 

Let’s start with free-body diagrams.  

This is a system of equations for two objects. Note, for every object we have 

only one coordinate, namely 𝑦- component 

𝑇 − 𝑚1𝑔 = 𝑚1𝑎      

𝑇 − 𝑚2𝑔 = −𝑚2𝑎 

4. Note that according to Newton’s third law the tension in the cable in the same for both objects (if 

the cable does not have mass).  

Attention, we should be careful with signs for the acceleration in both equations. We do not know 

what mass is large, and in what direction the masses will move. Thus we assume that the first mass 

moves upward (positive acceleration), and the second mass moves downward (negative). Actually it 

is not important; a proper sign for acceleration 𝑎 will be derived automatically by solving the system 

above.  

From the first equation 𝑇 = 𝑚1𝑔 + 𝑚1𝑎, substituting it into the second equation gives 

 𝑚1𝑔 + 𝑚1𝑎 − 𝑚2𝑔 = −𝑚2𝑎, then (𝑚1 + 𝑚2)𝑎 = (𝑚2 − 𝑚1)𝑔 

𝑎 =
𝑚2 − 𝑚1

𝑚2 + 𝑚1
𝑔 

and the tension (after simple algebra) is 

 𝑇 =
2𝑚1𝑚2

𝑚1 + 𝑚2
𝑔 

The force on the hook can be found from the free-body diagram on the right.  

𝑇0 − 𝑇 − 𝑇 = 0,      𝑇0 = 2𝑇 =
4𝑚1𝑚2

𝑚1 + 𝑚2
𝑔 
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6. Looking back 

Let’s see what we get if 𝑚1 = 𝑚2 = 𝑚. In this case we get 𝑎 = 0, 𝑇 = 𝑚𝑔 and 𝑇0 = 2𝑚𝑔 as we would 

expect for this balanced case. 

For 𝑚2 ≫ 𝑚1 he have 𝑎 ≈ 𝑔,   (a freely falling body) and  𝑇 ≈ 2𝑚1𝑔. 

Example 5-8 

A 50-kg refrigerator is placed on the flat floor of a truck. The coefficients of friction between the 

refrigerator and floor are s=0.24 and k=0.21. The truck starts to move with an acceleration of 

2.5 m/s2.  If the refrigerator is 2.0 m from the rear of the truck when the truck starts, how much time 

elapses before the refrigerator falls off the truck? How far does the truck travel in this time? 

SOLUTION 

1. Physics – Newton’s laws, 1D motion with constant acceleration 

2. Equations 

∑𝐹𝑥 = 𝑚𝑎𝑥 ,       𝑓𝑠 = 𝜇𝑠𝑁,    𝑓𝑘 = 𝜇𝑘𝑁 

𝑥 = 𝑥0 + 𝑣0𝑡 +
𝑎𝑡2

2
 

𝑣 = 𝑣0 + 𝑎𝑡 

3. First we work with the forces acting on the refrigerator.  

Assume that the truck moves to the right. Then it is the frictional force that 

provides acceleration for the refrigerator! The most acceleration we can get is 

𝑎𝑠 = 𝑓𝑠/𝑚. Since 𝑁 = 𝑚𝑔, then 𝑎𝑠 = 𝜇𝑠𝑔. However, as soon as the truck starts 

moving with acceleration larger than 𝑎𝑠, the refrigerator starts sliding on the 

truck’s bed. Now we deal with kinetic friction, that is equal to 𝑎𝑘 = 𝜇𝑘𝑔.  Now, 

the truck moves with 𝑎 acceleration but the refrigerator has  𝑎𝑘 < 𝑎 

acceleration, or the truck moves faster than the refrigerator with acceleration 

𝑎𝑟𝑒𝑙 = 𝑎 − 𝑎𝑘 = 𝑎 − 𝜇𝑘𝑔 . Having this acceleration we can find how much time it will take for the 

refrigerator to move along the truck’s bed. From 1D motion with constant acceleration  

𝑥 = 𝑥0 + 𝑣0𝑡 +
𝑎𝑡2

2
,   𝑣0 = 0,           𝑥 − 𝑥0 = 𝑥𝑏𝑒𝑑 =

𝑎𝑟𝑒𝑙𝑡2

2
,    𝑡 = √2

𝑥𝑏𝑒𝑑

𝑎𝑟𝑒𝑙
= √2

𝑥𝑏𝑒𝑑

𝑎 − 𝜇𝑘𝑔  
 

During this time the truck will move 

𝑥𝑡𝑟𝑢𝑐𝑘 =
𝑎𝑡2

2
= 𝑎

1

2
2

𝑥𝑏𝑒𝑑

𝑎 − 𝜇𝑘𝑔  
=

𝑎

𝑎 − 𝜇𝑘𝑔 
𝑥𝑏𝑒𝑑  

5. Calculations 

𝑡 = 3.0 𝑠,     𝑥𝑡𝑟𝑢𝑐𝑘 = 11 𝑚 
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6. Looking back. 

The dimensions are correct and the numbers looks sensible.  

Note that this problem has very little work with equations, but careful thinking is needed. 

Example 5-9 

In a loop-the-loop stunt a stuntman is riding a bicycle. Assuming that 

the loop is the circle with radius R=2.7 m, what is the least speed the 

stuntman has to have at the top of the loop to remain in contact with 

it there. 

SOLUTION 

1. Physics – circular motion and Newton’s laws 

2. Equation of motion 

𝐹𝑛𝑒𝑡 = 𝑚𝑎 =
𝑚𝑣2

𝑅
 

3. A free-body diagram with all forces 

Then 

−𝑁 − 𝑚𝑔 = 𝑚(−𝑎) 

4. This becomes 

−𝑁 − 𝑚𝑔 = 𝑚 (−
𝑣2

𝑅
) 

If the stuntman has the least speed to remain in contact, then he 

is on the verge of losing contact with the loop (falling away from 

the loop), which means 𝑁 = 0. Thus 

−𝑚𝑔 = 𝑚 (−
𝑣2

𝑅
)     and    𝑣 = √𝑔𝑅 

Note that this speed requirement is independent of the mass of the stuntman and his bicycle.  

5. Calculations 

𝑣 = √𝑔𝑅 = √9.8 𝑚 𝑠2⁄ ∙ 2.7 𝑚 = 5.1 𝑚 𝑠⁄  

6. Units - correct. We do not have experience with this stunt, but 5.1 m/s (or 11.4 mph) is a reasonable 

speed for a bike.   

Example 5-10 
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A stuntman drives a car at constant speed as he travels through the hill and valley. The cross sections 

of both the hill and valley parts can be approximated 

by a circle of radius 160 m. The mass of the car is 1000 

kg, and the mass of the driver is 80 kg. 

a) What is the greatest speed (in mph units) at 

which he can drive without the car leaving the road at the top of the hill (point A)? 

b) What is the magnitude of the force on the stuntman (in unit of his weight) at the bottom of the hill 

(point C)? (note that his speed at point C is the same as at point A). 

SOLUTION 

1. Physics – circular motion and Newton’s laws 

2. Equation of motion 

𝐹𝑛𝑒𝑡 = 𝑚𝑎 =
𝑚𝑣2

𝑅
 

3 and 4. A free-body diagram at points A and B is quite simple. 

At point A the direction of centripetal acceleration is down, then 

𝑁 − 𝑚𝑔 = −
𝑚𝑣2

𝑅
,          and     𝑁 = 𝑚𝑔 −

𝑚𝑣2

𝑅
 

Losing contact with the road means 𝑁 = 0, then the maximum speed at point A is 

𝑣𝑚𝑎𝑥 = √𝑔𝑅 

At point B the direction of the centripetal acceleration is up (toward the center of the circle) 

𝑁 − 𝑚𝑔 =
𝑚𝑣2

𝑅
,          and     𝑁 = 𝑚𝑔 +

𝑚𝑣2

𝑅
 

or in units of his weight it will be (keeping in mind that 𝑣 = 𝑣𝑚𝑎𝑥) 

and     𝑁𝑤 =
𝑁

𝑚𝑔
= 1 +

𝑣2

𝑔𝑅
= 1 +

𝑔𝑅

𝑔𝑅
= 1 + 1 = 2 

5. Calculations 

𝑣𝑚𝑎𝑥 = √𝑔𝑅 = √9.8 𝑚 𝑠2⁄ ∙ 160 𝑚 = 39.6 𝑚 𝑠⁄ = 89 𝑚𝑝ℎ 

𝑁𝑤 = 2 

6. Units - correct. The numbers look reasonable. 

 

Example 5-11* 
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A 1000-kg car rounds a curve on a road of radius 50 meters. The coefficient of friction between the 

pavement and the car is 𝜇𝑠 = 0.60. What is the maximum possible speed to make the turn without 

skidding? 

a) On a flat road with the coefficient of static friction 𝜇𝑠 = 0.60 

b) On a banked icy road with  𝛽 = 100    and   𝜇𝑠 = 0.0 

c) On a banked road with 𝛽 = 100    and   𝜇𝑠 = 0.60 

SOLUTION: 

1. Physics – Uniform circular motion with the following forces: gravity, normal, friction 

2. The principal equations are  

𝐹𝑛𝑒𝑡,𝑥 = 𝑚𝑣2 𝑟⁄               𝑓𝑠 = 𝜇𝑠𝑛 

however, the net forces are different for various cases. It is clear that the last case (case c) is the most 

general, and a) and b) solutions are just special cases 

3. For better understanding let’s solve a) then b) and then c) 

4a) a flat road 

 

𝐹𝑛𝑒𝑡,𝑥 = 𝑓𝑠 = 𝑚
𝑣2

𝑅
 

𝐹𝑛𝑒𝑡,𝑦 = 𝑛 − 𝑚𝑔 = 0 

from the second equation 

𝑛 = 𝑚𝑔 

then 𝑓𝑠 = 𝜇𝑠𝑛 = 𝜇𝑠𝑚𝑔   and 

𝜇𝑠𝑚𝑔 = 𝑚
𝑣2

𝑅
 

𝑎)   𝑣𝑚𝑎𝑥 = √𝜇𝑠𝑔𝑅 

4b) a banked icy road 

 

𝐹𝑛𝑒𝑡,𝑥 = 𝑛 sin 𝛽 = 𝑚
𝑣2

𝑅
 

𝐹𝑛𝑒𝑡,𝑦 = 𝑛 cos 𝛽 − 𝑚𝑔 = 0 

from the second equation 𝑛 =
𝑚𝑔

cos 𝛽
 and 

𝑚𝑔

cos 𝛽
sin 𝛽 = 𝑚

𝑣2

𝑅
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𝑏)   𝑣𝑚𝑎𝑥 = √𝑔𝑅 tan 𝛽 

4c) a banked road 

Note that we use immediately that 𝑓𝑠 = 𝜇𝑠𝑛 

for x-component 

𝐹𝑛𝑒𝑡,𝑥 = 𝑛 sin 𝛽 + 𝜇𝑠𝑛 cos 𝛽 = 𝑚
𝑣2

𝑅
 

for y-component 

𝐹𝑛𝑒𝑡,𝑦 = 𝑛 cos 𝛽 − 𝜇𝑠𝑛 sin 𝛽 − 𝑚𝑔 = 0 

from the second equation 

𝑛 =
𝑚𝑔

cos 𝛽 − 𝜇𝑠 sin 𝛽
 

the first equation reads 

𝑛(sin 𝛽 + 𝜇𝑠 cos 𝛽) = 𝑚
𝑣2

𝑅
 

and now 

𝑚𝑔

cos 𝛽 − 𝜇𝑠 sin 𝛽
(sin 𝛽 + 𝜇𝑠 cos 𝛽) = 𝑚

𝑣2

𝑅
 

 

𝑐)    𝑣𝑚𝑎𝑥 = √𝑔𝑅
(sin 𝛽 + 𝜇𝑠 cos 𝛽)

(cos 𝛽 − 𝜇𝑠 sin 𝛽)
 

Let’s do a quick check if we can get answers a) and b) from the last equations 

If 𝛽 = 0 (flat road) then  

𝑣𝑚𝑎𝑥 = √𝑔𝑅
(sin 𝛽 + 𝜇𝑠 cos 𝛽)

(cos 𝛽 − 𝜇𝑠 sin 𝛽)
= √𝑔𝑅

𝜇𝑠 cos 𝛽

cos 𝛽
= √𝜇𝑠𝑔𝑅 

If 𝜇𝑠 = 0 (no friction) then 

𝑣𝑚𝑎𝑥 = √𝑔𝑅
(sin 𝛽 + 𝜇𝑠 cos 𝛽)

(cos 𝛽 − 𝜇𝑠 sin 𝛽)
= √𝑔𝑅

sin 𝛽

cos 𝛽
= √𝑔𝑅 tan 𝛽 

We do get special cases from our general solution c) 

 

5. Calculations 
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𝑎)   𝑣𝑚𝑎𝑥 = √𝜇𝑠𝑔𝑅 = 17 𝑚/𝑠 

𝑏)   𝑣𝑚𝑎𝑥 = √𝑔𝑅 tan 𝛽 = 9.3 𝑚/𝑠 

𝑐)    𝑣𝑚𝑎𝑥 = √𝑔𝑅
(sin 𝛽 + 𝜇𝑠 cos 𝛽)

(cos 𝛽 − 𝜇𝑠 sin 𝛽)
= 20 𝑚/𝑠 

6. How can we validate the numerical answers? Let’s compare the max speeds with our experiences. 

In mph units 𝑣𝑎 = 38 𝑚𝑝ℎ     𝑣𝑏 = 21 𝑚𝑝ℎ    𝑣𝑐 = 46 𝑚𝑝ℎ. These speeds look realistic. Besides we can 

see that a banked road (case c) provides a bit higher max speed comparing to a flat road (case a). 

It is interesting how these max speeds would change on an icy road with 𝜇𝑠 = 0.1. In this case we have 

𝑣𝑎 = 16 𝑚𝑝ℎ     𝑣𝑏 = 21 𝑚𝑝ℎ    𝑣𝑐 = 26 𝑚𝑝ℎ 
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6 Kinetic Energy, Work, Power 

6.1  Energy 

Newton’s laws of motion give us a tool to analyze and predict varieties of motion. However, the 

analysis is often complicated. We may need to solve numerically a set of differential equations based 

on Newton’s laws. Or finding a solution may require details that we do not know. 

There is another, very powerful, technique for analyzing motion based on conservation of energy. We 

often use this technique when we are not interested in some details but care about only initial and 

final states or configurations. On the other hand, energy comes in many different forms. Therefore, 

using conservation of energy can be a delicate issue, even for relatively simple systems. 

Even though we extensively use the word energy in everyday life, there is no precise definition for it. 

Richard Feynman (Nobel Prize in physics) wrote “In physics today, we have no knowledge of what 

energy is. We know how to calculate its value for a great variety of situations, but beyond that it’s just 

an abstract thing which has only one really important property – conservation”. 

6.2 Kinetic Energy 

Let’s start our consideration with kinetic energy, namely energy associated with the state of motion 

of an object. For an object of mass m travelling with speed v we define kinetic energy as  

𝐾 =
1

2
𝑚𝑣2     (𝑘𝑖𝑛𝑒𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦) 

Energy is a scalar quantity (a number) that is associated with a state (or condition) of one or more 

objects. 
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The SI unit of kinetic energy as well as any other type of energy is the joule (J) 

1 joule = 1 J = 1 kg m2 /s2. 

Let’s find out a change in kinetic energy for a particle travelling with constant acceleration along x-

coordinate 

𝐾𝑓 − 𝐾𝑖 =
1

2
𝑚𝑣𝑓

2 −
1

2
𝑚𝑣𝑖

2 =
1

2
𝑚(𝑣𝑓

2 − 𝑣𝑖
2) 

Using 𝑣𝑓
2 = 𝑣𝑖

2 + 2𝑎(𝑥𝑓 − 𝑥𝑖) from chapter 2 we can rewrite  

𝐾𝑓 − 𝐾𝑖 =
1

2
𝑚2𝑎(𝑥𝑓 − 𝑥𝑖) = 𝑚𝑎(𝑥𝑓 − 𝑥𝑖) = 𝐹(𝑥𝑓 − 𝑥𝑖) 

Thus we have a connection between the change in kinetic energy and a force causing this change.  

It is interesting to consider a more general case, namely a motion with a variable force in two or three 

dimensions. However, before doing that we need to step back and consider a scalar product of two 

vectors. 

6.3 Scalar (dot) product of vectors 

There are two kinds of product of a vectors but none of them is like a common algebraic 

multiplication. The first kind is called the scalar (or dot) product. It produces a result that is a scalar 

quantity. The second kind is called the vector (or cross) product. It yields a new vector. 

The scalar product of the vectors �⃗� and �⃗⃗� is written as �⃗� ∙ �⃗⃗� and defined to be 

�⃗� ∙ �⃗⃗� = 𝑎𝑏 cos 𝜃 (6.1) 

here 𝑎 is the magnitude of �⃗�, 𝑏 is the magnitude of �⃗⃗�, and 𝜃 is the angle between the directions of �⃗� 

and �⃗⃗�. There are actually two such angles: 𝜃 and 360 − 𝜃. Either can be used because their cosines are 

the same. 

The scalar product can be rewritten as  

�⃗� ∙ �⃗⃗� = 𝑎𝑏 cos 𝜃 = (𝑎 cos 𝜃)𝑏 = 𝑎(𝑏 cos 𝜃) 
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The commutative law applies to a scalar product, so we can write 

�⃗� ∙ �⃗⃗� = �⃗⃗� ∙ �⃗� 

The scalar product involving unit vectors 𝑥 and �̂� (here we use 𝑥 

and �̂� for unit vectors notations instead of 𝑖 ̂and 𝑗̂.) 

𝑥 ∙ 𝑥 = �̂� ∙ �̂� = (1)(1) cos 0 = 1 

𝑥 ∙ �̂� = �̂� ∙ 𝑥 = (1)(1) cos 90 = 0 

Then a scalar product of a unit vector 𝑥 and a vector �̂�  

𝑥 ∙ �⃗� = 𝑥 ∙ (𝑎𝑥�̂� + 𝑎𝑦�̂�) = 𝑎𝑥�̂� ∙ 𝑥 + 𝑎𝑦𝑥 ∙ �̂� = 𝑎𝑥  

gives a projection 𝑎𝑥 of �⃗� onto this unit vector 𝑥. 

Let’s calculate a scalar product of two vectors �⃗� and �⃗⃗� using vector components 

�⃗� ∙ �⃗⃗� = �⃗� ∙ (𝑏𝑥�̂� + 𝑏𝑦�̂�) = �⃗� ∙ 𝑥 𝑏𝑥 + �⃗� ∙ �̂� 𝑏𝑦 = 𝑎𝑥𝑏𝑥 + 𝑎𝑦𝑏𝑦 

Thus, we can write the scalar product in two forms 

�⃗� ∙ �⃗⃗� = 𝑎𝑏 cos 𝜃 

�⃗� ∙ �⃗⃗� = 𝑎𝑥𝑏𝑥 + 𝑎𝑦𝑏𝑦 
(6.2) 

Note that for �⃗� = �⃗⃗�  

�⃗� ∙ �⃗� = 𝑎𝑥𝑎𝑥 + 𝑎𝑦𝑎𝑦 = 𝑎𝑥
2 + 𝑎𝑦

2 = 𝑎2 (6.3) 

6.4 Kinetic energy and work 

Let us imagine the particle moving through space between two points �̂�𝑖 and �̂�𝑓 . The time derivative 

of kinetic energy can be easily evaluated if we use �⃗� ∙ �⃗� = 𝑣2 

𝑑𝐾

𝑑𝑡
=

𝑑

𝑑𝑡
(

1

2
𝑚𝑣2) =

1

2
𝑚

𝑑

𝑑𝑡
(𝑣2) =

1

2
𝑚

𝑑

𝑑𝑡
(�⃗� ∙ �⃗�) =

1

2
𝑚

𝑑�⃗�

𝑑𝑡
∙ �⃗� +

1

2
𝑚�⃗� ∙

𝑑�⃗�

𝑑𝑡
= 𝑚

𝑑�⃗�

𝑑𝑡
∙ �⃗� = �⃗� ∙ �⃗�

= �⃗� ∙
𝑑𝑟

𝑑𝑡
 

If we multiply both sides by 𝑑𝑡 we find 

𝑑𝐾 = �⃗� ∙ 𝑑𝑟 

Integrating both sides along a path connecting points �̂�𝑖 and �̂�𝑓gives the Kinetic Energy – Work 

theorem.  

∆𝐾 = 𝐾𝑓 − 𝐾𝑖 = ∫ �⃗� ∙ 𝑑𝑟
𝑓

𝑖

= 𝑊(𝑖 → 𝑓) (6.4) 
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where 𝑊(𝑖 → 𝑓) is the work2 done by force �⃗� moving from point 𝑖 to point 𝑓. 

In evaluating a path integral, like the integral above, it is usually possible to convert it into a regular 

integral over a single variable by choosing an appropriate coordinate system, or replace it on a sum 

of single variable integrals using vector components, namely  

�⃗� = 𝐹𝑥  𝑥 + 𝐹𝑦 �̂� 

𝑑𝑟 = 𝑑𝑥 𝑥 + 𝑑𝑦 �̂� 

then 

�⃗� ∙ 𝑑𝑟 = (𝐹𝑥  �̂� + 𝐹𝑦 �̂�) ∙ (𝑑𝑥 𝑥 + 𝑑𝑦 �̂�) = 𝐹𝑥𝑑𝑥 + 𝐹𝑦𝑑𝑦 

and finally 

𝑊(𝑖 → 𝑓) = ∫ �⃗� ∙ 𝑑𝑟
𝑓

𝑖

= ∫ 𝐹𝑥𝑑𝑥
𝑥𝑓

𝑥𝑖

+ ∫ 𝐹𝑦𝑑𝑦
𝑦𝑓

𝑦𝑖

. (6.5) 

If there are two (or more) forces, then 

�⃗� = �⃗�1 + �⃗�2 

𝑊(𝑖 → 𝑓) = ∫ �⃗� ∙ 𝑑𝑟
𝑓

𝑖

= ∫ �⃗�1 ∙ 𝑑𝑟
𝑓

𝑖

+ ∫ �⃗�2 ∙ 𝑑𝑟
𝑓

𝑖

. 

In case of constant force acting along a linear path (let’s say along 𝑥) can be easily written as  

𝑊(𝑖 → 𝑓) = ∫ �⃗� ∙ 𝑑𝑟
𝑓

𝑖

= ∫ 𝐹𝑥𝑑𝑥
𝑥𝑓

𝑥𝑖

= ∫ 𝐹 cos 𝜃 𝑑𝑥
𝑥𝑓

𝑥𝑖

= 𝐹 cos 𝜃 (𝑥𝑓 − 𝑥𝑖) = 𝐹𝑑 cos 𝜃 = �⃗� ∙ 𝑑 

or 

𝑊(𝑖 → 𝑓) = �⃗� ∙ 𝑑 = 𝐹𝑑 cos 𝜃 (6.6) 

In many textbooks this is the most common definition for work done by a constant force along a line. 

Using the vector component form the same result can be written as 

𝑊(𝑖 → 𝑓) = 𝐹𝑥(𝑥𝑓 − 𝑥𝑖) + 𝐹𝑦(𝑦𝑓 − 𝑦𝑖) (6.7) 

For work we use the same unit joule (J) as for energy: 1 joule = 1 J = 1 kg·m2/s2 = 1 N·m.  

                                                             

2 “The word "work" in physics has a meaning so different from that of the word as it is used in ordinary 
circumstances that it must be observed carefully that there are some peculiar circumstances in which it appears 
not to be the same. For example, according to the physical definition of work, if one holds a hundred-pound 
weight off the ground for a while, he is doing no work. Nevertheless, everyone knows that he begins to sweat, 
shake, and breathe harder, as if he were running up a flight of stairs. Yet running upstairs is considered as doing 
work (in running downstairs, one gets work out of the world, according to physics), but in simply holding an 
object in a fixed position, no work is done. Clearly, the physical definition of work differs from the physiological” 
R. Feynman 
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6.5 Power 

A given amount of work 𝑊 may be done either in a short time or a long time. If an external force is 

applied to an object, and if the work done by this force in the time interval Δ𝑡 is W, then the average 

power is defined as 

𝑃𝑎𝑣𝑔 =
𝑊

Δ𝑡
 (6.8) 

The instantaneous power is defined as the limiting value of the average power as Δ𝑡 approaches zero 

𝑃 =
𝑑𝑊

𝑑𝑡
 (6.9) 

Another definition can be derived from 𝑑𝑊 = 𝐹 cos 𝜃 𝑑𝑥, namely 

𝑃 =
𝑑𝑊

𝑑𝑡
=

𝐹 cos 𝜃 𝑑𝑥

𝑑𝑡
= 𝐹 cos 𝜃

𝑑𝑥

𝑑𝑡
= 𝐹𝑣 cos 𝜃 = �⃗� ∙ �⃗� 

or instantaneous power 

𝑃 = �⃗� ∙ �⃗� (6.10) 

Note that we got this result by differentiating kinetic energy as 

𝑑𝐾

𝑑𝑡
= �⃗� ∙ �⃗� = �⃗� ∙

𝑑𝑟

𝑑𝑡
. 

SI unit for power is 1 watt = 1 W = 1 J/s. Other popular unit is 1 horsepower = 1 hp = 746 W. 

Note that energy (and work) can be measured in watt per second, or most commonly  

1 kilowatt-hour = 1 kW * h = 3.60*106 J = 3.60 MJ. 
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6.6 Examples 

Note that calculations for work done by various forces are quite straightforward in university physics 

courses. As a rule all forces (but spring one) are constant forces in introductory physics classes. 

Therefore the primary equation is 

𝑊(𝑖 → 𝑓) = �⃗� ∙ 𝑑 = 𝐹𝑑 cos 𝜃 

The result can be positive or negative depending on the angle 𝜃. Choosing a proper coordinate system 

makes a difference. One may find it is easier to use the component form 

𝑊(𝑖 → 𝑓) = 𝐹𝑥(𝑥𝑓 − 𝑥𝑖) + 𝐹𝑦(𝑦𝑓 − 𝑦𝑖) 

Note that components 𝐹𝑥 and 𝐹𝑦 can be positive of negative. 

While integrating using components 

𝑊(𝑖 → 𝑓) = ∫ �⃗� ∙ 𝑑𝑟
𝑓

𝑖

= ∫ 𝐹𝑥𝑑𝑥
𝑥𝑓

𝑥𝑖

+ ∫ 𝐹𝑦𝑑𝑦
𝑦𝑓

𝑦𝑖

 

can be fun to do, it is unnecessary unless dealing with variable forces like the spring force 𝐹 = −𝑘𝑥 

(Hooke’s law). For the spring force  

𝑊(𝑖 → 𝑓) = ∫ �⃗� ∙ 𝑑𝑟
𝑓

𝑖

= ∫ (−𝑘𝑥)𝑑𝑥
𝑥𝑓

𝑥𝑖

= −
1

2
𝑘(𝑥𝑓

2 − 𝑥𝑖
2) 

where the origin is always placed at 𝑥 = 0 (where the spring is in its relaxed state). 

In case of a couple forces acting on an object one may use 

𝑊(𝑖 → 𝑓) = ∑ 𝑊𝑗(𝑖 → 𝑓)
𝑛

𝑗=1
. 

Example 6-1 

A tennis player hits a 58.0-g tennis ball so that it goes straight up and reaches a maximum height of  

8.0 m. How much work does the gravity do on the ball on the way up? On the way down? 

SOLUTION: 

1. Physics – work and forces 

2. The basic equations that we may use 

𝑊(𝑖 → 𝑓) = �⃗� ∙ 𝑑 = 𝐹𝑑 cos 𝜃    or     𝑊(𝑖 → 𝑓) = 𝐹𝑥(𝑥𝑓 − 𝑥𝑖) + 𝐹𝑦(𝑦𝑓 − 𝑦𝑖) 

We are free to choose what form to use. I prefer the component form but since the form 𝑊(𝑖 → 𝑓) =

�⃗� ∙ 𝑑 = 𝐹𝑑 cos 𝜃 is a standard one in many textbook I’ll keep using the both forms and you decide for 

yourself which one do you like more. 
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3. Having a diagram helps to see the directions and coordinates.  

From the diagram it is clear that the force of gravity has only one component, 

namely 𝐹𝑦 = −𝑚𝑔 

4. Then on the way up 

𝑊(𝑖 → 𝑓) = �⃗� ∙ 𝑑 = 𝐹𝑑 cos 𝜃 = 𝑚𝑔ℎ cos 1800 = −𝑚𝑔ℎ 

If we use the component form,  

𝑊(𝑖 → 𝑓) = 𝐹𝑥(𝑥𝑓 − 𝑥𝑖) + 𝐹𝑦(𝑦𝑓 − 𝑦𝑖) = 0 − 𝑚𝑔(𝑦𝑓 − 𝑦𝑖) = −𝑚𝑔ℎ 

 

The way down is very straightforward.  

𝑊(𝑖 → 𝑓) = �⃗� ∙ 𝑑 = 𝐹𝑑 cos 𝜃 = 𝑚𝑔ℎ cos 00 = 𝑚𝑔ℎ 

𝑊(𝑖 → 𝑓) = 𝐹𝑥(𝑥𝑓 − 𝑥𝑖) + 𝐹𝑦(𝑦𝑓 − 𝑦𝑖) = 0 − 𝑚𝑔(𝑦𝑓 − 𝑦𝑖) = −𝑚𝑔(−ℎ) =

𝑚𝑔ℎ  

5. Calculations are very simple  

Wup = -0.058 kg * 9.8 m/s2 * 8.0 m = -4.5 J 

Wdown = -Wup = 4.5 J 

6. We do have proper dimension (joules). As for the number it does not related well to our everyday 

experience. Usually we do not use joules in day-to-day life. 

Example 6-2 

A 5.00-kg package slides 1.5 m down a long ramp that is inclined at 120 below horizontal. The 

coefficient of kinetic friction between the package and the ramp is 𝜇𝑘 = 0.31. Calculate  

a) the work done on the package by friction 

b) the work done on the package by the gravity 

c) the work done by the normal force 

d) the total work done on the package 

e) If the package had has a speed of 2.20 m/s at the top of the ramp, what is its speed after sliding 

1.5 m down the ramp? 

SOLUTION: 

1. Physics – work and forces, kinetic energy-work theorem 

2. The basic equations that we may use 

𝑊(𝑖 → 𝑓) = �⃗� ∙ 𝑑 = 𝐹𝑑 cos 𝜃    or     𝑊(𝑖 → 𝑓) = 𝐹𝑥(𝑥𝑓 − 𝑥𝑖) + 𝐹𝑦(𝑦𝑓 − 𝑦𝑖) 
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∆𝐾 = 𝐾𝑓 − 𝐾𝑖 = ∫ �⃗� ∙ 𝑑𝑟
𝑓

𝑖

= 𝑊(𝑖 → 𝑓) 

3. Having a proper diagram would help to avoid confusion 

with directions and angles. 

Let’s choose the coordinate system such as the incline 

surface is along x-coordinate. It makes easier to evaluate 

the work along the surface. 

For every force we have following components 

 

Friction: 𝑓𝑥 = −𝜇𝑁𝑦    𝑓𝑦 = 0 

Gravity: 𝐹𝑔𝑥 = 𝑚𝑔 sin 𝜃     𝐹𝑔𝑦 = −𝑚𝑔 cos 𝜃 

Normal: 𝑁𝑥 = 0    𝑁𝑦 = −𝐹𝑔𝑦 = 𝑚𝑔 cos 𝜃 

(Note that you may consider using Newton’s second law to find a connection between the forces if 

you are not sure in the above force components). 

4. Let’s use the component form for the work 

𝑊(𝑖 → 𝑓) = 𝐹𝑥(𝑥𝑓 − 𝑥𝑖) + 𝐹𝑦(𝑦𝑓 − 𝑦𝑖)  

with a notation 𝑑 = 𝑥𝑓 − 𝑥𝑖 and also note that 𝑦𝑓 − 𝑦𝑖 = 0 in our coordinate system.  

The work done by friction 𝑊𝑓 = 𝐹𝑥(𝑥𝑓 − 𝑥𝑖) + 𝐹𝑦(𝑦𝑓 − 𝑦𝑖) = −𝜇𝑚𝑔 cos 𝜃 𝑑 + 0 ∙ 0 = −𝜇𝑚𝑔𝑑 cos 𝜃  

The work done by gravity 𝑊𝑔 = 𝐹𝑥(𝑥𝑓 − 𝑥𝑖) + 𝐹𝑦(𝑦𝑓 − 𝑦𝑖) = 𝑚𝑔 sin 𝜃 𝑑 − 𝑚𝑔 cos 𝜃 ∙ 0 = 𝑚𝑔𝑑 sin 𝜃 

The work done by normal force 𝑊𝑁 = 𝐹𝑥(𝑥𝑓 − 𝑥𝑖) + 𝐹𝑦(𝑦𝑓 − 𝑦𝑖) = 0 ∙ 𝑑 + 𝑚𝑔 cos 𝜃 ∙ 0 = 0 

The total work done by all forces is 𝑊 = 𝑊𝑓 + 𝑊𝑔 + 𝑊𝑁 

The speed at the end of the ramp 

1

2
𝑚𝑣𝑓

2 −
1

2
𝑚𝑣𝑖

2 = 𝑊   or  𝑣𝑓 = √𝑣𝑖
2 + 2𝑊/𝑚 

5. Calculations 

𝑊𝑓 = −0.31 ∙ 5 𝑘𝑔 ∙ 9.8 𝑚 𝑠2⁄ ∙ 1.5 𝑚 ∙ cos 120 = −22.3 𝐽 

𝑊𝑔 = 5 𝑘𝑔 ∙ 9.8 𝑚 𝑠2⁄ ∙ 1.5 𝑚 ∙ sin 120 = 15.3 𝐽 

𝑊𝑛 = 0 𝐽 

𝑊 = 𝑊𝑓 + 𝑊𝑔 + 𝑊𝑁 = −7.0 𝐽 

𝑣𝑓 = √(2.2 𝑚 𝑠⁄ )2 − 2 ∙ 7 𝐽 5 𝑘𝑔⁄  = 1.4 𝑚 𝑠⁄  
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6. We have correct dimensions for the work. Let’s check the last term for the speed (under the square 

root) [J]/[kg] = kg·m2/s2/kg = m2/s2 that is v2 (correct). 

We may also notice that the final speed is less that the initial speed. It corresponds to a case when the 

frictional force is larger than gravity along the ramp thus doing more work. 

Example 6-3 

A 6.0 kg cat sleeps on a mat. A dog pulls the mat across the floor using a rope that makes 200 above 

the floor. The tension is a constant 20.0 N and the coefficient of friction is 0.20. Find cat’s speed after 

being pulled 2.0 m. 

SOLUTION: 

1. Physics –kinetic energy-work theorem 

2. The basic equations that we may use 

𝑊(𝑖 → 𝑓) = 𝐹𝑥(𝑥𝑓 − 𝑥𝑖) + 𝐹𝑦(𝑦𝑓 − 𝑦𝑖) 

𝐾𝑓 − 𝐾𝑖 =
𝑚𝑣𝑓

2

2
−

𝑚𝑣𝑖
2

2
= 𝑊(𝑖 → 𝑓) 

3. The free-body diagram on the right has all the forces 

in place. For every force we have following components 

Tension: 𝑇𝑥 = 𝑇 cos 𝜃 ,   𝑇𝑦 = 𝑇 sin 𝜃 

Gravity: 𝐹𝑔𝑥 = −𝑚𝑔,   𝐹𝑔𝑦 = 0 

Normal force: 𝑁𝑥 = 0,   𝑁𝑦 

Friction: 𝑓𝜇𝑥 = −𝜇𝑁𝑦,   𝑓𝜇𝑦 = 0    

4. We work only with the 𝑥 −components because there is no displacement in the 𝑦 − direction. 

First we need to find the normal force from second newton’s law for  

First we need to find the normal force from second newton’s law for 𝑦 −components 

𝑁𝑦 + 𝑇 sin 𝜃 − 𝑚𝑔 = 0,   𝑁𝑦 = 𝑚𝑔 − 𝑇 sin 𝜃 ,   𝑓𝜇𝑥 = −𝜇(𝑚𝑔 − 𝑇 sin 𝜃) 

now 

𝑚𝑣𝑓
2

2
= (𝑇 cos 𝜃 − 𝜇(𝑚𝑔 − 𝑇 sin 𝜃))𝑥𝑓 ,        𝑣𝑓

2 =
2

𝑚
(𝑇 cos 𝜃 − 𝜇(𝑚𝑔 − 𝑇 sin 𝜃))𝑥𝑓 

5. Calculations 

𝑣𝑓 = 2.4 𝑚/𝑠 

6. The answer seems convincing.  
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Example 6-4 

Your job is to lift 30-kg crates a vertical distance of 0.90 m from the ground onto the bed of a truck.  

How many crates you have to load onto the truck in 1 minute for the average power output you use 

to lift the crates to equal 1.0 hp? (Working like a horse!) 

SOLUTION: 

1. Physics – power, work and forces 

2. Basic equations: we need average power (because we speak about relatively large time intervals) 

as well work done by you against gravity 

𝑃𝑎𝑣𝑔 =
𝑊

Δ𝑡
   (average power)          𝑊𝑦𝑜𝑢 = −(−𝑚𝑔ℎ) = 𝑚𝑔ℎ 

3. Having the power and time we may calculate how much work can be done with this power. Dividing 

this work by the work to lift one box we can find how many boxes we should lift in one minute. 

4. Total work with given power 𝑊 = 𝑃𝑎𝑣𝑔Δ𝑡, and the work to lift one box 𝑊𝑏𝑜𝑥 = 𝑚𝑔ℎ 

𝑁𝑏𝑜𝑥𝑒𝑠 =
𝑊

𝑊𝑏𝑜𝑥
 

5. Calculations 

First we evaluate power in watt 

1.0 ℎ𝑝 = 1.0 ℎ𝑝
746 𝑊

1 ℎ𝑝
= 746 𝑊  

𝑁 =
746 𝑊 ∙  60 𝑠

30 𝑘𝑔 ∙ 9.8  𝑚 𝑠2⁄ ∙ 0.9 𝑚 
= 169 boxes 

6. Let’s check the dimensions. The numerator [W]*[s] = [J] = kg·m2/s2, the denominator is kg·m2/s2 

(OK) 

It is clear that we cannot load so many heavy boxes in one minute, thus we cannot work like a horse! 
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7 Conservation of Energy 

7.1 Potential energy and conservative forces 

In nature there are certain forces which have a very remarkable property which we call 

"conservative" (no political ideas involved). If we calculate how much work is done by a force in 

moving an object from one point to another along some curved path, in general the work depends 

upon the path; but, in special cases it does not. If it does not depend upon the path, we say that the 

force is a conservative force. 

Strictly speaking there are two conditions for a force to be conservative. A force �⃗� acting on a particle 

is conservative if and only if it satisfy two conditions: 

1. �⃗� depends only on the particle’s position 𝑟 (and not on the velocity �⃗�, or the time 𝑡, or any 

other variable) that is �⃗� = �⃗�(𝑟).  

2. For any two points 𝑟1 and 𝑟2, the integral 

∫ �⃗� ∙ 𝑑𝑟
𝑟2

𝑟1

 

is the same for all paths between points 1 and 2, or work 𝑊(1 → 2) done by �⃗� is 

independent of paths between points 1 and 2. 

The reason for the name conservative and for the importance of the concept is this: if all forces acting 

on an object are conservative, we can define a quantity called the potential energy, denoted 𝑈(𝑟), a 

function of only position, with the property that the total mechanical energy  

𝐸 = 𝐾 + 𝑈(𝑟) (7.1) 
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is conserved. 

To define the potential energy 𝑈(𝑟) corresponding to a given conservative force, we first choose a 

reference point 𝑟0 at which 𝑈  is defined to be zero (e.g. in the case of gravity near the earth's surface, 

we often define 𝑈 to be zero at ground level.) We then define 𝑈(𝑟), the potential energy at an arbitrary 

point 𝑟, to be 

𝑈(𝑟) = − ∫ 𝐹(𝑟′)𝑑𝑟′
𝑟

𝑟0

= −𝑊(𝑟0 → 𝑟) (7.2) 

In words, 𝑈(𝑟) is minus the work done by �⃗� if the particle moves from 

the reference point 𝑟0 to the point of interest 𝑟. Notice that the definition 

above only makes sense because of the property (2) of conservative 

forces. If the integral were different for different paths, it would not 

define a unique function 𝑈(𝑟). 

We can now derive a crucial expression for the work done by �⃗� in terms 

of the potential energy 𝑈(𝑟). Let 𝑟1 and 𝑟2 be any two points as in Figure 

on the right. If 𝑟0 is the reference point at which 𝑈 is zero, then it is clear 

from that 

𝑊(𝑟0 → 𝑟2) = 𝑊(𝑟0 → 𝑟1) + 𝑊(𝑟1 → 𝑟2) 

and hence 

𝑊(𝑟1 → 𝑟2) = 𝑊(𝑟0 → 𝑟2) − 𝑊(𝑟0 → 𝑟1) 

Each of the two terms on the right is (minus) the potential energy at the corresponding point. Thus 

we have proved that the work on the left is just the difference of these two potential energies: 

𝑊(𝑟1 → 𝑟2) = −[𝑈(𝑟2) − 𝑈(𝑟1)] = −Δ𝑈 

The usefulness of this result emerges when we combine it with the Kinetic Energy – Work theorem 

∆𝐾 = 𝐾2 − 𝐾1 = ∫ �⃗� ∙ 𝑑𝑟
2

1

= 𝑊(1 → 2) 

Namely we can now write 

Δ𝐾 = −Δ𝑈 (7.3) 

or, moving the right side across to the left 

Δ(𝐾 + 𝑈) = 0 

That is, the mechanical energy 

𝐸 = 𝐾 + 𝑈 (7.4) 

does not change as the particle moves from 𝑟1 to 𝑟2. Since the points 𝑟1 and 𝑟2 were any two points on 

the particle's trajectory, we have the important conclusion: If the force on a particle is conservative, 
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then the particle's mechanical energy never changes; that is, the particle's energy is conserved, which 

explains the use of the adjective "conservative." 

So far we have established the conservation of energy for a particle subject to a single conservative 

force. If the particle is subject to several forces, all of them conservative, our result generalizes easily. 

 

 

 

 

 

 

 

7.1.1 Force as a gradient of potential energy 

We have seen that the potential energy 𝑈 (𝑟) corresponding to a force �⃗� can be expressed as an 

integral of �⃗�. This suggests that we should be able to write �⃗� as some kind of derivative of 𝑈 (𝑟). Using 

some mathematics we can show that 

�⃗� = −∇⃗⃗⃗𝑈 = −𝑥
𝜕𝑈

𝜕𝑥
− �̂�

𝜕𝑈

𝜕𝑦
− �̂�

𝜕𝑈

𝜕𝑧
 (7.6) 

This expression gives formal definition of potential energy 𝑈.  In one-dimensional case, this 

connection between force and potential energy is particularly simple: 

𝐹𝑥 = −
𝑑𝑈

𝑑𝑥
 (7.7) 

Let’s note that 𝑈 is always arbitrary to within an additive constant, because taking a derivative of a 

constant function gives zero: 

∇⃗⃗⃗(𝑈 + 𝑐) = ∇⃗⃗⃗𝑈 + ∇⃗⃗⃗𝑐 = ∇⃗⃗⃗𝑈 

Therefore, the force �⃗� (which is an “explicitly observable” quantity) does not change if we add a 

constant to the “auxiliary” quantity 𝑈. In other words, the potential energy 𝑈 gives rise to the same 

force as the potential energy 𝑈 + 𝑐. Since it is the force (rather than the potential energy) that is 

physically observable, we say that these two potential energies are equivalent.  

It is not the absolute value of potential energy that is important. Rather, it is the change in potential 

energy over distance (the gradient) that creates force and is, therefore, important. 

A consequence of this observation is that, for a given problem, the “zero” of potential can be chosen 

arbitrarily as a matter of convenience. 

 

Principle of Conservation of Energy for One Particle 

If all of the 𝑛 forces �⃗�𝑖 (𝑖 =  1, . . . , 𝑛) acting on a particle are conservative, each 

with its corresponding potential energy 𝑈𝑖(𝑟), the total mechanical energy, 

defined as 

𝐸 = 𝐾 + 𝑈1(𝑟) + 𝑈2(𝑟) + ⋯ + 𝑈𝑛(𝑟) (7.5) 

is constant in time. 
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7.2 Gravitational and elastic potential energies 

In University Physics I we usually deal with two conservative forces, namely gravity and elastic 

(spring) force. In University Physics II we add the Coulomb force on electric charge. 

7.2.1 Gravitational potential energy 

If we are not going to heights comparable with the radius of the earth, then the force of gravity is a 

constant vertical force 𝐹𝑦 = −𝑚𝑔. Then  

𝐹𝑦 = −𝑚𝑔 = −
𝑑𝑈𝑔

𝑑𝑦
 

𝑑𝑈𝑔 = 𝑚𝑔𝑑𝑦,     then  ∫ 𝑑𝑈𝑔 = ∫ 𝑚𝑔𝑑𝑦
𝑦

0

      and finally 

𝑈𝑔(𝑦) = 𝑚𝑔𝑦 (7.8) 

Let’s consider a change in gravitational potential energy between two points using the definition of 

the work based on the integral from a force3. Since there is only one y-component 

Δ𝑈𝑔 = 𝑈𝑔𝑓 − 𝑈𝑔𝑖 = − ∫ 𝐹𝑦𝑑𝑦
𝑦𝑓

𝑦𝑖

= ∫ 𝑚𝑔𝑑𝑦
𝑦𝑓

𝑦𝑖

= 𝑚𝑔(𝑦𝑓 − 𝑦𝑖) 

Δ𝑈𝑔 = 𝑚𝑔(𝑦𝑓 − 𝑦𝑖) (7.9) 

As we noted above, only changes in potential energy are physically meaningful. However to simplify 

calculations we may select a reference point 𝑦𝑖  where 𝑈𝑖 = 0, then 𝑈(𝑦) = 𝑚𝑔𝑦.  

Good to remember: The gravitational potential energy associated with a particle-Earth system 

depends ONLY on the vertical position 𝑦 (or height) of the particle relative to the reference position 

(𝑦 = 0), not on the horizontal position. And again, only differences in potential energy count. 

7.2.2 Elastic (spring) potential energy 

For the elastic restoring force of a spring 𝐹 = −𝑘𝑥 is a good approximation for many springs (Hooke’s 

law) where 𝑘 is a spring constant (a SI unit for 𝑘 is N/m). 

𝐹𝑥 = −𝑘𝑥  ⇒   −
𝑑𝑈𝑠

𝑑𝑥
= −𝑘𝑥 

𝑑𝑈𝑠 = 𝑘𝑥𝑑𝑥     ⇒      ∫ 𝑑𝑈𝑠 = ∫ 𝑘𝑥𝑑𝑥
𝑥

0

   

then 

                                                             

3 from chapter 6:  𝑊(𝑖 → 𝑓) = ∫ �⃗� ∙ 𝑑𝑟
𝑓

𝑖
= ∫ 𝐹𝑥𝑑𝑥

𝑥𝑓

𝑥𝑖
+ ∫ 𝐹𝑦𝑑𝑦

𝑦𝑓

𝑦𝑖
. Since work and the potential energy 

are connected  𝑊(𝑖 → 𝑓) = −[𝑈(𝑟𝑓) − 𝑈(𝑟𝑖)] = −Δ𝑈, then Δ𝑈 = − ∫ 𝐹𝑥𝑑𝑥
𝑥𝑓

𝑥𝑖
− ∫ 𝐹𝑦𝑑𝑦

𝑦𝑓

𝑦𝑖
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𝑈𝑠 =
1

2
𝑘𝑥2 (7.10) 

The zero of potential energy is at the point 𝑥 =  0, the equilibrium position of the spring. Again we 

could add any constant we wish to 𝑈𝑠 but not to 𝑥.  

Now we do the same using Δ𝑈 = − ∫ 𝐹𝑥𝑑𝑥
𝑥𝑓

𝑥𝑖
− ∫ 𝐹𝑦𝑑𝑦

𝑦𝑓

𝑦𝑖
 

Δ𝑈 = 𝑈𝑓 − 𝑈𝑖 = − ∫ 𝐹𝑥𝑑𝑥
𝑥𝑓

𝑥𝑖

= ∫ 𝑘𝑥𝑑𝑥
𝑥𝑓

𝑥𝑖

= 𝑘 ∫ 𝑥𝑑𝑥
𝑥𝑓

𝑥𝑖

=
1

2
𝑘𝑥𝑓

2 −
1

2
𝑘𝑥𝑖

2 

Δ𝑈𝑠 =
1

2
𝑘𝑥𝑓

2 −
1

2
𝑘𝑥𝑖

2 (7.11) 

Important: The reference point for the spring potential energy must be the equilibrium point. 

7.3 Non-conservative forces 

As a matter of fact, all the fundamental forces in nature appear to be conservative. This is not a 

consequence of Newton's laws. In fact, so far as Newton himself knew, the forces could be 

nonconservative, as friction apparently is. When we say friction apparently is, we are taking a modern 

view, in which it has been discovered that all the deep forces, the forces between the particles at the 

most fundamental level, are conservative.   

When we study matter in the finest detail at the atomic level, it is not always easy to separate the total 

energy of a thing into two parts, kinetic energy and potential energy, and such separation is not 

always necessary. In many situations, it is practical to replace vast amount of conservative forces 

between particles on a single nonconservative force. Then all these different forms of internal energy 

are sometimes considered as "lost". When friction is present it is not true that kinetic energy is lost, 

even though a sliding object stops and the kinetic energy seems to be lost.  The kinetic energy is not 

lost because, of course, the atoms inside are jiggling with a greater amount of kinetic energy than 

before, and although we cannot see that, we can measure it by determining the temperature. Of course 

if we disregard the heat energy, then the conservation of energy theorem will appear to be false. 

If some of the forces on our particle are nonconservative (like friction), then we cannot define 

corresponding potential energies; nor can we define a conserved mechanical energy.  

Nevertheless, we can define potential energies for all of the forces that are conservative, and then 

recast the Kinetic Energy – Work theorem in a form that shows how the nonconservative forces 

change the particle's mechanical energy. First, we divide the net force on the particle into two parts, 

the conservative part �⃗�𝑐𝑜𝑛𝑠 and the nonconservative part �⃗�𝑛𝑐. For conservative forces we can define a 

potential energy, which we'll call just 𝑈. By the Kinetic Energy – Work theorem, the change in kinetic 

energy between any two times is 

Δ𝐾 = 𝑊𝑐𝑜𝑛𝑠 + 𝑊𝑛𝑐 
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The first term on the right is just −Δ𝑈  and can be moved to the left side to give Δ(𝐾 + 𝑈) = 𝑊𝑛𝑐. If 

we define the mechanical energy as 𝐸 =  𝐾 +  𝑈, then we see that Δ𝐸 = Δ(𝐾 + 𝑈) = 𝑊𝑛𝑐 or 

𝐾𝑖 + 𝑈𝑖 = 𝐾𝑓 + 𝑈𝑓 − 𝑊𝑛𝑐  (7.12) 

Mechanical energy is no longer conserved, but we have the next best thing. The mechanical energy 

changes to precisely the extent that the nonconservative forces do work on our particle. In many 

problems, the only nonconservative force is the force of sliding friction, which usually does negative 

work. (The frictional force 𝑓 is in the direction opposite to the motion, so the work done by a frictional 

force is negative.) In this case 𝑊𝑛𝑐 is negative and the object loses mechanical energy in the amount 

"stolen" by friction 𝑊𝑛𝑐 = 𝑊𝑓𝑟 = −𝑓𝜇 𝑑. 

Let’s consider as an example a block sliding down an incline, namely a block of mass 𝑚 accelerating 

from rest down incline that has a coefficient of friction 𝜇 and is at angle 𝜃 from horizontal. Let’s find 

its speed 𝑣 when it reaches the bottom of the slope, a distance 𝑑 from its starting point 𝑂. 

The setup and the forces on the block are 

shown in Figure. The three forces on the block 

are its weight, �⃗⃗⃗� = �⃗�𝑔  =  𝑚�⃗�, the normal force 

of the incline, �⃗⃗⃗�, and the frictional force 𝑓, 

whose magnitude to be 𝑓𝜇 = 𝜇𝑚𝑔 cos 𝜃. The 

force of gravity is conservative, and the 

corresponding potential energy is 𝑈 =

𝑚𝑔𝑦  where 𝑦 is the block's vertical height 

above the bottom of the slope (if we choose the 

zero of potential energy at the bottom). The 

normal force does no work, since it is perpendicular to the direction of motion, so will not contribute 

to the energy balance. The frictional force does work 𝑊𝑓𝑟 = −𝑓𝑑 = −𝜇𝑚𝑔𝑑 cos 𝜃. The change in 

kinetic energy is 

𝐾𝑓 − 𝐾𝑖 =
1

2
𝑚𝑣2 

and the change in potential energy is  

Δ𝑈 = 𝑈𝑓 − 𝑈𝑖 = −𝑚𝑔ℎ = −𝑚𝑔𝑑 sin 𝜃 

Then  

Δ𝐸 = Δ(𝐾 + 𝑈) = 𝑊𝑛𝑐 

1

2
𝑚𝑣2 − 𝑚𝑔𝑑 sin 𝜃 = −𝜇𝑚𝑔𝑑 cos 𝜃 

Solving for 𝑣 we find 

𝑣 = √2𝑔𝑑(sin 𝜃 − 𝜇 cos 𝜃) 
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As usual, you should check that this answer agrees with common sense. For example, does it give the 

expected answer when 𝜃 = 900? What about 𝜃 = 00? 

7.4 Potential energy diagrams 

A useful feature of one-dimensional systems is that with only one independent variable (𝑥) we can 

plot the potential energy 𝑈(𝑥), and, as we shall see, this makes it easy to visualize the behavior of the 

system. 

If we plot the potential energy against 𝑥 as in Figure, we can easily see qualitatively how the object 

has to behave. The direction of the net force is 

given by  

𝐹𝑥 = −
𝑑𝑈

𝑑𝑥
 

as "downhill" on the graph of 𝑈(𝑥) - to the left 

at 𝑥1 and to the right at 𝑥2 It follows that the 

object always accelerates in the "downhill" 

direction - a property that reminds one of the 

motion of a roller coaster, which also always accelerates downhill. This analogy is not an accident: 

For a roller coaster, 𝑈(𝑥) is 𝑚𝑔ℎ (where ℎ is the height above ground) and the graph of 𝑈(𝑥) against 

𝑥 has the same shape as a graph of ℎ against 𝑥, which is just a picture of the track. For any one-

dimensional system, we can always think about the graph of 𝑈(𝑥) as a picture of a roller coaster, and 

common sense will generally tell us the kind of motion that is possible at different places 

At points, such as 𝑥3 and𝑥4, where 𝑑𝑈/𝑑𝑥 = 0 and 𝑈(𝑥) is minimum or maximum, the net force is 

zero, and the object can remain in equilibrium. That is, the condition 𝑑𝑈/𝑑𝑥 = 0 characterizes points 

of equilibrium. At 𝑥3, where 𝑑2𝑈 𝑑𝑥2⁄ > 0 and 𝑈(𝑥) is minimum, a small displacement from 

equilibrium causes a force which pushes the object back to equilibrium (back to the left on the right 

of 𝑥3, back to the right on the left of 𝑥3). In other words, equilibrium points where 𝑑2𝑈 𝑑𝑥2⁄ > 0 and 

𝑈(𝑥) is minimum are points of stable equilibrium. At equilibrium points like 𝑥4 where 𝑑2𝑈 𝑑𝑥2⁄ < 0 

and 𝑈(𝑥)is maximum, a small displacement leads to a force away from equilibrium, and the 

equilibrium is unstable. 

If the object is moving then its kinetic energy is positive and its total energy is necessarily greater 

than 𝑈(𝑥). For example, suppose the object is moving somewhere near the equilibrium point  =  𝑏. 

Its total energy has to be greater than 𝑈(𝑏) 

and could, for example, equal the value 

shown as 𝐸 in that figure. If the object 

happens to be on the right of b and moving 

toward the right, its potential energy will 

increase and its kinetic energy must 

therefore decrease until the object reaches 
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the turning point labeled 𝑐, where 𝑈(𝑐) = 𝐸 and the kinetic energy is zero. At 𝑥 =  𝑐 the object stops 

and, with the force back to the left, it accelerates back toward 𝑥 =  𝑏. It cannot now stop until once 

again the Kinetic energy is zero, and this occurs at the turning point 𝑎, where 𝑈(𝑎) = 𝐸 and the object 

accelerates back to the right. Since the whole cycle now repeats itself, we see that if the object starts 

out between two hills and its energy is lower than the crest of both hills, then the object is trapped in 

the valley or "well" and oscillates indefinitely between the two turning points where 𝑈(𝑥)  =  𝐸. 

Suppose the cart again starts out between the two hills but with energy higher than the crest of the 

right hill though still lower than the left. In this case, it will escape to the right since 𝐸 > 𝑈(𝑥) 

everywhere on the right, and it can never stop once it is moving in that direction. Finally, if the energy 

is higher than both hills, the cart can escape in either direction. 

These considerations play an important role in many fields.  
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7.5 Guidelines for solving most common problems in “Conservation of energy” 

All problems can be divided into two groups: 1) “pure conservation of energy” problems, when one 

only need to use conservation of energy to find an answer, and 2) “ combined” problems, that may 

also include 1D motion or 2D projectile motion, or circular motion (pendulums, loops). 

Here is a reference table for equations. 

Energy Equation Comments 

The kinetic energy 𝐾 =
1

2
𝑚𝑣2  

The gravitational potential 

energy (particle-Earth) 
𝑈𝑔(𝑦) = 𝑚𝑔𝑦 

if the reference frame is set 

as 𝑦𝑖 = 0 

The elastic potential energy   𝑈𝑠(𝑥) =
1

2
𝑘𝑥2 

where the reference is set at 

relaxed length 𝑥 = 0 

The total mechanical 

energy 
𝐾𝑖 + 𝑈𝑖 = 𝐾𝑓 + 𝑈𝑓  

The conservation of energy 𝐾𝑖 + 𝑈𝑖 = 𝐾𝑓 + 𝑈𝑓 + 𝑓𝑘𝑑 (with frictional force) 

Let’s concentrate on applying conservation of energy to a single object. Unlike dealing with forces, the 

procedure is rather simple for solving problems in Physics I.  

Point 1: You start with writing down the law of conservation of energy in most detailed form 

1

2
𝑚𝑣𝑖

2 + 𝑚𝑔𝑦𝑖 +
1

2
𝑘𝑥𝑖

2 =
1

2
𝑚𝑣𝑓

2 + 𝑚𝑔𝑦𝑓 +
1

2
𝑘𝑥𝑓

2 + 𝑓𝑘𝑑 

Attention:  

 While you may choose any reference point for the gravitational potential energy, the 

reference point for the spring potential energy MUST be the equilibrium point. 

 If you have a spring, its orientation can be horizontal (then we use (1 2⁄ )𝑘𝑥2), or vertical (at 

that time we use (1 2⁄ )𝑘𝑦𝑠
2), or under some angle (for example, a spring on an incline).  

 Most mistakes students do in problems with both gravitational and spring energies. The 

cause of mistakes is not choosing properly reference points for the two energies. 

Point 2: You analyze what energy you have in your problem, and keep only relevant terms in the 

above equation. 

Point 3: Finally you have one equation with one unknown. That is a simple algebra task.  

In case of two connected objects you include all energies for both objects into a single equation (we 

use conservation of energy for a system). For clarity let’s keep only kinetic and gravitational potential 

energy (you may easily add the spring energy and energy lost to friction when needed) 
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1

2
𝑚𝑣1𝑖

2 + 𝑚𝑔𝑦1𝑖 +
1

2
𝑚𝑣2𝑖

2 + 𝑚𝑔𝑦2𝑖 =
1

2
𝑚𝑣1𝑓

2 + 𝑚𝑔𝑦1𝑓 +
1

2
𝑚𝑣2𝑓

2 + 𝑚𝑔𝑦2𝑓 

7.6 Examples 

Example 7-1 

You throw a tennis ball straight up with initial speed 𝑣𝑖 = 15.0 𝑚/𝑠. How high does it go above the 

point where you release it? Ignore air resistance 

SOLUTION: 

1. Physics – gravity, motion, conservation of 

energy 

2. The basic equation 

𝐾𝑖 + 𝑈𝑖 = 𝐾𝑓 + 𝑈𝑓 + 𝑓𝑘𝑑 

3. In this problem there is only one force affecting 

the flight, namely gravity, therefore we can write 

1

2
𝑚𝑣𝑖

2 + 𝑚𝑔𝑦𝑖 =
1

2
𝑚𝑣𝑓

2 + 𝑚𝑔𝑦𝑓 

with the given conditions 𝑣𝑓 = 0 and choosing the reference point for gravity as 𝑦𝑖 = 0  

1

2
𝑚𝑣𝑖

2 + 0 = 0 + 𝑚𝑔𝑦𝑓 

4. The equation above produces an instant solution for the final vertical position 

𝑦𝑓 =
𝑣𝑖

2

2𝑔
 

5. Calculations 

𝑦𝑓 =
(15.0 𝑚 𝑠⁄ )2

2 ∙ 9.8 𝑚 𝑠2⁄
= 11.5 𝑚 

6. We have got a proper dimension (meters). The numerical answer seems reasonable. 

 

Example 7-2 

You are driving at 55 mph when the road suddenly descends 90 ft into a valley. You take your foot off 

the accelerator and coast down the hill. Just as you reach the bottom you see the policeman hiding 

behind the speed limit sign that reads “70 mph”. Are you going to get a speeding ticket? (Neglect air 

and rolling resistance) 

SOLUTION: 
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1. Physics – gravity, motion, conservation of mechanical energy 

2. The basic equation 

𝐾𝑖 + 𝑈𝑖 = 𝐾𝑓 + 𝑈𝑓 

3. Then 

1

2
𝑚𝑣𝑖

2 + 𝑚𝑔𝑦𝑖 =
1

2
𝑚𝑣𝑓

2 + 𝑚𝑔𝑦𝑓 

Choosing the reference point for gravity as 𝑦𝑓 = 0 (at the sign 70 mph) 

1

2
𝑚𝑣𝑖

2 + 𝑚𝑔𝑦𝑖 =
1

2
𝑚𝑣𝑓

2 

4. Solving for the final speed gives 

𝑣𝑓 = √𝑣𝑖
2 + 2𝑔𝑦𝑖  

5. Calculations 

𝑣𝑖 = 55 𝑚𝑝ℎ = 55 (
𝑚𝑖𝑙𝑒

ℎ𝑜𝑢𝑟
) (

1609  𝑚

1 𝑚𝑖𝑙𝑒
) (

1 ℎ𝑜𝑢𝑟

3600 𝑠
) = 24.6 𝑚/𝑠 

𝑦𝑖 = 90 𝑓𝑡 = 90 𝑓𝑡
0.348 𝑚

1 𝑓𝑡
= 27.4 𝑚 

𝑣𝑓 = 33.8 𝑚 𝑠⁄ = 75.6 𝑚𝑝ℎ 

6. We have got a proper dimension (speed in m/s). The numerical answer seems reasonable. 
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Example 7-3 

A block is released from rest at the top of a frictionless ramp, at height H1 (point 𝑂) above the base of 

the ramp. The ramp ends at height H2 above the base, so that the block flies off and follows a two-

dimensional projectile motion until it hits the ground. Find the speed of the block in terms of the given 

variables when it strikes the ground. 

 

SOLUTION 

1. Physics – motion with acceleration on incline, projectile motion, conservation of energy. 

We could try to solve the problem in old-fashioned way. First we solve the “incline” problem, or 

motion with acceleration on the incline after using Newton’s second law to find the acceleration. Then 

we solve the projectile motion problem. However, it is not only a long way to go; it is not possible in 

this case since we are not given the horizontal size of the ramp. 

Therefore we are going to use conservation of energy 

2. The basic equation 

𝐾𝑖 + 𝑈𝑖 = 𝐾𝑓 + 𝑈𝑓 + 𝑓𝑘𝑑 

3. In this problem, there is only one force affecting the motion, namely gravity. We could split the 

motion into two phases, namely from the top of the ramp H1 to the end at height H2, and them the 

motion to the ground. But it is unnecessary. We may just consider the initial (on the top of the ramp) 

and final (on the ground) configurations, where 𝑦𝑖 = 𝐻1, 𝑣𝑖 = 0 and 𝑦𝑓 = 0. Then the equation 

1

2
𝑚𝑣𝑖

2 + 𝑚𝑔𝑦𝑖 =
1

2
𝑚𝑣𝑓

2 + 𝑚𝑔𝑦𝑓 

is greatly simplified 

0 + 𝑚𝑔𝐻1 =
1

2
𝑚𝑣𝑓

2 + 0 

4. The speed of the block as it strikes the ground is 

𝑣𝑓 = √2𝑔𝐻1 

5. No calculations (no data) 
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6. Let’s check dimension for the speed √
𝑚

𝑠2 𝑚 = √
𝑚2

𝑠2 =
𝑚

𝑠
 correct, we got it as m/s.  

The same speed is the same as dropping the block vertically from the same height. 

Note: In the same way we may solve a roller coaster problem. If there is no resistance/friction, then 

the profile does not matter. 

 

Example 7-4 

A child’s toy shoots a marble with a horizontal spring (spring constant k=11N/m). The marble has a 

mass of 16 g. If the spring is compressed 3.4 cm and then released, what is the speed of the marble 

when it leaves the spring? Assume that the marble experiences no resistive forces.  

 

SOLUTION 

1. Physics – spring, motion, conservation of energy. 

2. The basic equation 

𝐾𝑖 + 𝑈𝑖 = 𝐾𝑓 + 𝑈𝑓 + 𝑓𝑘𝑑 

3. In this problem we have one only force, namely the spring force 

1

2
𝑚𝑣𝑖

2 +
1

2
𝑘𝑥𝑖

2 =
1

2
𝑚𝑣𝑓

2 +
1

2
𝑘𝑥𝑓

2 

Using the conditions 𝑣𝑖 = 0,  𝑥𝑓 = 0 

0 +
1

2
𝑘𝑥𝑖

2 =
1

2
𝑚𝑣𝑓

2 + 0 

4. Solving the equation for the final speed gives 

𝑣𝑓 = √
𝑘𝑥𝑖

2

𝑚
 

5. Calculations 
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𝑣𝑓 = √
(11 𝑁/𝑚)(−0.034 𝑚)2

0.016 𝑘𝑔
= 0.89 𝑚/𝑠 

6. Check dimensions 

[N]=[kg]*[m]/[s]2  then for the speed 

√
𝑘𝑔 ∙ 𝑚

𝑠2

1

𝑚

𝑚2

𝑘𝑔
= √

𝑚2

𝑠2
=

𝑚

𝑠
 

correct! 

The numerical answer seems reasonable to spring toys. 

 

Example 7-5 

As 18,000 kg F/A-18E/F Super Hornet lands on aircraft carrier USS Harry S. Truman (CVN-75), its tail 

hook snags an arresting cable to slow it down. The cable stretches 80 m to stop the aircraft. Assume 

that the cable is attached to a spring with spring constant 10,000 N/m, and the coefficient of static 

friction between the aircraft’s tires and the deck is 0.80. 

What was the plane’s landing speed? 

SOLUTION 

1. Physics – motion, spring force, friction, energy conservation 

2. The basic equation   𝐾𝑖 + 𝑈𝑖 = 𝐾𝑓 + 𝑈𝑓 + 𝑓𝑘𝑑 

3. For the problem in hand (the initial kinetic energy went into spring potential energy and friction) 

we have 

1

2
𝑚𝑣𝑖

2 =
1

2
𝑘𝑥𝑓

2 + 𝜇𝑚𝑔𝑥 

4. Solving for 𝑣𝑖 

𝑣𝑖 = √
𝑘𝑥𝑓

2

𝑚
+ 2𝜇𝑔𝑥 

5. Calculations 

𝑣𝑖 = √
10000 𝑁 𝑚⁄  (80 𝑚)2

18000 𝑘𝑔
+ 2 ∙ 0.8 ∙ 9.8 𝑚 𝑠2⁄ ∙ 80 𝑚 = 69.3 𝑚 𝑠⁄  

6. Let’s see the landing speed in mph 69.3 𝑚 𝑠⁄ = 155 𝑚𝑝ℎ. This is a very reasonable landing speed 

for F-18 Super Hornet. 
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Example 7-6 

A 10,000-kg runaway truck with failed brakes is moving 70 mph just before the driver steers the truck 

up the runaway ramp with an inclination of 200. Assume that the coefficients of static and kinetic 

friction between the ramp and the truck are 0.95 and 0.8 respectively. A driver slammed on his brakes. 

What minimum length L must the ramp have to stop along it? 

SOLUTION 

1. Physics – three forces (gravity, friction, normal), 

motion along an incline and energy. 

This problem can be solved by either the old way4 

(using Newton’s laws + one dimensional kinematics) 

or using conservation of energy. Let’s use 

conservation of energy.  

2. The basic equation 

𝐾𝑖 + 𝑈𝑖 = 𝐾𝑓 + 𝑈𝑓 + 𝑓𝑘𝑑 

3. Working with conservation of energy we have to carefully choose the initial and final configurations 

and reference points for potentials. In this problem our choice is rather straightforward. We choose 

the initial point at the base of the ramp where 𝑦𝑖 = 0, then 

1

2
𝑚𝑣𝑖

2 + 𝑚𝑔𝑦𝑖 =
1

2
𝑚𝑣𝑓

2 + 𝑚𝑔𝑦𝑓 + 𝑓𝜇𝑑 

where 𝑑 is the stopping distance. 

The conditions 𝑣𝑓 = 0, 𝑦𝑓 = 𝑑 sin 𝜃, and the frictional force 𝑓𝜇 = 𝜇𝑠𝑁 = 𝜇𝑠𝑚𝑔 cos 𝜃 (see chapter 5 for 

details). Note that we use the static coefficient assuming the brakes were not locked. 

Then the conservation of energy can be written as 

  

1

2
𝑚𝑣𝑖

2 + 0 = 0 + 𝑚𝑔𝑑 sin 𝜃 + 𝜇𝑠𝑚𝑔𝑑 cos 𝜃 

4. The equation above can be easily solved for 𝑑 

𝑑 =
𝑣𝑖

2

2𝑔(sin 𝜃 + 𝜇𝑠 cos 𝜃)
 

5. Calculations 

70 𝑚𝑝ℎ = 70 
𝑚𝑖𝑙𝑒

ℎ
 (

1609 𝑚

1 𝑚𝑖𝑙𝑒
) (

1 ℎ

3600 𝑠
) = 31 𝑚/𝑠 

                                                             

4 see example 5-4 in chapter 5 
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𝑑 =
(31 𝑚 𝑠⁄ )2

2 ∙ 9.8 𝑚 𝑠2⁄ (sin 200 + 0.95 cos 200)
= 40 𝑚 

6. The dimension is correct and the numerical answer looks realistic. By the way the solution is 

identical to one in example 5-4. 

 

Example 7-7 

Student jumps off a bridge 52 m above a river with a bungee cord tied around his ankle. He falls 15 m 

before the bungee cord begins to stretch. Student’s mass is 75 kg and the cord (spring) constant is  

k=50 N/m. If we neglect air resistance, estimate how far below the bridge the student would fall 

before coming to stop. 

SOLUTION 

1. Physics – gravity, spring force, motion, energy conservation 

2. The basic equation   𝐾𝑖 + 𝑈𝑖 = 𝐾𝑓 + 𝑈𝑓 + 𝑓𝑘𝑑 

3. There are two forces involved, namely gravity and spring force. We have to 

carefully choose the reference points for our problem. For gravity we may use 

any reference point, but the reference point for the spring potential energy must 

be the spring equilibrium point (point 2 on the diagram). 

Our initial starting point is (1), and the final point is (3). Sure, we may solve the 

problem in two steps (motion from 1 to 2, and then from 2 to 3), but we may 

eliminate intermediate steps. 

Let’s choose the first point (1) as a reference point for gravity 𝑦1 = 0. The second 

point (point 2) is the reference point for the spring. The conditions are 𝑣𝑖 = 0,

𝑣𝑓 = 0. On the diagram 𝐿 = 15 𝑚, and 𝐿 + 𝑑 + ℎ = 52 𝑚 (we need to find 𝐿 + 𝑑) 

Then the general equation (without friction) 

1

2
𝑚𝑣𝑖

2 + 𝑚𝑔𝑦𝑖 +
1

2
𝑘𝑥𝑖

2 =
1

2
𝑚𝑣𝑓

2 + 𝑚𝑔𝑦𝑓 +
1

2
𝑘𝑥𝑓

2 

can be written for 𝑖 = 1 and 𝑓 = 3 as 

0 + 0 + 0 = 0 − 𝑚𝑔(𝐿 + 𝑑) +
1

2
𝑘𝑑2 

4. In the quadratic equation above we are given 𝐿 and 𝑘 but we do not know 𝑑. Solving the quadratic 

equation would give the unknown 𝑑.   
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5. Calculations 

The quadratic equation for 𝑑 is 

1

2
50𝑑2 − 75 ∙ 9.8 ∙ 𝑑 − 75 ∙ 9.8 ∙ 15 = 0     𝑜𝑟     25𝑑2 − 735𝑑 − 11025 = 0 

Solutions: 𝑥1 = 40 𝑚, 𝑥2 = −11 𝑚 We keep the first solution, since the second one corresponds to a 

point above (2). Then 𝐿 + 𝑑 = 15 𝑚 + 40 𝑚 = 55 𝑚. But the bridge is only 52 𝑚 above the river. The 

student will hit the water. (With this information and using conservation of energy we can even find 

his speed at the impact.) 

6. With no experience in bungee jumping we could not say for sure if the numerical answer is 

reasonable. However we may check dimensions in the quadratic equation: for kx2 it is N*m, for the 

other terms N*m too. 

 

Example 7-8 

Consider the Atwood machine. The two masses have the values 𝑚1 and 𝑚2. The system is released 

from rest with 𝑚1 at height ℎ1 and 𝑚2 at height ℎ2 from the floor. Use energy conservation to find the 

speed of 𝑚2 just before it hits the floor.  

 

SOLUTION 

1. Physics – motion, energy 

conservation, gravity with TWO objects 

2. The basic equation 

   𝐾𝑖 + 𝑈𝑖 = 𝐾𝑓 + 𝑈𝑓 + 𝑓𝑘𝑑 

3. Since there are two objects we apply 

the conservation of energy for both of 

them. Keeping in mind that there is only 

gravitational potential energy in the 

problem we can write 

𝐾1𝑖 + 𝑈1𝑖 + 𝐾2𝑖 + 𝑈2𝑖 = 𝐾1𝑓 + 𝑈1𝑓 + 𝐾2𝑓 + 𝑈2𝑓 

Both the initial kinetic energies are zero, counting the gravitational potential energy from the floor, 

and since the masses have the same speed we get  

𝑚1𝑔ℎ1 + 𝑚2𝑔ℎ2 =
𝑚1𝑣2

2
+

𝑚2𝑣2

2
+ 𝑚1𝑔(ℎ1 + ℎ2) + 0 
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4. Solving for 𝑣 

𝑚2𝑔ℎ2 − 𝑚1𝑔ℎ2 =
1

2
(𝑚1 + 𝑚2)

𝑣2

2
 

𝑣 = √
2(𝑚2 − 𝑚1)𝑔ℎ2

𝑚2 + 𝑚1
 

5. Calculations 

There is nothing to calculate 

6. Let’s analyze the answer. The dimension is correct [𝑣] = √[𝑚2] [𝑠2]⁄ = 𝑚 𝑠⁄ . In case of 𝑚1 = 𝑚2 

we have 𝑣 = 0 that looks right.   

 

Example 7-9 

An object of mass m is released from rest at a height ℎ above the surface. The object slides along the 

inside of the loop-the-loop track consisting of a ramp and a circular loop of radius 𝑅 shown in the 

figure. Assume that the track is frictionless. Calculate, in terms of the given quantities, the minimum 

release height ℎ. 

SOLUTION: 

1. Physics. Energy, circular motion, forces. 

2. The basic equations 

𝐾𝑖 + 𝑈𝑖 = 𝐾𝑓 + 𝑈𝑓 + 𝑓𝑘𝑑 

𝐹𝑛𝑒𝑡 =
𝑚𝑣2

𝑅
 

3. This problem has two parts. First, we need to find the least speed the block has to have at the top 

of the loop to remain in contact with it there. Then we will look for the height ℎ that would provide 

this speed. The solution to the first part can be found in example 5-8 (this lecture notes). Here are 

principal points. From the free-body diagram   

−𝑁 − 𝑚𝑔 = 𝑚(−𝑎) = 𝑚 (−
𝑣2

𝑅
) 

Using conservation of energy gives 

𝑚𝑔ℎ =
𝑚𝑣2

2
+ 2𝑚𝑔𝑅 

4. If the block has the least speed to remain in contact, then it is on the verge of losing contact with 

the loop (falling away from the loop), which means 𝑁 = 0. Thus 
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−𝑚𝑔 = 𝑚 (−
𝑣2

𝑅
)     and    𝑣2 = 𝑔𝑅 

Using this 𝑣2 in equation for conservation of energy 

𝑚𝑔ℎ = 𝑚
𝑔𝑅

2
+ 2𝑚𝑔𝑅 

ℎ =
5

2
𝑅 

5. Calculations 

There is nothing to calculate 

6. Let’s analyze the answer. The dimension is obviously right. The order of magnitude seems 

reasonable if one has experience with amusement parks. 

 

Example 7-10 

A 182 g block is launched by compressing a spring of 

constant 𝑘=200 𝑁/𝑚 a distance of 15 𝑐𝑚. The spring is 

mounted horizontally, and the surface directly under it 

is frictionless. But beyond the equilibrium position of 

the spring end, the surface has coefficient of friction of 

𝜇=0.27. This frictional surface extends 85 𝑐𝑚 followed 

by a frictionless curved rise, as shown in the figure 

After launch, where does the block finally come to rest? You measure from the left end of the frictional 

zone. 

SOLUTION 

1. Physics: motion, spring energy, gravity, friction, conservation of energy 

2. The basic equation (conservation of energy) 

𝐾𝑖 + 𝑈𝑖 = 𝐾𝑓 + 𝑈𝑓 + 𝑓𝑘𝑑 

3. After the spring is released the block travels back and forth losing kinetic and potential (spring or 

gravitational) energy to friction.  

Eventually all initial spring potential energy is transferred to friction (heat). Since we are interested 

only in the final position of the block on the friction zone 

1

2
𝑘𝑥𝑖

2 = 𝜇𝑚𝑔𝑑 

Where 𝑑 is the total distance travelled along the frictional zone.  
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4. Solving for the distance 

𝑑 =
1

2
𝑘𝑥𝑖

2 1

𝜇𝑚𝑔
=

𝑘𝑥𝑖
2

2𝜇𝑚𝑔
 

5. Calculations 

𝑑 =
𝑘𝑥𝑖

2

2𝜇𝑚𝑔
=

200 𝑁 𝑚⁄ ∙ (0.15 𝑚 )2

2 ∙ 0.27 ∙ 0.182 𝑘𝑔 ∙ 9.8 𝑚 𝑠2⁄
= 4.67 𝑚 

It is clear that the block travels more than once through the frictional part (4.67 0.85⁄ = 5.49 or 5 full 

times, and on the six run the block stopped after travelling 0.49 part of the zone from the right end, 

or 0.51 part from the  left end). Then the final position is 0.51 ∙ 0.85 𝑚 = 0.43 𝑚 from the left end. 

6. Looking back. There is not much room for applying our common sense, but we may check the 

dimension 

[𝑑] =
𝑁 ∙ 𝑚2 ∙ 𝑠2

𝑚 ∙ 𝑘𝑔 ∙ 𝑚
=

𝑁 ∙ 𝑠2

𝑘𝑔
=

𝑘𝑔 ∙ 𝑚

𝑠2
∙

𝑠2

𝑘𝑔
= [𝑚] 

Correct. 
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8 Systems of particles 

So far, we were dealing with essentially one particle problems. Our analysis was limited to motion 

with constant acceleration or we used conservation of energy when we were not interested in some 

details but cared about only initial and final states or configurations. Unfortunately, there are really 

very few problems which can be solved exactly by analysis.  

On the basis of Newton's second law of motion, which gives the relation between the acceleration of 

any body and the force acting on it, any problem in mechanics can be numerically solved in principle. 

For example, if there are two bodies going around the sun, so that the total number of bodies is three, 

then analysis cannot produce a simple formula for the motion, and in practice the problem must be 

done numerically. That is the famous three-body problem, which so long challenged human powers 

of analysis; it is very interesting how long it took people to appreciate the fact that perhaps the powers 

of mathematical analysis were limited and it might be necessary to use the numerical methods. Today 

an enormous number of problems that cannot be done analytically are solved by numerical methods, 

and the old three-body problem in classical mechanics5, which was supposed to be so difficult, is 

solved routinely on a personal computer.  

However, there are also situations where both methods (analysis and numerical) fail: the simple 

problems we can do by analysis, and the moderately difficult problems by numerical, computational 

methods, but the very complicated problems we cannot do by either method. A complicated problem 

is, for example, the collision of two automobiles, or even the motion of the molecules of a gas. There 

                                                             

5 The three-body problem in quantum mechanics is still one of the most challenging problems in 
physics despite using most powerful supercomputers.  



8. Systems of particles 

139 

 

are countless particles in a cubic millimeter of gas, and it would be ridiculous to try to make 

calculations with so many variables (about 1017 - a hundred million billion). Anything like the motion 

of the molecules or atoms of a gas or a block or iron, or the motion of the stars in a globular cluster, 

instead of just two or three planets going around the sun—such problems we cannot do directly, so 

we have to seek other means. 

In the situations in which we cannot follow details, we need to know some general properties, that is, 

general theorems or principles which are consequences of Newton's laws. One of these is the principle 

of conservation of energy, which was discussed in Chapter 7. Another is the principle of conservation 

of momentum, the subject of this chapter.  

Another reason for studying mechanics further is that there are certain patterns of motion that are 

repeated in many different circumstances, so it is good to study these patterns in one particular 

circumstance. For example, we shall study collisions; different kinds of collisions have much in 

common. In the flow of fluids, it does not make much difference what the fluid is, the laws of the flow 

are similar. 

In our discussion of Newton's laws, it was explained that these laws are a kind of program that says 

"Pay attention to the forces," and that Newton told us only two things about the nature of forces. In 

the case of gravitation, he gave us the complete law of the force. In the case of the very complicated 

forces between atoms, he was not aware of the right laws for the forces; however, he discovered one 

rule, one general property of forces, which is expressed in his Third Law, and that is the total 

knowledge that Newton had about the nature of forces—the law of gravitation and this principle, but 

no other details. 

This principle is that action equals reaction. What is meant is something of this kind: Suppose we have 

two small bodies, say particles, and suppose that the first one exerts a force on the second one, 

pushing it with a certain force. Then, simultaneously, according to Newton's Third Law, the second 

particle will push on the first with an equal force, in the opposite direction; furthermore, these forces 

effectively act in the same line. This is the hypothesis, or law, that Newton proposed, and it seems to 

be quite accurate, though not exact (we shall discuss the errors later). For the moment we shall take 

it to be true that action equals reaction. Of course, if there is a third particle, not on the same line as 

the other two, the law does not mean that the total force on the first one is equal to the total force on 

the second, since the third particle, for instance, exerts its own push on each of the other two. The 

result is that the total effect on the first two is in some other direction, and the forces on the first two 

particles are, in general, neither equal nor opposite. However, the forces on each particle can be 

resolved into parts, there being one contribution or part due to each other interacting particle. Then 

each pair of particles has corresponding components of mutual interaction that are equal in 

magnitude and opposite in direction. 

8.1 Momentum 

Momentum is a word that has multiple meanings in everyday language, but only a single meaning in 

physics. The linear momentum of a particle is a vector 𝑝, defined as 
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𝑝 = 𝑚�⃗� (8.1) 

in which 𝑚 is the mass of the particle and �⃗� is its velocity. (The adjective linear is often dropped, but 

it serves to distinguish 𝑝 from angular momentum, which will be introduced later). Since 𝑚 is always 

a positive quantity, then 𝑝 and �⃗� have the same direction. The SI unit for momentum is  kgm/s, with 

no special name for this combination of units. 

Newton actually expressed his second law of motion in terms of momentum 

The time rate of change of the momentum of a particle is equal to the net force acting on the particle 

and is in the direction of that force 

�⃗�𝑛𝑒𝑡 =
𝑑𝑝

𝑑𝑡
 (8.2) 

it is very straightforward 

�⃗�𝑛𝑒𝑡 =
𝑑𝑝

𝑑𝑡
=

𝑑

𝑑𝑡
(𝑚�⃗�) = 𝑚

𝑑�⃗�

𝑑𝑡
= 𝑚�⃗� 

Thus we have two equivalent expressions of Newton’s second law. 

8.2 The linear momentum of a system of particles 

Suppose, for simplicity, that we have just two interacting particles, possibly of different mass, and 

numbered 1 and 2. The forces between them are equal and opposite; what are the consequences?  

 

According to Newton's Second Law, force is the rate of change of the momentum with respect to time, 

so  

𝑑𝑝1

𝑑𝑡
= �⃗�21 = −�⃗�12 = −

𝑑𝑝2

𝑑𝑡
 

then it follows that 

𝑑𝑝1

𝑑𝑡
+

𝑑𝑝2

𝑑𝑡
= 0 =

𝑑

𝑑𝑡
(𝑝1 + 𝑝2) 

There is assumed to be no other force in the problem. If the rate of change of this sum is always zero, 

that is just another way of saying that the quantity (𝑝1 + 𝑝2) or 𝑚�⃗�1 + 𝑚�⃗�2 does not change. We have 

now obtained the result that the total momentum of the two particles does not change because of any 

mutual interactions between them. This statement expresses the law of conservation of momentum 
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in that particular example. We conclude that if there is any kind of force, no matter how complicated, 

between two particles, and we measure or calculate  𝑚�⃗�1 + 𝑚�⃗�2, that is, the sum of the two momenta, 

both before and after the forces act, the results should be equal, i.e., the total momentum is a constant. 

If we extend the argument to three or more interacting particles in more complicated circumstances, 

it is evident that so far as internal forces are concerned, the total momentum of all the particles stays 

constant, since an increase in momentum of one, due to another, is exactly compensated by the 

decrease of the second, due to the first. That is, all the internal forces will balance out, and therefore 

cannot change the total momentum of the particles. If there are no forces from the outside (external 

forces), there are no forces that can change the total momentum; hence the total momentum is a 

constant. 

It is worth describing what happens if there are forces that do not come from the mutual actions of 

the particles in question: suppose we isolate the interacting particles. If there are only mutual forces, 

then, as before, the total momentum of the particles does not change, no matter how complicated the 

forces. On the other hand, suppose there are also forces coming from the particles outside the isolated 

group. Any force exerted by outside bodies on inside bodies, we call an external force. 

Now consider a system of three particles6, each with its own mass, velocity and linear momentum. 

The particles may interact with each other, and external forces may act on them as well. 

 

The system as a whole has a total linear momentum �⃗⃗�  

�⃗⃗� = 𝑝1 + 𝑝2 + 𝑝3 

If we take the time derivative, we find that 

𝑑�⃗⃗�

𝑑𝑡
=

𝑑𝑝1

𝑑𝑡
+

𝑑𝑝2

𝑑𝑡
+

𝑑𝑝3

𝑑𝑡
 

                                                             

6 A generalization to a system of n particles is straightforward, and you may consider it as a good 
exercise 
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For every particle 

𝑑𝑝𝑖

𝑑𝑡
= �⃗�𝑖

𝑒𝑥𝑡 + ∑ �⃗�𝑗𝑖

3

𝑗≠𝑖

 

Then 

𝑑�⃗⃗�

𝑑𝑡
= �⃗�1

𝑒𝑥𝑡 + �⃗�21 + �⃗�31 + �⃗�2
𝑒𝑥𝑡 + �⃗�12 + �⃗�32 + �⃗�3

𝑒𝑥𝑡 + �⃗�13 + �⃗�23 

According to Newton’s third law (action-reaction) 

�⃗�21 = −�⃗�12,     �⃗�31 = −�⃗�13,    �⃗�32 = −�⃗�23 

and 

𝑑�⃗⃗�

𝑑𝑡
= �⃗�1

𝑒𝑥𝑡 + �⃗�2
𝑒𝑥𝑡 + �⃗�3

𝑒𝑥𝑡 = �⃗�𝑒𝑥𝑡 

where �⃗�𝑒𝑥𝑡 is the net external force, and if �⃗�𝑒𝑥𝑡 = 0 then 

𝑑�⃗⃗�

𝑑𝑡
= 0   ⇒ �⃗⃗� = 𝑐𝑜𝑛𝑠𝑡 (8.3) 

momentum of the entire system of particles is conserved. 

This is one of the most important results in classical (Newtonian) mechanics.  

Note that momentum of a single particle is not necessarily conserved, only the total momentum of a 

closed system. 

8.3 Newton’s second law for a system of particles 

For a system of point-like particles (see above). 

𝑑�⃗⃗�

𝑑𝑡
= �⃗�𝑒𝑥𝑡 (8.5) 

At this point we introduce the center of mass for a system of n particles 

�⃗⃗�𝐶𝑀 =
1

𝑀
∑ 𝑚𝑖𝑟𝑖

𝑛

𝑖=1

 (8.6) 

Principle of Conservation of Linear Momentum 

If the net force �⃗�𝑒𝑥𝑡 on an N-particle system is zero, the system’s total mechanical momentum  

�⃗⃗� = 𝑚1�⃗�1 + 𝑚2�⃗�2 + ⋯ + 𝑚𝑁�⃗�𝑁 (8.4) 

is constant 
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where  

𝑀 = 𝑚1 + 𝑚2 + ⋯ 𝑚𝑛 = ∑ 𝑚𝑖

𝑛

𝑖=1

 (8.7) 

is the total mass of the system. 

If the particles are distributed in three dimensions, the center of mas can be identified by three 

coordinates 

𝑥𝐶𝑀 =
1

𝑀
∑ 𝑚𝑖𝑥𝑖

𝑛

𝑖=1

,          𝑦𝐶𝑀 =
1

𝑀
∑ 𝑚𝑖𝑦𝑖

𝑛

𝑖=1

,          𝑧𝐶𝑀 =
1

𝑀
∑ 𝑚𝑖𝑧𝑖

𝑛

𝑖=1

.  (8.8) 

An ordinary object contains so many particles (atoms) that we can treat it as a continuous distribution 

of matter. Then the sums above become integrals.  

In this chapter we deal with particle-like systems or simple enough symmetrical objects when the 

position of the center of mass is known, e.g. the center of mass of a uniform rod of length L is at L/2 

the center of mass of a uniform spherical ball is at the center of the ball. 

Differentiating the definition for the center of mass with respect to time gives 

�⃗�𝐶𝑀 =
1

𝑀
∑ 𝑚𝑖�⃗�𝑖

𝑛

𝑖=1

 (8.9) 

where �⃗�𝑖 is the velocity of the 𝑖 − th particle and �⃗�𝐶𝑀 is the velocity of the center of mass. 

Differentiating the last equation with respect to time gives 

�⃗�𝐶𝑀 =
1

𝑀
∑ 𝑚𝑖�⃗�𝑖

𝑛

𝑖=1

=
1

𝑀
∑ �⃗�𝑖

𝑛

𝑖=1

=
1

𝑀
�⃗�𝑒𝑥𝑡. 

or 

𝑀𝑎𝐶𝑀 = �⃗�𝑒𝑥𝑡 (8.10) 

Thus the center of mass of a system moves as though all of the mass were concentrated there and all 

external forces were applied there. 

There are two obvious results from this equation.  

 If the net force acting on a system is zero, then a system moves with constant velocity 

 �⃗�𝐶𝑀 = 𝑐𝑜𝑛𝑡𝑎𝑛𝑡 for �⃗�𝑒𝑥𝑡 = 0 

 And if the center of mass of a system was not moving �⃗�𝐶𝑀 = 0, then the position of the center 

of mass �⃗⃗�𝐶𝑀 does not change despite individual positions of particles may change. 

�⃗⃗�𝐶𝑀 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 for �⃗�𝐶𝑀 = 0 (if �⃗�𝑒𝑥𝑡 = 0) 
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8.4 Impulse and Linear Momentum 

Using Newton’s second law in momentum form 

 

�⃗� =
𝑑𝑝

𝑑𝑡
 

we can write 

𝑑𝑝 = �⃗�(𝑡)𝑑𝑡 

in which �⃗�(𝑡) is a time-varying force. Let’s integrate this equation over the time interval Δ𝑡 from an 

initial time 𝑡𝑖 to a final time 𝑡𝑓 . We obtain 

∫ 𝑑𝑝
�⃗�𝑓

�⃗�𝑖

= ∫ �⃗�(𝑡)𝑑𝑡
𝑡𝑓

𝑡𝑖

 

The left side of the equation is 𝑝𝑓 − 𝑝𝑖  the change in linear momentum of an object. The right side, 

which measures both the strength and the duration of the force, is called the impulse 𝐽. 

𝐽 = 𝑝𝑓 − 𝑝𝑖 = ∫ �⃗�(𝑡)𝑑𝑡
𝑡𝑓

𝑡𝑖

. (8.11) 

The last equation can be written in component form as 

𝑝𝑓𝑥 − 𝑝𝑖𝑥 = 𝐽𝑥 = ∫ 𝐹𝑥(𝑡)𝑑𝑡
𝑡𝑓

𝑡𝑖

,       𝑝𝑓𝑦 − 𝑝𝑖𝑦 = 𝐽𝑦 = ∫ 𝐹𝑦(𝑡)𝑑𝑡
𝑡𝑓

𝑡𝑖

,     𝑝𝑓𝑧 − 𝑝𝑖𝑧 = 𝐽𝑧 = ∫ 𝐹𝑧(𝑡)𝑑𝑡
𝑡𝑓

𝑡𝑖

.   

If 𝐹𝑎𝑣𝑔 is the average magnitude of the force, we can write the magnitude of the impulse for every 

component as 

𝐽 = 𝑝𝑓 − 𝑝𝑖 = 𝐹𝑎𝑣𝑔Δ𝑡. (8.12) 

where Δ𝑡 is the duration of the action of the force. 

The SI units for impulse are [Ns]=[kgm/s], which are the same units as momentum. 

8.5 Collisions 

A collision is an isolated event in which two or more bodies exert relatively strong forces on each 

other for a relatively short period of time. 

 “relatively strong forces” – comparing to external forces 

 “relatively short period of time” – so that external force produces negligible impulse (change 

in momentum) 

Let’s consider a system of two colliding bodies. If there to be a collision, then one of the bodies must 

be moving, so that the system has a certain kinetic energy and a certain linear momentum before the 

collision. During the collision, the kinetic energy and linear momentum of each body are changed by 
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the force from the other body. In this section the discussion is limited to collisions in system that are 

closed (no mass enters or leaves them) and isolated (no net external forces act on the bodies within 

the system). 

Kinetic energy and two types of collisions 

 Elastic collisions – if the total kinetic energy of the system is unchanged by the collisions (the 

kinetic energy of the system is conserved).  

This type of collisions is very unlikely in everyday life7, but more common for collisions of 

atomic or nuclear particles. 

 Inelastic collisions – where the kinetic energy of the system is not conserved. 

There is a special kind of inelastic collisions called completely inelastic collision if two bodies 

stick together after the collision and move as a single object. 

Regardless of the forces acting between bodies during the collision, and regardless to what happens 

to the total kinetic energy of the system, the total linear momentum is always conserved. That is quite 

interesting, namely we can relate momenta before and after a collision even if we do not know details 

of the forces during the collision. 

 

 

8.5.1 Inelastic collision in one dimension 

We can write the law of conservation of linear momentum for a two-body system as 

𝑝1𝑖 + 𝑝2𝑖 = 𝑝1𝑓 + 𝑝2𝑓 

Figure shows two bodies just before and just after they have a one-dimensional collision.  

 

                                                             

7 In some situations we can approximate a collision of common bodies as elastic - for example a 
dropping a Superball (also known as a bouncy ball) on a hard floor. 

In a closed isolated system, the linear momentum of each colliding body may change but the total 

linear momentum �⃗⃗� = 𝑚�⃗�1 + 𝑚�⃗�2 of the system cannot change, whether the collision is elastic or 

inelastic. 
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Because the motion is one-dimensional, we can drop the overall arrows for vectors and use only 

components along the axis. Then, using 𝑝 = 𝑚𝑣 we can write 

𝑚1𝑣1𝑖 + 𝑚2𝑣2𝑖 = 𝑚1𝑣1𝑓 + 𝑚2𝑣2𝑓 (8.13) 

Since there is only one equation, we may have only one unknown.  

Now let’s consider a completely inelastic collision (after the collision the bodies stick together moving 

with the same velocity)   

𝑚1𝑣1𝑖 + 𝑚2𝑣2𝑖 = (𝑚1 + 𝑚2)𝑣𝑓 

then the final velocity of the combined body 

𝑣𝑓 =
𝑚1𝑣1𝑖 + 𝑚2𝑣2𝑖

𝑚1 + 𝑚2
 (8.14) 

The last equation last equation can be analyzed for various masses 𝑚1 and 𝑚2. We will do that for 

𝑣2𝑖 = 0 (or the body with mass 𝑚2 happens to be initially at rest)  

𝑣𝑓 =
𝑚1

𝑚1 + 𝑚2
𝑣1𝑖 (8.15) 

We note that the combined system moves in the same direction as initially moving body.  

Let’s consider three combinations of masses 

 A massive target:  𝑚1 ≪ 𝑚2 then 𝑣𝑓 ≈ 0 i.e., the combined system is moving with very small 

velocity. 

 A massive projectile: 𝑚1 ≫ 𝑚2 then 𝑣𝑓 ≈ 𝑣1𝑖 i.e., the combined system is moving with 

velocity very close to the velocity of the initially moving body. 

 Equal masses: 𝑚1 = 𝑚2 then 𝑣𝑓 = 𝑣1𝑖/2 i.e., the combined system moves with the final 

velocity that is half of the initial velocity. 

8.5.2 Elastic collision in one dimension  

In an elastic collision, the kinetic energy of each colliding body may change, but the total kinetic 

energy of the system does not change. 

𝑚1𝑣1𝑖 + 𝑚2𝑣2𝑖 = 𝑚1𝑣1𝑓 + 𝑚2𝑣2𝑓          𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑙𝑖𝑛𝑒𝑟𝑎 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 
1

2
𝑚1𝑣1𝑖

2 +
1

2
𝑚2𝑣2𝑖

2 =
1

2
𝑚1𝑣1𝑓

2 +
1

2
𝑚2𝑣2𝑓

2      𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑘𝑖𝑛𝑒𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦 
(8.16) 

These two equations describe elastic collision of two bodies in one dimension. Having two equations 

we can solve the system for two unknowns. If we know the masses and initial velocities, then we can 

solve these equations for the velocities after the collision 𝑣1𝑓 and 𝑣2𝑓.We rewrite the momentum 

equations as 

𝑚1(𝑣1𝑖 − 𝑣1𝑓) = 𝑚2(𝑣2𝑓 − 𝑣2𝑖) (8.17) 

and the kinetic energy equation can be rewritten as 
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𝑚1(𝑣1𝑖
2 − 𝑣1𝑓

2 ) = 𝑚2(𝑣2𝑓
2 − 𝑣2𝑖

2 ) 

noting that (𝑎2 − 𝑏2) = (𝑎 − 𝑏)(𝑎 + 𝑏) we rewrite the last equation 

𝑚1(𝑣1𝑖 − 𝑣1𝑓)(𝑣1𝑖 + 𝑣1𝑓) = 𝑚2(𝑣2𝑓 − 𝑣2𝑖)(𝑣2𝑓 + 𝑣2𝑖) (8.18) 

Dividing the left and the right sides of the last equation (8.18) by the corresponding sides of the linear 

momentum equation (8.17) gives  

𝑣1𝑖 + 𝑣1𝑓 = 𝑣2𝑓 + 𝑣2𝑖    𝑜𝑟     𝑣1𝑖 − 𝑣2𝑖 = 𝑣2𝑓 − 𝑣1𝑓 

The results tells us that for one dimensional elastic head-on collisions, the relative speed of the two 

objects after the collisions has the same magnitude as before (but opposite direction), no matter what 

the masses are. 

From the last equation, 

𝑣2𝑓 = 𝑣1𝑖 − 𝑣2𝑖 + 𝑣1𝑓 

Substituting this result into (8.17) gives 

𝑚1(𝑣1𝑖 − 𝑣1𝑓) = 𝑚2(𝑣1𝑖 − 𝑣2𝑖 + 𝑣1𝑓 − 𝑣2𝑖)  𝑜𝑟  (𝑚1 − 𝑚2)𝑣1𝑖 + 2𝑚2𝑣2𝑖 = (𝑚1 + 𝑚2)𝑣1𝑓 

Solving for 𝑣1𝑓 

𝑣1𝑓 =
𝑚1 − 𝑚2

𝑚1 + 𝑚2
𝑣1𝑖 +

2𝑚2

𝑚1 + 𝑚2
𝑣2𝑖 (8.19) 

Having 𝑣1𝑓 we can easily (simply algebra) find 𝑣2𝑓 from (8.17).  

𝑣2𝑓 =
2𝑚1

𝑚1 + 𝑚2
𝑣1𝑖 +

𝑚2 − 𝑚1

𝑚1 + 𝑚2
𝑣2𝑖 (8.20) 

These equations express the final velocities in terms of initial velocities. 

Let us look at a few special situations. For clarity of our analysis we assume that a projectile body 𝑚1 

moves toward a target body 𝑚2 that is initially at rest 𝑣2𝑖 = 0. Then  

𝑣1𝑓 =
𝑚1 − 𝑚2

𝑚1 + 𝑚2
𝑣1𝑖 (8.21) 

𝑣2𝑓 =
2𝑚1

𝑚1 + 𝑚2
𝑣1𝑖  (8.22) 

 Equal masses: If 𝑚1 = 𝑚2 then 

𝑣1𝑓 = 0   𝑎𝑛𝑑  𝑣2𝑓 = 𝑣1𝑖 

which we may call a pool player result. It predicts that after a head-on collision of bodies with 

equal masses, body 1 (initially moving) stops dead and body 2 (initially at rest) takes off with 

the initial speed of body 1. 

 A massive target: A massive target means that 𝑚2 ≫ 𝑚1 (for example firing a golf ball into a 

cannonball. Then 
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𝑣1𝑓 ≈ −𝑣1𝑖   𝑎𝑛𝑑   𝑣2𝑓 ≈
2𝑚1

𝑚2
𝑣2𝑖 

This tells us that body 1 (the golf ball) simply bounces back along its incoming path, its speed 

is essentially unchanged. Body 2 (cannonball) moves forward at low speed. At this is what we 

should expect 

 A massive projectile: This is the opposite case; that is 𝑚1 ≫ 𝑚2. This time we fire a 

cannonball into a golf ball. 

𝑣1𝑓 ≈ 𝑣1𝑖   𝑎𝑛𝑑 𝑣2𝑓 ≈ 2𝑣1𝑖 

This tells us that body 1 (the cannonball) simply keeps on going, scarcely slowed by the 

collision. Body 2 (the golf ball) charges ahead at twice the speed of the cannonball.  

8.5.3 Collisions in two dimensions  

Conservation of momentum and energy can also be applied to collisions in two and three dimensions, 

and the vector nature of momentum is especially important. 

For two-dimensional collisions in a closed isolated system, the total linear momentum still be 

conserved  

𝑝1𝑖 + 𝑝2𝑖 = 𝑝1𝑓 + 𝑝2𝑓 

If the collision is also elastic (a special case), then the total kinetic energy is also conserved 

𝐾1𝑖 + 𝐾2𝑖 = 𝐾1𝑓 + 𝐾2𝑓 . 

For example, Figure shows a glancing collision (it is not head-on) between a projectile body and target 

body initially at rest.  

 

It is more useful if we write conservation of momentum in term of components on an 𝑥𝑦 coordinate 

system. 

𝑚1𝑣1𝑖 = 𝑚1𝑣1𝑓 cos 𝜃1 + 𝑚2𝑣2𝑓 cos 𝜃2           𝑥 − 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 

0 = −𝑚1𝑣1𝑓 sin 𝜃1 + 𝑚2𝑣2𝑓 sin 𝜃2                  𝑦 − 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 

We can also write for elastic collisions 
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1

2
𝑚1𝑣1𝑖

2 =
1

2
𝑚1𝑣1𝑓

2 +
1

2
𝑚2𝑣2𝑓

2  

These three equations have seven variables: two masses, three speeds and two angles. If we know 

any four of these quantities, we can solve the three equations for the remaining three quantities. 

8.6 The center of mass of solid bodies* 

Calculating the center of mass for a solid object is rather more complicated exercise than finding the 

center of mass of a system of point-like particles. However, we apply the same basic idea thinking 

about a solid object as a system containing a large number of particles with continuous mass 

distribution. Let’s divide the object into elements of mass Δ𝑚𝑖 with coordinates 𝑥𝑖  , 𝑦𝑖  , 𝑧𝑖. Then, the 𝑥 

coordinate of the center of mass is approximately 

𝑥𝐶𝑀 ≈
∑ 𝑥𝑖Δ𝑚𝑖𝑖

𝑀
 

Using calculus we can write exactly 

𝑥𝐶𝑀 = lim
Δ𝑚𝑖→0

∑ 𝑥𝑖Δ𝑚𝑖𝑖

𝑀
=

1

𝑀
∫ 𝑥𝑑𝑚 (8.23) 

where 𝑑𝑚 is the element of mass and the integral is taken over the extent of the object. The total mass 

is given simply by 

𝑀 = ∫ 𝑑𝑚 

Likewise we can define 𝑦𝐶𝑀 and 𝑧𝐶𝑀.  

For a solid three-dimensional body the element of mass is just 𝑑𝑚 = 𝜌𝑑𝑉, where 𝑑𝑉 is the element of 

volume, and 𝜌 is the density (that can be variable, namely 𝜌(𝑥, 𝑦, 𝑧). For a laminar body (i.e. a uniform 

sheet of material) the element of mass is 𝑑𝑚 =  𝜎𝑑𝐴, where 𝜎(𝑥, 𝑦) is the mass per unit area of the 

body, and 𝑑𝐴 is an area element. Finally, for a body in the form of a thin wire we have 𝑑𝑚 =  𝜆 𝑑𝑠, 

where 𝜆 is the mass per unit length and 𝑑𝑠 is an element of arc length along the wire. 

Let’s find the center of mass of a rod of length 𝐿 that has a uniform density 𝜆. The total mass of the rod 

is 

𝑀 = ∫ 𝜆𝑑𝑥
𝐿

0

= 𝜆𝐿 

and the center of mass is located at 

𝑥𝐶𝑀 =
1

𝑀
∫ 𝑥𝜆𝑑𝑥

𝐿

0

=
1

𝜆𝐿

𝜆𝐿2

2
=

𝐿

2
. 

Two- and three- dimensional cases require evaluation of multiple integrals. Such integration goes 

beyond this course.  
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8.7 Dynamics of Bodies of Variable Mass; Rocket propulsion 

Conservation of linear momentum is the foundation for the motion in space (where there is no any 

gas atmosphere).  

Consider a rocket with mass 𝑀 travelling in the positive 𝑥 direction with speed 𝑣. Instead of using 

notation 𝑣𝑥 for components we will write just 𝑣. The thrust of the rocket engine is created by ejecting 

the fuel combustion products in a direction opposite to the motion of the rocket with the exhaust 

speed 𝑣𝑒𝑥 relative to the rocket. Since the rocket is ejecting mass, its mass 𝑀 is decreasing.  

 

 

At time 𝑡, the linear momentum is 𝑚𝑣, while at time 𝑡 + 𝑑𝑡 the rocket mass is (𝑚 + 𝑑𝑚), where 𝑑𝑚 is 

negative, and its momentum is (𝑚 + 𝑑𝑚)(𝑣 + 𝑑𝑣). The ejected fuel at that time has mass – 𝑑𝑚 and 

velocity (𝑣 − 𝑣𝑒𝑥) relative to the ground. Then the total momentum at time 𝑡 + 𝑑𝑡 is 

𝑝(𝑡 + 𝑑𝑡) = (𝑚 + 𝑑𝑚)(𝑣 + 𝑑𝑣) − 𝑑𝑚(𝑣 − 𝑣𝑒𝑥) = 𝑚𝑣 + 𝑚𝑑𝑣 + 𝑑𝑚 𝑣𝑒𝑥 

where we neglected the small term 𝑑𝑚 𝑑𝑣 (an infinitesimal of the second order). Thus, the change in 

the total momentum is 

𝑑𝑝 = 𝑝(𝑡 + 𝑑𝑡) − 𝑝(𝑡) = 𝑚 𝑑𝑣 + 𝑑𝑚 𝑣𝑒𝑥 

If there is an external force 𝐹𝑒𝑥𝑡 acting on the rocket, then the change of momentum is 𝐹𝑒𝑥𝑡𝑑𝑡. Without 

an external force the linear momentum is conserved and 𝑑𝑝 = 0. Therefore 

𝑚 𝑑𝑣 = −𝑑𝑚 𝑣𝑒𝑥 (8.24) 

or with dime derivatives we get 

𝑚
𝑑𝑣

𝑑𝑡
= −𝑣𝑒𝑥

𝑑𝑚

𝑑𝑡
 (8.25) 

where 𝑑𝑚 𝑑𝑡⁄  is the rate at which the rocket is ejecting mass.  This equation describes the motion of 

rockets in the absence of external forces. 

Equation (8.25)  looks just like Newton’s second law where the term on the right is called the thrust: 

𝐹𝑡ℎ𝑟𝑢𝑠𝑡 = −𝑣𝑒𝑥

𝑑𝑚

𝑑𝑡
 

This force is positive since 𝑑𝑚 𝑑𝑡⁄  is negative.  

Equation (8.24) can be solved using separation of variables (we assume that the exhaust speed is 

constant) 

𝑑𝑣 = −𝑣𝑒𝑥

𝑑𝑚

𝑚
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Assuming that at 𝑡 = 0 the mass of the rocket was 𝑚0 and the initial velocity 𝑣0 and integrating both 

sides  

∫ 𝑑𝑣
𝑣

𝑣0

= −𝑣𝑒𝑥 ∫
𝑑𝑚

𝑚

𝑀

𝑀0

 

we easily get 

𝑣 − 𝑣0 = 𝑣𝑒𝑥 ln
𝑚0

𝑚
 

or 

𝑣(𝑡) = 𝑣0 + 𝑣𝑒𝑥 ln
𝑚0

𝑚
 

where 𝑚 rocket’s mass at any time. Thus equation describes the change in the velocity of the rocket 

when its mass changes from 𝑚0 to 𝑚. If the engine is applied to slow down the motion then we replace 

𝑣𝑒𝑥 on −𝑣𝑒𝑥. 

Let us quickly evaluate efficiency of delivering a payload to a low orbit around Earth. Assuming the 

initial speed 𝑣0 = 0 𝑚/𝑠, the final speed 8 𝑘𝑚/𝑠, the exhaust speed 4 𝑘𝑚/𝑠, and neglecting the force 

of gravity (too optimistic assumption) we get for the original mass 𝑚0 to be about 90% of fuel.  

A crude estimation for flying to Mars and come back gives for a payload about 1/1500 of the starting 

mass.  

8.8 Examples 

Example 8-1 

A marksman holds a rifle of mass 𝑚𝑅 = 3.0 𝑘𝑔 loosely in his hands, so as to let it recoil freely when 

fired. He fires a bullet of mass 𝑚𝐵 = 5.0 𝑔 horizontally with a velocity relative to the ground of 𝑣𝐵 =

300 𝑚 𝑠⁄ . What is the recoil velocity of the rifle? What is the kinetic energy of the bullet? Of the rifle? 

SOLUTION: 

1. Physics – conservation of linear momentum for the closed isolated system. We may assume the net 

external force from the marksman as zero while the bullet moves inside the barrel.  

2. The basic equation 

𝑚1�⃗�1 + 𝑚2�⃗�2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

or 

𝑚1𝑣1𝑖 + 𝑚2𝑣2𝑖 = 𝑚1𝑣1𝑓 + 𝑚2𝑣2𝑓 

3. Initially the rifle and bullet were not moving 𝑣𝐵𝑖 = 0, 𝑣𝑅𝑖 = 0 then for our one-dimensional case 

0 = 𝑚𝐵𝑣𝐵𝑓 + 𝑚𝑅𝑣𝑅𝑓 
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4. Solving for 𝑣𝑅𝑓 

𝑣𝑅𝑓 = −
𝑚𝐵

𝑚𝑅
𝑣𝐵𝑓 

For kinetic energies (we only need the definition, there is no conservation of energy) 

𝐾𝐵 =
1

2
𝑚𝐵𝑣𝐵𝑓

2          𝐾𝑅 =
1

2
𝑚𝑅𝑣𝑅𝑓

2  

5. Calculations 

𝑣𝑅𝑓 = −
0.005 𝑘𝑔

3.0 𝑘𝑔
300 𝑚 𝑠⁄ = −0.500 𝑚 𝑠⁄   

𝐾𝐵 =
1

2
0.005 𝑘𝑔 ∙  (300 𝑚 𝑠⁄ )2 = 225 𝐽 

𝐾𝑅 =
1

2
3.0 𝑘𝑔 ∙ (−0.5 𝑚 𝑠⁄ )2 = 0.375 𝐽 

6. Looking back. 

Units are correct. The recoil speed looks as a true one. It is interesting to note that while the bullet 

and rifle have the same magnitude of the final momenta; their kinetic energies are quite different 

because of large difference in speeds. 

To satisfy our curiosity, let us derive the ratio of kinetic energy of the rifle to bullet 

𝐾𝑅

𝐾𝐵
=

1
2 𝑚𝑅𝑣𝑅𝑓

2

1
2

𝑚𝐵𝑣𝐵𝑓
2

=
𝑚𝑅 (

𝑚𝐵
𝑚𝑅

𝑣𝐵𝑓)
2

𝑚𝐵𝑣𝐵𝑓
2 =

𝑚𝐵

𝑚𝑅
 

Thus the heavier the rifle, the less kinetic energy is transferred to it. 

Example 8-2 

A heavy wooden crate rests on a floor.  A bullet is fired horizontally into the crate so that the bullet 

stopping in it. How far will the block slide before coming to a stop? The mass of the bullet is 16.0 g, 

the mass of the block is 70.0 kg, the bullet’s impact speed is 300 m/s and the coefficient of kinetic 

friction between the crate and the wooden floor is 0.22. (Assume that the bullet does not cause the 

crate to spin.) 

SOLUTION: 

1. Physics – a) conservation of linear momentum for the closed isolated system (assuming we may 

disregard any external forces while the bullet penetrates the crate), b) conservation of energy after 

the collision). 

2. The basic equation: 

for the collision (note that the energy is NOT conserved during the inelastic collision) 
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𝑚1𝑣1𝑖 + 𝑚2𝑣2𝑖 = 𝑚1𝑣1𝑓 + 𝑚2𝑣2𝑓 

and after the collision 

1

2
(𝑚1 + 𝑚2)𝑣𝑓

2 = 𝜇𝑘(𝑚1 + 𝑚2)𝑔𝑥 

3. Initially the crate was not moving 𝑣2𝑖 = 0, but then the system “bullet + crate” moves as a whole 

𝑚1𝑣1𝑖 = (𝑚1 + 𝑚2)𝑣𝑓 

and for the stopping 𝑥 distance we apply conservation of energy 

1

2
(𝑚1 + 𝑚2)𝑣𝑓

2 = 𝜇𝑘(𝑚1 + 𝑚2)𝑔𝑥 

4. Solving first for 𝑣𝑓 

𝑣𝑓 =
𝑚1

𝑚1 + 𝑚2
𝑣1𝑖 

then using conservation of energy gives  

𝑥 =
𝑣𝑓

2

2𝜇𝑘𝑔
=

1

2𝜇𝑘𝑔
(

𝑚1

𝑚1 + 𝑚2
)

2

𝑣1𝑖
2  

5. Calculations 

𝑥 = 0.00109 𝑚 ≈ 0.1 𝑐𝑚 

6. Looking back. 

The dimension of 𝑥 is correct (meters). The stopping distance is small (less than half an inch) but 

reasonable. It is interesting to note that Hollywood movies are so wrong when an object (a body) flies 

far away with high speed after being hit by a bullet. (See Mythbusters, season 2005, episode 25. Myths 

tested:  Can a person be blown away by a bullet?) 

Example 8-3 

You have been called to testify in a trial involving a head-on collision. Car A weighs 1500 lb and was 

traveling eastward with an initial speed of 𝑣𝐴. Car B weighs 1100 lb and was traveling westward at 

an initial speed of 𝑣𝐵 = 45 𝑚𝑝ℎ. The cars locked bumpers and slid eastward with their wheels locked 

for 19 ft before stopping. The coefficient of kinetic friction between the tires and the road was 

measured to be 𝜇𝑘 = 0.75. 

How fast (in mph) was car A travelling just before the collision? (note – English units are used in  U.S. 

legal proceedings.)  

SOLUTION: 
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1. Physics – completely inelastic collision + dissipation of kinetic energy through friction 

(conservation of energy). (This example is somewhat similar to example 9-2.) 

2. The basic equations 

𝑚𝐴𝑣𝐴 + 𝑚𝐵𝑣𝐵 = (𝑚𝐴 + 𝑚𝐵)𝑣𝑓         completely inelastic collision  

1

2
(𝑚𝐴 + 𝑚𝐵)𝑣𝑓

2 = 𝜇𝑘(𝑚𝐴 + 𝑚𝐵)𝑔𝑥  conservation of energy (after) 

3. Assume that car A was moving in the positive 𝑥-direction (eastward), and then the direction of card 

B was negative (westward) (keeping correct signs is important!) 

𝑚𝐴𝑣𝐴 − 𝑚𝐵𝑣𝐵 = (𝑚𝐴 + 𝑚𝐵)𝑣𝑓   

4. From conservation of energy we can easily find the final speed of the wreckage  

𝑣𝑓 = √2𝜇𝑘𝑔𝑥 

Using it in the momentum equation 

𝑣𝐴 =
𝑚𝐵

𝑚𝐴
𝑣𝐵 +

𝑚𝐴 + 𝑚𝐵

𝑚𝐴
√2𝜇𝑘𝑔𝑥 

5. Calculations 

First we need to switch to SI units for speed and distance, but we can keep English units for masses 

since they are entering equation as ratios. 

45 𝑚𝑝ℎ = 45 
𝑚𝑖𝑙𝑒

ℎ
 (

1609 𝑚

1 𝑚𝑖𝑙𝑒
) (

1 ℎ

3600 𝑠
) = 20 𝑚/𝑠 

19 𝑓𝑡 = 19 𝑓𝑡 
1.0 𝑚

3.28 𝑓𝑡
= 5.8 𝑚 

𝑣𝐴 =
1100 𝑙𝑏

1500 𝑙𝑏
20 𝑚 𝑠⁄ +

1100 𝑙𝑏 + 1500𝑙𝑏

1500 𝑙𝑏
√2 ∙ 0.75 ∙ 9.8 𝑚 𝑠2⁄ ∙ 5.8 𝑚 = 30.7 𝑚 𝑠⁄ ,   

30.7 𝑚 𝑠⁄ = 30.7
𝑚

𝑠
(

1 𝑚𝑖𝑙𝑒

1609 𝑚
) (

3600 𝑠

1 ℎ
) = 69 𝑚𝑝ℎ 

6. Looking back. 

Units are correct. If the wreckage slides eastward, and the masses or the cars are comparable, then 

car A must have been traveling faster than car B when they collided. It corresponds to our result. 

Example 8-4 

It is well known that bullets and other missiles fired at Superman simply bounce off his chest. Suppose 

that a gangster sprays Superman’s chest with 5.0 g bullets at a rate of 100 bullets/min, and the speed 

of each bullet is 500 m/s. Suppose too that the bullets rebound straight back with no change speed. 

What is the magnitude of the average force on Superman’s chest from the stream of bullets? 
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SOLUTION: 

1. Physics –force, momentum. 

2. The basic equation 

The force can be found from the impulse (change of momentum) 

𝐽 = 𝑝𝑓 − 𝑝𝑖 = 𝐹𝑎𝑣𝑔Δ𝑡. 

3. Assume that bullets were incoming from positive 𝑥 direction (or negative initial velocity) 

𝑚𝑣0 + 𝑚𝑣0 = 𝐹𝑎𝑣𝑔Δ𝑡. 

or   

2𝑚𝑣0 = 𝐹𝑎𝑣𝑔Δ𝑡 

4. Solving the last equation for 𝐹𝑎𝑣𝑔 

𝐹𝑎𝑣𝑔 =
2𝑚𝑣0

Δ𝑡
 

5. Calculations 

𝐹𝑎𝑣𝑔 =
2 ∙ 0.005 𝑘𝑔 ∙ 100 ∙ 500 𝑚 𝑠⁄

60 𝑠
= 8.3 𝑁  

6. Looking back. 

Units are correct. Commons sense cannot be applied to Superman, but the force (8.3 N or about 2 lb) 

looks reasonable and small (unlike in movies!) 

Example 8-5 

The ballistic pendulum was used to measure the speeds of bullets before electronic timing devices 

were developed. The version is shown in Figure consists of a large block of wood of mass M=5.4 kg, 

hanging from two long cords. A bullet of mass 9.5 g is fired into the block, coming quickly to rest. The 

block + bullet then swing upward, their center of mass rising a vertical distance h=6.3 cm before the 

pendulum comes momentarily to rest at the end of its arc.  

a) What is the speed of the bullet just prior to the collision? 

b) Find the fraction of kinetic energy lost in the ballistic-pendulum collision. 

SOLUTION: 
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1. Physics – completely inelastic collision + conservation of 

mechanical energy.  

2. The basic equations 

𝑚𝑣𝑖 + 𝑀𝑣𝐵𝑖 = (𝑚 + 𝑀)𝑣𝑓   

1

2
(𝑚 + 𝑀)𝑣𝑓

2 = (𝑚 + 𝑀)𝑔ℎ 

3. Initially the wooden block was not moving 𝑣𝐵𝑖 = 0  

𝑚𝑣𝑖 = (𝑚 + 𝑀)𝑣𝑓   

4. Solving for 𝑣𝑓 

𝑣𝑓 =
𝑚

𝑚 + 𝑀
𝑣𝑖 

Using it in the energy equation 

1

2
𝑣𝑓

2 = 𝑔ℎ    𝑜𝑟   
1

2

𝑚2

(𝑚 + 𝑀)2
𝑣𝑖

2 = 𝑔ℎ 

then 

𝑣𝑖 =
𝑚 + 𝑀

𝑚
√2𝑔ℎ 

Fraction of kinetic energy lost in the collision 

𝑅 =
𝐾𝑖 − 𝐾𝑓

𝐾𝑖
= 1 −

1
2

(𝑚 + 𝑀)𝑣𝑓
2

1
2 𝑚𝑣𝑖

2
= 1 −

𝑚 + 𝑀

𝑚

𝑚2

(𝑚 + 𝑀)2

𝑣𝑖
2

𝑣𝑖
2 = 1 −

𝑚

𝑚 + 𝑀
=

𝑀

𝑚 + 𝑀
 

5. Calculations 

𝑣𝑖 =
(0.0095 𝑘𝑔 + 5.4 𝑘𝑔)

0.0095 𝑘𝑔
√2 ∙ 9.8 𝑚 𝑠2⁄ ∙ 0.063𝑚 = 630 𝑚 𝑠⁄ ,       𝑅 =

5.4 𝑘𝑔

0.0095 𝑘𝑔 + 5.4 𝑘𝑔
= 0.998 

6. Looking back. 

Units are correct. The speed of the bullet matches common speeds for rifles. 

Example 8-6 

A careless physics professor is in the path of a pack of stampeding elephants when Tarzan swings in 

to the rescue on a rope vine, hauling him off to safety. The length of the vine is 16 m, and Tarzan starts 

his swing with the rope horizontal. If the professor’s mass is 80 kg and Tarzan’s mass is also 80 kg to 

what height above the ground will the pair swing? (Assume the rope is vertical when Tarzan grabs 

the professor.) 

SOLUTION: 
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1. Physics – completely inelastic collision + conservation of mechanical energy.  

2. The basic equations 

𝑚1𝑣1𝑖 + 𝑚2𝑣2𝑖 = (𝑚1 + 𝑚2)𝑣𝑓   

1

2
𝑀𝑣2 = 𝑀𝑔ℎ 

3. There are three phases of motion in the problem, namely a) Tarzan swings from the tree 

(conservation of mechanical energy), b) picking up the professor (completely inelastic collision), and 

c) the pair swings up (conservation of mechanical energy). Assuming that 1 stands for Tarzan and 2 

for the professor one can write 

𝑚1𝑔𝑅 =
1

2
𝑚1𝑣1

2                                   𝑝ℎ𝑎𝑠𝑒 1 

𝑚1𝑣1 = (𝑚1 + 𝑚2)𝑣𝑓                         𝑝ℎ𝑎𝑠𝑒 2  

(𝑚1 + 𝑚2)
𝑣𝑓

2

2
=  (𝑚1 + 𝑚2)𝑔ℎ       𝑝ℎ𝑎𝑠𝑒 3 

where 𝑅 is the length of the vine, and ℎ is the height above the ground for Tarzan and the professor. 

4. Solving for ℎ (after simple algebra) 

ℎ = (
𝑚1

𝑚1 + 𝑚2
)

2

𝑅 

5. Calculations 

 𝑅 = (
80 𝑘𝑔

80 𝑘𝑔 + 80 𝑘𝑔
)

2

16 𝑚 = 4 𝑚 

6. Looking back. 

Units are correct. it is interesting that the final height is one quarter of the rope, not one half as one 

would expect using just conservation of energy. 

Example 8-7 

A 4.5 kg dog stands on an 18 kg flatboat 𝐿 + 𝑑 = 6.1 𝑚 from the shore. The dog walks 𝐿 = 2.4 𝑚 along 

the boat toward the shore, and then stops. Assuming there is no friction between the boat and the 

water, find how far the dog is then from the shore.  

Hint: use a stationary point as a reference point +having a diagram with proper notations helps a lot. 

Note that the center of mass for a uniform boat is in the middle (at L/2). 
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 SOLUTION: 

1. Physics: a system of particles (the 

dog and boat) 

2. The basic equation 

𝑀𝑎𝐶𝑀 = �⃗�𝑒𝑥𝑡 

3. Let 1 be the dog and 2 be the boat. 

We choose the origin at the shore 

line. 

The net force acting on the system is zero (gravity is balanced by the buoyant force) �⃗�𝑒𝑥𝑡 = 0. Initially 

the system was stationary 𝑣𝐶𝑀 = 0, then the position of the center of mass does not change despite 

the dog and boat change their positions, or 𝑥𝐶𝑀 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  

𝑚1𝑥1𝑖 + 𝑚2𝑥2𝑖

𝑚1 + 𝑚2
=

𝑚1𝑥1𝑓 + 𝑚2𝑥2𝑓

𝑚1 + 𝑚2
 

Using notations from the diagram 

𝑚1(𝑑 + 𝐿) + 𝑚2 (𝑑 +
𝐿

2
) = 𝑚1(𝑑 + 𝑥) + 𝑚2 (𝑑 + 𝑥 +

𝐿

2
) 

 

4. Solving the last equation for 𝑥 

𝑥 =
𝑚1

𝑚1 + 𝑚2
𝐿 

Note that the answer does not depend on our choice of the origin. It was easier to set the origin at the 

initial position of the left side of the boat and adding the distance 𝑑 later. 

So, the dog’s position relative to the shore is 

𝑑 + 𝑥 = 𝑑 +
𝑚1

𝑚1 + 𝑚2
𝐿 

5. Calculations 

Note that 𝑑 = 6.1 𝑚 − 2.4 𝑚 = 3.7 𝑚 

𝑑 + 𝑥 = 3.7 𝑚 +
4.5 𝑘𝑔

4.5 𝑘𝑔 + 18 𝑘𝑔
2.4 𝑚 = 4.18 𝑚  

6. Looking back. 

Units are correct. The distance is not too short or too large. 

For infinitely heavy boat 𝑚2 ≫ 𝑚1 we get 𝑥 ≈ 0 and 𝑑 + 𝑥 = 3.7 𝑚 that corresponds to common 

sense. 
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Example 8-8 

The cat Tom, of mass 7.0 kg, and the mouse Jerry (see the cartoon "Tom and Jerry") are in a 1.0 kg 

canoe. When the canoe is at rest in the placid water, they exchange seats, which are 2.0 m apart and 

symmetrically located with respect to the canoe's center. The canoe moves 1.7 m relative to the shore 

during the exchange. What is Jerry's mass? 

SOLUTION 

1. Physics – system of “particles” 

(Tom, Jerry, the boat) 

2. The basic equation 

𝑀𝑎𝐶𝑀 = �⃗�𝑒𝑥𝑡 

3. Since there are no external 

forces, initially the system was at 

rest, and we have one dimensional 

case, then  

𝑥𝐶𝑀 =
1

𝑀
∑ 𝑚𝑖𝑥𝑖

𝑛

𝑖=1

= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

or despite all the changes the center of mass stays at the same position. 

𝑚𝑇𝑥𝑇𝑖 + 𝑚𝐽𝑥𝐽𝑖 + 𝑚𝑏𝑥𝑏𝑖

𝑚𝑇 + 𝑚𝐽 + 𝑚𝑏
=

𝑚𝑇𝑥𝑇𝑓 + 𝑚𝐽𝑥𝐽𝑓 + 𝑚𝑏𝑥𝑏𝑓

𝑚𝑇 + 𝑚𝐽 + 𝑚𝑏
 

Using notations from the diagram, and assuming that the boat has moved to the right  

𝑚𝑇0 + 𝑚𝐽𝐿 + 𝑚𝑏

𝐿

2
= 𝑚𝑇(𝐿 + 𝑥) + 𝑚𝐽𝑥 + 𝑚𝑏 (

𝐿

2
+ 𝑥)  

4. Solving the last equation for 𝑚𝐽 

𝑚𝐽(𝐿 − 𝑥) = 𝑚𝑇(𝐿 + 𝑥) + 𝑚𝑏𝑥 

𝑚𝐽 =
𝑚𝑇(𝐿 + 𝑥) + 𝑚𝑏𝑥

𝐿 − 𝑥
 

5. Calculations 

𝑚𝐽 =
7 𝑘𝑔(2 𝑚 + 1.7 𝑚) + 1 𝑘𝑔 ∗ 1.7 𝑚

2 𝑚 − 1.7 𝑚
= 92 𝑘𝑔 

6. Looking back. 

Units are correct but the answer does not have sense! We expect Jerry to be less than Tom. It means 

that our assumption that the boat has moved to the right was not correct. If Tom was heavier than 

Jerry, then the boat had to move to the left.  Thus we should rather have negative 𝑥 
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𝑚𝐽 =
𝑚𝑇(𝐿 − 𝑥) + 𝑚𝑏(−𝑥)

𝐿 + 𝑥
 

𝑚𝐽 =
7 𝑘𝑔(2 𝑚 − 1.7 𝑚) − 1 𝑘𝑔 ∗ 1.7 𝑚

2 𝑚 + 1.7 𝑚
= 0.108 𝑘𝑔 

Now it looks reasonable.  

Example 8-9 

At an intersection, a car of mass 1500 kg going east collides with a 

pickup truck with mass 1800 kg is travelling north and ran a red light. 

The two vehicles stick together as a result of the collision and the 

wreckage slides 16.0 meters in a straight line 240 east of north. The 

coefficient of kinetic friction for the tires on the road is 0.90. 

Calculate the speed of each vehicle before the collision. 

SOLUTION: 

1. Physics – completely inelastic collision in two dimensions+ dissipation of kinetic energy through 

friction (conservation of energy).  

2. The basic equations 

Completely inelastic collision (in vector form) 

𝑚1�⃗�1𝑖 + 𝑚2�⃗�2𝑖 = (𝑚1 + 𝑚2)�⃗�𝑓 

Conservation of energy (all kinetic energy after the collision goes into termal/friction) 

1

2
(𝑚1 + 𝑚2)𝑣𝑓

2 = 𝜇𝑘(𝑚1 + 𝑚2)𝑔𝑑             

3. Using components for velocities (where 1 is the car, and 2 is the truck) 

𝑥 − 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡      𝑚1𝑣1𝑖 + 0 = (𝑚1 + 𝑚2)𝑣𝑓 sin 𝜃 

𝑦 − 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡      0 + 𝑚2𝑣2𝑖 = (𝑚1 + 𝑚2)𝑣𝑓 cos 𝜃 

4. From conservation of energy we can easily find the final speed of the wreckage  

𝑣𝑓 = √2𝜇𝑘𝑔𝑑 

Using it in the momentum equation 

𝑣1𝑖 =
(𝑚1 + 𝑚2)

𝑚1
𝑣𝑓 sin 𝜃 =

(𝑚1 + 𝑚2)

𝑚1
(√2𝜇𝑘𝑔𝑑) sin 𝜃 

𝑣2𝑖 =
(𝑚1 + 𝑚2)

𝑚2
𝑣𝑓 cos 𝜃 =

(𝑚1 + 𝑚2)

𝑚2
(√2𝜇𝑘𝑔𝑑) cos 𝜃 

5. Calculations 
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𝑣1𝑖 = 15 𝑚 𝑠⁄         𝑜𝑟   34 𝑚𝑝ℎ 

𝑣2𝑖 = 28 𝑚 𝑠⁄         𝑜𝑟   63 𝑚𝑝ℎ   

6. Looking back. 

Units are correct. Both speeds are possible (not too fast or too slow) for cars. 

 

*add example on rocket motion (with gravity) 
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9 Rotation in two dimensions 

9.1 Rotational motion 

In the previous chapters, we have been studying the mechanics of points, or small particles whose 

internal structure does not concern us. For the next two chapters we shall study the application of 

Newton's laws to more complicated things. When the world becomes more complicated, it also 

becomes more interesting, and we shall find that the phenomena associated with the mechanics of a 

more complex object than just a point are really quite striking. Of course these phenomena involve 

nothing but combinations of Newton's laws, but it is sometimes hard to believe that only �⃗� = 𝑚�⃗� is 

at work. 

The more complicated objects we deal with can be of several kinds: water flowing, galaxies whirling, 

and so on. The simplest "complicated" object to analyze, at the start, is what we call a rigid body, a 

solid object that is turning as it moves about. However, even such a simple object may have a most 

complex motion, and we shall therefore first consider the simplest aspects of such motion, in which 

an extended body rotates about a fixed axis. A given point on such a body then moves in a plane 

perpendicular to this axis. Such rotation of a body about a fixed axis is called plane rotation or rotation 

in two dimensions. 

Of course an ordinary object does not simply rotate, it wobbles, shakes, and bends, so to simplify 

matters we shall discuss the motion of a nonexistent ideal object which we call a rigid body. This 

means object in which the forces between the atoms are so strong, that the little forces that are needed 

to move it do not bend it. Its shape stays essentially the same as it moves about. If we wish to study 

the motion of such a body and agree to ignore the motion of its center of mass, there is only one thing 

left for it to do, and that is to turn. 
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We have to describe that. How? Suppose there is some line in the body which stays put (perhaps it 

includes the center of mass and perhaps not), and the body is rotating about this particular line as an 

axis. How do we define the rotation? That is easy enough, for if we mark a point somewhere on the 

object, anywhere except on the axis, we can always tell exactly where the object is, if we only know 

where this point has gone to. The only thing needed to describe the position of that point is an angle. 

So rotation consists of a study of the variations of the angle with time. 

9.2 Rotational variables 

In order to study rotation, we observe the angle through which a body has turned. Of course, we are 

not referring to any particular angle inside the object itself; it is not that we draw some angle on the 

object. We are talking about the angular change of the position of the whole thing, from one time to 

another. 

In describing rotational motion, the most natural way to measure the angle 𝜃 is not in degrees or 

revolutions but in radians. 

 

Then 

𝜃 =
𝑠

𝑟
     𝑜𝑟     𝑠 = 𝜃𝑟 

Because the circumference of a circle of radius 𝑟 is 2𝜋𝑟, there are 2𝜋 radians in a complete circle 

1 rev = 3600 =
2𝜋𝑟

𝑟
= 2𝜋 rad  

and thus  

1 rad =
3600

2𝜋
=  

1800

𝜋
≈ 57.30      1 rad =  

1

2𝜋
≈ 0.159 rev 

We do not reset 𝜃 to zero for each complete rotation of the reference line about the rotational axis. If 

the reference line completes two revolutions from the zero angular position, then the angular position 

𝜃 of the line is 𝜃 = 4𝜋  rad. 

First, let us study the kinematics of rotations. The angle will change with time, and just as we talked 

about position and velocity in one dimension, we may talk about angular position and angular velocity 

in plane rotation. In fact, there is a very interesting relationship between rotation in two dimensions 

and one-dimensional displacement, in which almost every quantity has its analog. First, we have the 
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angle 𝜃 which defines how far the body has gone around; this replaces the distance 𝑥, which defines 

how far it has gone along. In the same manner, we have a velocity of turning, 𝜔 = 𝑑𝜃 𝑑𝑡⁄ , which tells 

us how much the angle changes in a second, just as 𝑣 = 𝑑𝑠 𝑑𝑡⁄  describes how fast a thing moves, or 

how far it moves in a second. If the angle is measured in radians, then the angular velocity 𝜔 will be 

so and so many radians per second. The greater the angular velocity, the faster the object is turning, 

the faster the angle changes. We can go on: we can differentiate the angular velocity with respect to 

time, and we can call 𝛼 = 𝑑𝜔 𝑑𝑡⁄ = 𝑑2𝜃 𝑑𝑡2⁄  the angular acceleration. That would be the analog of 

the ordinary acceleration. 

9.2.1 Angular displacement 

If a body rotates about the rotational axis, changing the angular position of the reference line from 𝜃1 

to 𝜃2, then the body undergoes an angular displacement Δ𝜃 given by 

Δ𝜃 = 𝜃2 − 𝜃1 (9.1) 

The definition of angular displacement holds not only for the rigid body as a whole but also for every 

particle within that body because all the particles are locked together. 

If a body is in translational motion along an 𝑥 axis, its displacement Δ𝑥 is either positive or negative, 

depending on whether the body is moving in the positive or negative direction of the axis. Similarly, 

the angular displacement Δ𝜃 of a rotating body is either positive or negative, according to the 

following rule: 

An angular displacement in the counterclockwise direction is positive, and one in the clockwise 

direction is negative. 

9.2.2 Angular velocity  

Suppose that our rotating body is at angular position 𝜃1 at time 𝑡1 and at angular position 𝜃2 at time 

𝑡2. We define the average angular velocity of the body in the time interval Δ𝑡 from 𝑡1 to 𝑡2 to be 

𝜔𝑎𝑣𝑔 =
𝜃2 − 𝜃1

𝑡2 − 𝑡1
=

Δ𝜃

Δ𝑡
 (9.2) 

in which Δ𝜃 is the angular displacement that occurs during Δ𝑡 (𝜔 is the Greek letter omega). 

The (instantaneous) angular velocity 𝜔, with which we shall be most concerned, is the limit of the 

above ratio as Δ𝑡 approaches zero. Thus, 

𝜔 = lim
Δ𝑡→0

Δ𝜃

Δ𝑡
=

𝑑𝜃

𝑑𝑡
. (9.3) 

If we know 𝜃(𝑡), we can find the angular velocity 𝜔 by differentiation. 

Equations for 𝜔𝑎𝑣𝑔 and 𝜔 hold not only for the rotating rigid body as a whole but also for every particle 

of that rigid body because the particles are all locked together.  
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The unit of angular velocity is commonly the radian per second (𝑟𝑎𝑑/𝑠) or the revolution per second 

(𝑟𝑒𝑣/𝑠). Another measure of angular velocity is used in engineering, namely 𝑟𝑝𝑚, meaning number 

of revolutions per minute. 

Two useful conversions are 

1 𝑟𝑒𝑣 𝑠⁄ = 2𝜋 𝑟𝑎𝑑 𝑠⁄    𝑎𝑛𝑑    1 𝑟𝑒𝑣 𝑚𝑖𝑛⁄ = 1 𝑟𝑝𝑚 =  
2𝜋

60
𝑟𝑎𝑑 𝑠⁄ . 

If a particle moves in translation along an 𝑥 axis, its linear velocity 𝑣 is positive or negative, depending 

on whether the particle is moving in the positive or negative direction of the axis. Similarly, the 

angular velocity 𝜔 of a rotating rigid body is either positive or negative, depending on whether the 

body is rotating counterclockwise (positive) or clockwise (negative).  

The magnitude of an angular velocity is called the angular speed, which is also represented with 𝜔. 

9.2.3 Angular acceleration 

If the angular velocity of a rotating body is not constant, then the body has an angular acceleration. 

Let 𝜔2  and 𝜔1 be its angular velocities at times 𝑡2 and 𝑡1, respectively. The average angular 

acceleration of the rotating body in the interval from 𝑡1 to 𝑡2 is defined as 

𝛼𝑎𝑣𝑔 =
𝜔2 − 𝜔1

𝑡2 − 𝑡1
=

Δω

Δ𝑡
, (9.4) 

in which Δω is the change in the angular velocity that occurs during the time interval Δ𝑡. The 

(instantaneous) angular acceleration 𝛼, with which we shall be most concerned, is the limit of this 

quantity as Δ𝑡 approaches zero. Then, 

𝛼 = lim
Δ𝑡→0

Δω

Δ𝑡
=

𝑑𝜔

𝑑𝑡
. (9.5) 

Equations above hold not only for the rotating rigid body as a whole but also every particle of that 

body. The unit of angular acceleration is commonly the radian per second-squared (rad/s2) or the 

revolution per second-squared (rev/s2). 

9.2.4 Angular velocity and angular acceleration as vectors 

We can describe the position, velocity, and acceleration of a single particle by means of vectors. If a 

particle is confined to a straight line, however, we do not really need vector notation. Such a particle 

has only two directions available to it, and we can indicate these directions with plus and minus signs. 

In the same way, a rigid body rotating about a fixed axis can rotate only clockwise or counterclockwise 

as seen along the axis, and again we can select between the two directions by means of plus and minus 

signs. However, in general the direction of angular velocity �⃗⃗⃗� (as a vector) is defined using a right-

hand rule as figure shows 
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It is not easy to get used to representing angular quantities as vectors. We instinctively expect that 

something should be moving along the direction of a vector. That is not the case here. Instead, 

something (the rigid body) is rotating around the direction of the vector. In the world of pure rotation, 

a vector defines an axis of rotation, not a direction in which something moves. Furthermore, it obeys 

all the rules for vector manipulation discussed before. 

Just as we did for angular velocity, it’s useful to define an angular acceleration vector �⃗� 

 

Now for the caution: Angular displacements (unless they are very small) cannot be treated as vectors. 

Why not? We can certainly give them both magnitude and direction as we did for the angular velocity 

vector. However, to be represented as a vector, a quantity must also obey the rules of vector addition, 

one of which says that if you add two vectors, the order in which you add them does not matter. 

Angular displacements fail this test. 

9.3 Rotation with constant angular acceleration 

In pure translation, motion with a constant linear acceleration (for example. that of a falling body) is 

an important special case. In pure rotation, the case of constant angular acceleration is also important, 

and a parallel set of equations hold for this case also. We shall not derive them here, but simply write 
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them from the corresponding linear equations, substituting equivalent angular quantities for the 

linear ones. 

 

9.4 Relating the linear and angular variables 

In Section 3-5, we discussed uniform circular motion, in which a particle travels at constant linear 

speed 𝑣 along a circle and around an axis of rotation. When a rigid body, such as a merry-go-round, 

rotates around an axis, each particle in the body moves in its own circle around that axis. Since the 

body is rigid, all the particles make one revolution in the same amount of time; that is, they all have 

the same angular speed 𝜔. However, the farther a particle is from the axis, the greater the 

circumference of its circle is, and so the faster its linear speed 𝑣 must be.  

We often need to relate the linear variables 𝑠, 𝑣, and 𝑎 for a particular point in a rotating body to the 

angular variables 𝜃, 𝜔, and 𝛼 for that body. The two sets of variables are related by 𝑟, the 

perpendicular distance of the point from the rotation axis. This perpendicular distance is the distance 

between the point and the rotation axis, measured along a perpendicular to the axis. It is also the 

radius 𝑟 of the circle traveled by the point around the axis of rotation. 

9.4.1 The position 

If a reference line on a rigid body rotates through an angle 𝜃, a point within the body at a position 𝑟 

from the rotation axis moves a distance 𝑠 along a circular arc, where 𝑠 is given by 

𝑠 = 𝜃𝑟 (9.6) 

This is the first of our linear-angular relations.  

Caution: The angle 𝜃 here must be measured in radians because equation above is itself the definition 

of angular measure in radians. 

9.4.2 The speed 

Differentiating equation above with respect to time – with 𝑟 held constant-leads to 
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𝑑𝑠

𝑑𝑡
=

𝑑𝜃

𝑑𝑡
𝑟 

However, 𝑑𝑠/𝑑𝑡 is the linear speed (the magnitude of the linear velocity) of the point in question, and 

𝑑𝜃 𝑑𝑡⁄  is the angular speed 𝜔 of the rotating body. So 

𝑣 = 𝜔𝑟 (9.7) 

Caution: The angular speed 𝜔 must be expressed in radian measure. 

This equation tells us that since all points within the rigid body have the same angular speed 𝜔, points 

with greater radius 𝑟 have greater linear speed 𝑣. (Remember that the linear velocity is always 

tangent to the circular path of the point in question).  If the angular speed 𝜔 of the rigid body is 

constant, the linear speed 𝑣 of any point within it is also constant. Thus, each point within the body 

undergoes uniform circular motion.  

The period of revolution 𝑇 for the motion of each point and for the rigid body itself is given by 

𝑇 =
2𝜋𝑟

𝑣
. 

This equation tells us that the time for one revolution is the distance 2𝜋𝑟 traveled in one revolution 

divided by the speed at which that distance is traveled. Substituting for 𝑣 from 𝑣 = 𝜔𝑟 and canceling 

𝑟, we find also that 

𝑇 =
2𝜋

𝜔
 

This equivalent equation says that the time for one revolution is the angular distance 2𝜋 rad traveled 

in one revolution divided by the angular speed (or rate) at which that angle is traveled. 

9.4.3 The acceleration 

Differentiating 𝑣 = 𝜔𝑟 with respect to time (again with 𝑟 held constant) leads to 

𝑑𝑣

𝑑𝑡
=

𝑑𝜔

𝑑𝑡
𝑟 

Here we run up against a complication. Here 𝑑𝑣/𝑑𝑡 represents only the part of the linear acceleration 

that is responsible for changes in the magnitude 𝑣 of the linear velocity �⃗�. Like �⃗�, that part of the linear 

acceleration is tangent to the path of the point in question. We call it the tangential component at of 

the linear acceleration of the point, and we write 

𝑎𝑡 = 𝛼𝑟 (9.8) 

where 𝛼 = 𝑑𝜔 𝑑𝑡⁄ . Caution: The angular acceleration 𝛼 must be expressed in radian measure. 

However, a particle (or point) moving in a circular path has a radial component of linear acceleration, 

𝑎𝑟 = 𝑣2/𝑟 (directed radially inward), that is responsible for changes in the direction of the linear 

velocity �⃗�. By substituting for 𝑣 = 𝜔𝑟, we can write this component as 
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𝑎𝑟 =
𝑣2

𝑟
= 𝜔2𝑟. (9.9) 

Thus, the linear acceleration of a point on a rotating rigid body has, in general, two components.  

The radially inward component 𝑎𝑟  (given by 𝑎𝑟 = 𝜔2𝑟) is 

present whenever the angular velocity of the body is not zero. 

The tangential component 𝑎𝑡 (given by 𝑎𝑡 = 𝛼𝑟) is present 

whenever the angular acceleration is not zero. 

The total linear acceleration vector of the point is  

�⃗� = �⃗�𝑡 + �⃗�𝑟 

(�⃗�𝑡 describes the change in how fast the point is moving, and �⃗�𝑟 

represents the change in its direction of travel.) Because �⃗� is a 

vector having a radial and a tangential component, the 

magnitude of a for the point P on the rotating rigid object is 

𝑎 = √𝑎𝑡
2 + 𝑎𝑟

2 = √𝛼2𝑟2 + 𝜔4𝑟2 = 𝑟√𝛼2 + 𝜔4 

 

9.5 Kinetic energy of rotation 

A rotating rigid body certainly has kinetic energy due to that rotation. How can we express that 

energy? We cannot apply the familiar formulae 𝐾 = (1 2⁄ )𝑚𝑣2 to the body as a whole because that 

would only give us the kinetic of the body’s center of mass. (This is zero for pure rotation) 

Instead, we shall treat a rotating rigid body as a collection of particles with different speeds. We can 

then add up the kinetic energies of all the particles to find the kinetic energy of the rotation. 

𝐾 =
1

2
𝑚1𝑣1

2 +
1

2
𝑚2𝑣2

2 +
1

2
𝑚3𝑣3

2 + ⋯ = ∑
1

2
𝑚𝑖𝑣𝑖

2 

in which 𝑚𝑖 is the mass of the i-th particle and 𝑣𝑖 is its speed. The sum is taken over all the particles 

in the body. The problem with this equation is that 𝑣𝑖 is not the same for all particles. We solve this 

problem by substituting 𝑣𝑖 = 𝜔𝑟𝑖 

𝐾 = ∑
1

2
𝑚𝑖𝑣𝑖

2 = ∑
1

2
𝑚𝑖(𝜔𝑟𝑖)2 =

1

2
(∑ 𝑚𝑖𝑟𝑖

2) 𝜔2 

in which 𝜔 is the same for all particles of the rigid body. 

The quantity in parentheses on the right side of equation above tells us how the mass of the rotating 

body is distributed about its axis of rotation. We call that quantity the rotational inertia (or moment 

of inertia) 𝐼 of the body with respect to the axis of rotation. It is a constant for a particular rigid body 

and a particular rotation axis. (That axis must always be specified if the value of I is to be meaningful.) 

We may now write 
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𝐼 = ∑ 𝑚𝑖𝑟𝑖
2 (9.10) 

and then 

𝐾 =
1

2
𝐼𝜔2. (9.11) 

Because we have used the relation 𝑣𝑖 = 𝜔𝑟𝑖 in deriving, 𝜔 must be expressed in radian measure. The 

SI unit for 𝐼 is the kilogram-square meter (kgm2). 

Equation above gives the kinetic energy of a rigid body in pure rotation. It is the angular equivalent 

of the formula 𝐾 = (1 2⁄ )𝑀𝑣𝑐𝑚
2  which gives the kinetic energy of a rigid body in pure translation. In 

both formulas there is a factor of 1 2⁄ . Where mass 𝑀 appears in one equation, 𝐼 (which involves hoth 

mass and its distribution) appears in the other. Finally, each equation contains as a factor the square 

of a speed- translational or rotational as appropriate. The kinetic energies of translation and of 

rotation are not different kinds of energy. They are both kinetic energy expressed in ways that are 

appropriate to the motion at hand. 

It is important that you recognize the analogy between kinetic energy associated with linear motion 

(1 2⁄ )𝑚𝑣2 and rotational kinetic energy (1 2⁄ )𝐼𝜔2. The quantities 𝐼 and 𝜔 in rotational motion are 

analogous to 𝑚 and 𝑣 in linear motion, respectively. (In fact, 𝐼 takes the place of 𝑚 every time we 

compare a linear-motion equation with its rotational counterpart.) The moment of inertia is a 

measure of the resistance of an object to changes in its rotational motion, just as mass is a measure of 

the tendency of an object to resist changes in its linear motion. Note, however, that mass is an intrinsic 

property of an object, whereas 𝐼 depends on the physical arrangement of that mass. 

9.6 Calculating the rotational inertia 

If a rigid body consists of a few particles we can calculate its rotational inertia about a given rotation 

axis with 𝐼 = ∑ 𝑚𝑖𝑟𝑖
2. If a rigid body consists of a great many adjacent particles (it is continuous, like 

a Frisbee), using the sum is not practical. Thus, instead, we replace the sum with an integral and define 

the rotational inertia of the body as 

𝐼 = ∫ 𝑟2𝑑𝑚 (9.12) 

where 𝑑𝑚 represents the mass of any infinitesimal particle of the body and 𝑟 is the perpendicular 

distance of this particle from the axis of rotation. The integral is taken over the whole body. This is 

easily done only for bodies of simple geometric shape. Since we can write 𝑑𝑚 = 𝜌𝑑𝑉 where 𝜌 is the 

density, and 𝑑𝑉 is the elementary volume 

𝐼 = ∫ 𝑟2𝜌𝑑𝑉 = ∫ 𝜌𝑟2𝑑𝑉 = ∫ 𝜌𝑟2𝑑𝑥𝑑𝑦𝑑𝑧. 

For a body with a uniform density 𝜌 = 𝜌0 we have 
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𝐼 = 𝜌0 ∫ 𝑟2𝑑𝑥𝑑𝑦𝑑𝑧 (9.13) 

These equation can be easily modified for linear objects (𝑑𝑚 = 𝜆𝑑𝑙) and flat objects (𝑑𝑚 = 𝜎𝑑𝑆). 

Lets’ calculate the moment of inertia of a uniform rigid rod of 

length L and mass M about an axis perpendicular to the rod (the 

y axis) and passing through its center (the center of mass). 

𝑑𝑚 = 𝜆𝑑𝑥 =
𝑀

𝐿
𝑑𝑥 

𝐼𝑦 = ∫ 𝑟2𝑑𝑚 = ∫ 𝑥2
𝑀

𝐿
𝑑𝑥

𝐿
2

−
𝐿
2

=
𝑀

𝐿
∫ 𝑥2𝑑𝑥

𝐿
2

−
𝐿
2

=
𝑀

𝐿
[
𝑥3

3
]

−
𝐿
2

𝐿
2

 

𝐼𝑦 =
1

12
𝑀𝐿2  

 

Since students (in university physics I) have rather limited or no experience with multiple (two and 

three- dimensional integration) we will use results of such integration for most common bodies (see 

Figure 25). 

 

Figure 25 Moment of inertia of most common bodies 
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Suppose we want to find the rotational inertia 𝐼 of a body of mass 𝑀 about a given axis. In principle, 

we can always find 𝐼 with the integration. However, there is a shortcut if we happen to already know 

the rotational inertia 𝐼𝑐𝑚 of the body about a parallel axis that extends through the body's center of 

mass. Let ℎ be the perpendicular distance between the given axis and the axis through the center of 

mass (remember these two axes must be parallel). Then the rotational inertia 𝐼 about the given axis 

is 

𝐼 = 𝐼𝑐𝑚 + 𝑚ℎ2 

This equation is known as the parallel-axis theorem. 

9.7 Potential energy of a rigid body 

Gravitational potential energy of a rigid body can be written as an infinite sum over all mass elements 

𝑚𝑖 as 

𝑈 = 𝑚1𝑔𝑦1 + 𝑚2𝑔𝑦2 + 𝑚3𝑔𝑦3 + ⋯ = (𝑚1𝑦1 + 𝑚2𝑦2 + 𝑚3𝑦3 + ⋯ )𝑔 

However, having the definition for the center of mass (in 𝑦 −direction)  

𝑦𝑐𝑚 =
𝑚1𝑦1 + 𝑚2𝑦2 + 𝑚3𝑦3 + ⋯

𝑚1 + 𝑚2 + 𝑚3 + ⋯
 

together with definition for the total mass 𝑀 = 𝑚1 + 𝑚2 + 𝑚3 + ⋯,  one has 

𝑚1𝑦1 + 𝑚2𝑦2 + 𝑚3𝑦3 + ⋯ = 𝑀𝑦𝑐𝑚 

Combining this with the previous equation for 𝑈, we get 

𝑈 = 𝑀𝑔𝑦𝑐𝑚 (9.14) 

where 𝑦𝑐𝑚 is the vertical coordinate of the center of mass. 
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9.8 Examples 

Example 9-1 

The angular velocity of helicopter blades (a rotor) changes from 320 rev/min to 225 rev/min in 5.0 s 

as the rotor slows down to rest.  

a) What time interval is required for the blades to come to rest from their initial angular velocity 

of 320 rev/min? 

b) How many revolutions do the blades make in coming to rest from the initial 320 rev/min? 

SOLUTION: 

1. Physics – rotation with constant angular acceleration  

2. The basic equations 

𝜃 = 𝜃0 + 𝜔0𝑡 +
1

2
𝛼𝑡2 

𝜔 = 𝜔0 + 𝛼𝑡 

3. Let’s note that the angular acceleration for the problem can be found from the given information 

(change for angular velocity from 𝜔1 to 𝜔2 in Δ𝑡 time interval), namely 

𝛼 =
𝜔2 − 𝜔1

Δ𝑡
 

The first unknown (the time to stop) can be found from the second equation of motion (𝜔 = 𝜔0 + 𝛼𝑡) 

using the condition 𝜔𝑓 = 0, and the second question can be easily answered using the first equation 

of motion with constant angular acceleration 

4. Let 𝑡𝑓 be the time required to stop. Then 

𝑡𝑓 =
𝜔𝑓 − 𝜔0

𝛼
= −

𝜔0

𝛼
 

Then the total angular displacement during this time is 

𝜃 = 𝜃0 + 𝜔0𝑡𝑓 +
1

2
𝛼𝑡𝑓

2 

5. Calculations 

We better work with SI units. Then 

320
𝑟𝑒𝑣

𝑚𝑖𝑛
= 320

𝑟𝑒𝑣

𝑚𝑖𝑛
(

2𝜋 𝑟𝑎𝑑

𝑟𝑒𝑣
) (

1 𝑚𝑖𝑛

60 𝑠
) = 33.5 

𝑟𝑎𝑑

𝑠
,  

225
𝑟𝑒𝑣

𝑚𝑖𝑛
= 225

𝑟𝑒𝑣

𝑚𝑖𝑛
(

2𝜋 𝑟𝑎𝑑

𝑟𝑒𝑣
) (

1 𝑚𝑖𝑛

60 𝑠
) = 23.6 

𝑟𝑎𝑑

𝑠
 

𝛼 =
(23.6 − 33.5) 𝑟𝑎𝑑 𝑠⁄

5 𝑠
= −1.98 𝑟𝑎𝑑 𝑠2⁄  
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𝑡𝑓 = −
33.5 𝑟𝑎𝑑 𝑠⁄

−1.98 𝑟𝑎𝑑 𝑠2⁄
= 16.8 𝑠 

𝜃 = 0 + 33.5
𝑟𝑎𝑑

𝑠
∙ 16.8 𝑠 +

1

2
(−1.98 𝑟𝑎𝑑 𝑠2⁄ ) ∙ (16.8 𝑠)2 = 282 𝑟𝑎𝑑   𝑜𝑟  

282 𝑟𝑎𝑑

2𝜋
= 45 𝑟𝑒𝑣. 

6. Looking back. 

Units are correct. Both time and number of revolutions seems reasonable.  

Example 9-2 

What is the linear speed of a point (in mph) 

a) on Earth's equator? 

b) on northern pole?  

c) at latitude of Norfolk?  (coordinates of Norfolk are about 36°N and 76°W) 

SOLUTION: 

SOLUTION 1 (the easiest) 

By definition speed = distance/time. Let’s consider circular motion with radius R and period (time) 

T. Then distance = circumference = 2𝜋𝑅. And speed on Earth’s equator (𝑅 = 𝑅𝐸) 

𝑣 =
2𝜋𝑅

𝑇
=

2 ∙ 3.1415 ∙ 6.37 ∙ 106𝑚

24 ℎ
= 1.667 ∙ 106

𝑚

ℎ
= 1.667 ∙ 106

𝑚

ℎ
(

1 𝑚𝑖𝑙𝑒

1609 𝑚
) = 1036 𝑚𝑝ℎ 

Since rotational radius depend on the latitude as 𝑅 = 𝑅𝐸 cos 𝜃 we can easily calculate speeds for 

Norfolk VA and the Northern pole. 

SOLUTION 2 (connecting angular and linear variables) 

1. Physics – connecting rotational and translational variables.  

2. The basic equations 

𝑣 = 𝜔𝑅 

3. We know that the one revolution 𝜃 = 2𝜋 of the planet takes 24 hours. 

Then the angular speed 

𝜔 =
2𝜋

𝑇
 

and the linear speed 

𝑣 = 𝜔𝑅 =
2𝜋

𝑇
𝑅 

4. The radius of revolution depends on latitude as 𝑅 = 𝑅𝐸 cos 𝛽 (e.g. angle 𝛽 = 360 for Norfolk). Thus  

𝑣 =  
2𝜋𝑅𝐸

𝑇
cos 𝛽 
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5. Calculations for angles 00 (Equator), 360 (Norfolk, VA), and 900 (Northern Pole) 

𝑣𝑒𝑞𝑢𝑎𝑡𝑜𝑟 = 1036 𝑚𝑝ℎ, 𝑣𝑁𝑟𝑓𝑜𝑙𝑘 = 839 𝑚𝑝ℎ, 𝑣𝑃𝑜𝑙𝑒 = 0 𝑚𝑝ℎ 

  

6. Looking back. 

Units are correct.  

Example 9-3 

A wagon wheel is constructed as shown. The radius of the wheel is 0.300 m, 

and the rim has mass 1.40 kg. Each of the eight spokes that lie along the 

diameter are 0.300 m long has mass 0.280 kg. 

What is the moment of inertia of the wheel about an axis through its center 

and perpendicular to the plane of the wheel? 

SOLUTION: 

1. Physics – calculating rotational inertia for a complex object.  

2. The basic equations 

𝐼 = ∑ 𝑚𝑖𝑟𝑖
2 

𝐼 = 𝜌 ∫ 𝑟2𝑑𝑥𝑑𝑦𝑑𝑧 

3. The problem looks quite complicated because we cannot apply the first equation for the solid body, 

and certainly we do not want to integrate over the complex shape. However, any rotational inertia for 

an object that has several parts can be written as 

𝐼𝑡𝑜𝑡𝑎𝑙 = 𝐼1 + 𝐼2 + ⋯ 𝐼𝑛 

4. The wheel can be viewed as the rim + eight identical spokes, then 

𝐼𝑡𝑜𝑡𝑎𝑙 = 𝐼𝑟𝑖𝑚 + 8𝐼𝑠𝑝𝑜𝑘𝑒 

From Figure 25 we have 𝐼𝑟𝑖𝑚 = 𝑀𝑟𝑖𝑚𝑅𝑟𝑖𝑚
2  and 𝐼𝑠𝑝𝑜𝑘𝑒 = (1 3⁄ )𝑚𝑠𝑝𝑜𝑘𝑒𝑅𝑠𝑝𝑜𝑘𝑒

2  

5. Calculations 

𝐼𝑡𝑜𝑡𝑎𝑙 = 1.4 𝑘𝑔 ∙ (0.30 𝑚)2 + 8 ∙ (1 3⁄ ) ∙ 0.28 kg ∙ (0.30 𝑚)2 = 0.193 kg ∙ m2 

6. Looking back. 

Units are correct.  

Example 9-4 
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The pulley (a solid cylinder) has radius 0.160 m and mass of 1.0 kg. The rope 

does not slip on the pulley rim. Use energy methods to calculate the speed 

of the 4.0-kg block just before it strikes the floor. 

SOLUTION: 

1. Physics – conservation of energy for translational and rotational motion 

in presence of gravitational force.  

2. The basic equations 

𝐾𝑖 + 𝑈𝑖 = 𝐾𝑓 + 𝑈𝑓 

𝐾𝑡 =
1

2
𝑚𝑣2,     𝐾𝑟 =

1

2
𝐼𝜔2,     𝑈𝑔 = 𝑚𝑔ℎ 

3. There is a system with three connected parts, so we have to include every part into equation for 

conservation of energy. 

Let’s use notations 𝑚 for 2,0 kg block, 𝑀 for 4.0 kg block, and 𝐼 for the pulley. Then 

𝐾𝑚𝑖 + 𝑈𝑔𝑚𝑖 + 𝐾𝑀𝑖 + 𝑈𝑔𝑀𝑖 + 𝐾𝐼𝑖 + 𝑈𝑔𝐼𝑖 = 𝐾𝑚𝑓 + 𝑈𝑔𝑚𝑓 + 𝐾𝑀𝑓 + 𝑈𝑔𝑀𝑓 + 𝐾𝐼𝑓 + 𝑈𝑔𝐼𝑓 

4. Initially the system is at rest, so all initial kinetic energies are zero. We are going to count the 

gravitational potential energy from the ground. Let’s also note that gravitational potential energy of 

the pulley does not change. With this in mind we have 

𝑈𝑔𝑀𝑖 = 𝐾𝑚𝑓 + 𝑈𝑔𝑚𝑓 + 𝐾𝑀𝑓 + 𝐾𝐼𝑓 

or being more specific 

𝑀𝑔ℎ =
1

2
𝑚𝑣2 +

1

2
𝑀𝑣2 +

1

2
𝐼𝜔2 + 𝑚𝑔ℎ 

where h=5.0 m.  

Since the rope does not slip, then 𝑣 = 𝜔𝑅. For a solid cylinder 𝐼 = 0.5𝑀𝑐𝑅2. Then we can rewrite the 

last equation as 

(𝑀 − 𝑚)𝑔ℎ =
1

2
𝑚𝑣2 +

1

2
𝑀𝑣2 +

1

2
(

1

2
𝑀𝑐𝑅2)

𝑣2

𝑅2
=

1

2
𝑣2 (𝑚 + 𝑀 +

1

2
𝑀𝑐) 

Solving for 𝑣 gives 

𝑣 = √
2(𝑀 − 𝑚)𝑔ℎ

𝑚 + 𝑀 +
1
2 𝑀𝑐

 

5. Calculations 
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𝑣 = √
2(4.0 𝑘𝑔 − 2.0 𝑘𝑔)9.8 𝑚 𝑠2⁄ ∙ 5 𝑚

(2.0 + 4.0 + 0.5 ∙ 1.0) 𝑘𝑔
= 5.5 𝑚/𝑠 

6. The units are correct. For 𝑀𝑐 = 0 we get the answer for example 7-7. 
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10 Dynamics of rotational motion 

10.1 Torque 

Let us now move on to consider the dynamics of rotation. Here a new concept, force, must be 

introduced. Let us inquire whether we can invent something which we shall call the torque (Latin 

torquere, to twist) which bears the same relationship to rotation as force does to linear movement. A 

force is the thing that is needed to make linear motion, and the thing that makes something rotate is 

a "rotary force" or a "twisting force," i.e., a torque. Qualitatively, a torque is a "twist". What is a torque 

quantitatively? 

Here is some intuitive approach to define torque. A doorknob is located as far as possible from the 

door's hinge line for a good reason. If you want to open a heavy door, you must certainly apply a force: 

that alone, however, is not enough. Where you apply that force and in what direction you push are also 

important.  

Figure shows a cross section of a body that is free to rotate about an 

axis passing through O and perpendicular to the cross section. A force 

�⃗� is applied at point P, whose position relative to O is defined by a 

position vector 𝑟. The directions of vectors �⃗� and 𝑟 make an angle 𝜙 

with each other. (For simplicity, we consider only forces that have no 

component parallel to the rotation axis: thus �⃗� is in the plane of the 

page.). 

To determine how �⃗� results in a rotation of the body around the 

rotation axis, we resolve �⃗� into two components. One component, 
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called the parallel (radial) component 𝐹∥ points along 𝑟 . This component does not cause rotation 

because it acts along a line that extends through O. (If you pull on a door parallel to the plane of the 

door, you do not rotate the door.) The other component of �⃗�, called the perpendicular (tangential) 

component 𝐹⊥, is perpendicular to 𝑟 and has magnitude 𝐹⊥ = 𝐹 sin 𝜙. This component does cause 

rotation. (If you pull on a door perpendicular to its plane, you can rotate the door.) 

The ability of �⃗� to rotate the body depends not only on the magnitude of its tangential component 𝐹⊥ 

, but also on just how far from O the force is applied. To include both these factors, we define a quantity 

called torque 𝜏 as the product of the two factors and write it as 

𝜏 = 𝑟𝐹 sin 𝜙 = 𝑟𝐹⊥ 

Torque, which comes from the Latin word meaning "to twist," may be loosely identified as the turning 

or twisting action of the force �⃗�. When you apply a force to an object such as a screwdriver or torque 

wrench with the purpose of turning that object, you are applying a torque.  

The SI unit of torque is the newton-meter (Nm). Caution: The newton-meter is also the unit of work. 

Torque and work however, are quite different quantities and must not be confused. Work is often 

expressed in joules (1 J = 1 Nm), but torque never is. 

Now we can write a general definition for torque based on a vector product of two vectors, namely 

𝜏 = 𝑟 × �⃗� (10.1) 

This definition has both magnitude and direction because torque is a vector.  

At this point we need to talk more about vector product of two vectors 

10.2 Vector Product 

The vector product of two vectors 𝐴 and �⃗⃗�, also called a cross product, is denoted by 𝐴 × �⃗⃗�. The vector 

product is itself a vector. 

𝐶 = 𝐴 × �⃗⃗� (10.2) 

The magnitude of the vector (cross) product is defined as 

𝐶 = 𝐴𝐵 sin 𝜙 (10.3) 

We measure the angle 𝜙 from 𝐴 toward �⃗⃗�, and take it to be the smallest of two possible angles, so 𝜙 

ranges from 00 to 1800 (the magnitude of 𝐶 is always positive) 

Some properties of the cross product 

𝐴 × 𝐴 = 0 

𝐴 × �⃗⃗� = −�⃗⃗� × 𝐴 

𝐴 × (�⃗⃗� + 𝐶) = 𝐴 × �⃗⃗� + 𝐴 × 𝐶 
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𝑑

𝑑𝑡
(𝐴 × �⃗⃗�) =

𝑑𝐴

𝑑𝑡
× �⃗⃗� + 𝐴 ×

𝑑�⃗⃗�

𝑑𝑡
. 

There are always two directions perpendicular to a given plane, one on each side of a plane. The 

direction of the vector product follows the right-hand rule.  

Imagine rotating vector 𝐴 about the perpendicular line until it is align with 

�⃗⃗�, choosing the smaller of the two possible angles between 𝐴 and �⃗⃗�. Curl the 

fingers of your right hand around the perpendicular line so that the 

fingertips point in the direction of rotation; your thumb will then point in 

the direction of 𝐴 × �⃗⃗�. Figure shows this right-hand rule 

If we know the components of 𝐴 and �⃗⃗�, we can calculate the components of the vector product 𝐶 =

𝐴 × �⃗⃗� using properties of unit vectors 

𝑖̂ × 𝑖̂ = 𝑗̂ × 𝑗̂ = �̂� × �̂� = 0 

𝑖̂ × 𝑗̂ = −𝑗̂ × 𝑖̂ = �̂� 

𝑗̂ × �̂� = −�̂� × 𝑗̂ = 𝑖 ̂

�̂� × 𝑖̂ = −𝑖̂ × �̂� = 𝑗 ̂

we get 

𝐶 = 𝐴 × �⃗⃗� = (𝐴𝑥𝑖̂ + 𝐴𝑦𝑗̂ + 𝐴𝑧�̂�) × (𝐵𝑥𝑖̂ + 𝐵𝑦𝑗̂ + 𝐵𝑧�̂�) 

= (𝐴𝑦𝐵𝑧 − 𝐴𝑧𝐵𝑦)𝑖̂ + (𝐴𝑧𝐵𝑥 − 𝐴𝑥𝐵𝑧)𝑗̂ + (𝐴𝑥𝐵𝑦 − 𝐴𝑦𝐵𝑥)�̂� 

Thus, the components of the resulting vector are given by 

𝐶𝑥 = 𝐴𝑦𝐵𝑧 − 𝐴𝑧𝐵𝑦 

𝐶𝑦 = 𝐴𝑧𝐵𝑥 − 𝐴𝑥𝐵𝑧 

𝐶𝑧 = 𝐴𝑥𝐵𝑦 − 𝐴𝑦𝐵𝑥 
(10.4) 

10.3 Torque as a vector product 

The torque 𝜏 acting on acting on the particle relative to the fixed point 0 is a vector quantity  

𝜏 = 𝑟 × �⃗� 

We can evaluate the vector (or cross) product in this definition of by using 

𝜏 = 𝑟𝐹 sin 𝜙 = 𝑟𝐹⊥ (10.5) 

or in the component form (keeping in mind that normally we place 𝑟 and �⃗� in the xy-plane),  

𝜏𝑧 = 𝑟𝑥𝐹𝑦 − 𝑟𝑦𝐹𝑥 (10.6) 

10.4 Newton’s Second Law for rotation 

A torque can cause rotation of a rigid body, as when you use a torque to rotate a door.  
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Let’s consider the simple situation shown in figure to the left. 

The rigid body there consists of a particle of mass m on one end 

of a massless rod of length r. The rod can move only by rotating 

about its other end, around a rotation axis (an axle) that is 

perpendicular to the plane of the page. Thus, the particle can 

move only in a circular path that has the rotation axis at its 

center. 

A force �⃗� acts on the particle. However, because the particle can 

move only along the circular path, only the tangential 

component 𝐹𝑡 of the force (the component that is tangent to the 

circular path) can accelerate the particle along the path. We can 

relate 𝐹𝑡 to the particle's tangential acceleration at along the 

path with Newton's second law, writing 

𝐹𝑡 = 𝑚𝑎𝑡 

The torque acting on the particle is 

𝜏 = 𝐹𝑡𝑟 = 𝑚𝑎𝑡𝑟 

From 𝑎𝑡 = 𝛼𝑟 we can write this as 

𝜏 = 𝑚(𝛼𝑟)𝑟 = (𝑚𝑟2)𝛼 

The quantity in parentheses on the right side of equation above is the rotational inertia of the particle 

(𝐼 = 𝑚𝑟2) about the rotation axis. Thus,  

𝜏 = 𝐼𝛼 

We can easily extend this equation to any rigid body rotating about a fixed axis, because any such 

body can always be analyzed as an assembly of single particles. 

𝜏1𝑧 + 𝜏2𝑧 + ⋯ = 𝐼1𝛼𝑧 + 𝐼2𝛼𝑧 + ⋯ = (𝐼1 + 𝐼2 + ⋯ )𝛼𝑧 = 𝐼𝛼𝑧 

Thus we can write rotational analog of Newton’s second law for a rigid body (We assume that the 

angular acceleration 𝛼 is the same for all particles in the body). For rotations in xy-plane 

∑ 𝜏𝑧 = 𝜏𝑛𝑒𝑡,𝑧 = 𝐼𝛼𝑧 (10.7) 

Generally in vector form for rotation in three dimensional space 

𝜏 = 𝐼�⃗� (10.8) 

Just as Newton's second law says that the net force on a particle equals the particle's mass times its 

acceleration, equation above says that the net torque on a rigid body equals the body's moment of 

inertia about the rotation axis times its angular acceleration. Thus, this equation is the rotational 

analog of Newton’s second law for linear motion �⃗� = 𝑚�⃗�. 
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This equation doesn't apply to a rotating tank of water or a swirling tornado of air, different parts of 

which have different angular accelerations.  

The torque on each particle is due to the net force on that particle, which is the vector sum of external 

and internal forces. According to Newton's third law, the internal forces that any pair of particles in 

the rigid body exerts on each other are equal and opposite. If these forces act along the line joining 

the two particles, their lever arms with respect to any axis are also equal. So the torques for each such 

pair are equal and opposite and add to zero. Hence all the internal torques add to zero, so the sum in 

𝜏𝑛𝑒𝑡,𝑧 includes only the torques of the external forces. 

10.5 Rolling 

We can extend our analysis of the rotational motion to some cases in which the axis of rotation moves. 

When that happens, the motion of the body is combined translation and rotation. The key to 

understanding such situations is this: Every possible motion of a rigid body can be represented as a 

combination of translational motion of the center of mass and rotation about an axis through the 

center of mass. This is true even when the center of mass accelerates, so that it is not at rest in any 

inertial frame. 

Consider a system with two particles (extension to 𝑛 particles is evident). The kinetic energy 𝐾 of a 

system of particles is the sum of the kinetic energies of the individual particles: 

𝐾 = 𝐾1 + 𝐾2 =
1

2
𝑚1𝑣1

2 +
1

2
𝑚2𝑣2

2 

The position of a particle can be written as the sum of two vectors, the position of the center of mass 

and the position of the particle relative to the center of mass 

𝑟 = 𝑟𝑐𝑚 + 𝑠 

Then differentiating this vector we get the velocity of a particle as  

�⃗� = �⃗�𝑐𝑚 + �⃗⃗� 

where �⃗�𝑐𝑚 is the velocity of the center of mass and �⃗⃗� is the velocity of the particle relative to the center 

of mass. Substituting it into equation for the kinetic energy, we obtain 

𝐾 =
1

2
𝑚1(�⃗�𝑐𝑚 + �⃗⃗�1)2 +

1

2
𝑚2(�⃗�𝑐𝑚 + �⃗⃗�2)2 

=
1

2
𝑚1𝑣𝑐𝑚

2 +
1

2
𝑚2𝑣𝑐𝑚

2 +
1

2
𝑚1𝑢1

2 +
1

2
𝑚2𝑢2

2 + 𝑚1�⃗�𝑐𝑚�⃗⃗�1 + 𝑚2�⃗�𝑐𝑚�⃗⃗�2 

=
1

2
(𝑚1 + 𝑚2)𝑣𝑐𝑚

2 +
1

2
𝑚1𝑢1

2 +
1

2
𝑚2𝑢2

2 + �⃗�𝑐𝑚(𝑚1�⃗⃗�1 + 𝑚2�⃗⃗�2) 

The quantity 𝑚1�⃗⃗�1 + 𝑚2�⃗⃗�2 is equal to 

𝑚1�⃗⃗�1 + 𝑚2�⃗⃗�2 =
𝑑

𝑑𝑡
(𝑚1𝑠1 + 𝑚2𝑠2) =

𝑑

𝑑𝑡
((𝑚1 + 𝑚2)𝑠𝑐𝑚) 
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where 𝑠𝑐𝑚 is the position of the center of mass relative to the center of mass, and clearly 𝑠𝑐𝑚 = 0. 

Then 𝑚1�⃗⃗�1 + 𝑚2�⃗⃗�2 = (𝑚1 + 𝑚2)�⃗⃗�𝑐𝑚 = 0 (the velocity of anything relative to itself is always equal to 

zero.) It follows that  

𝐾 =
1

2
(𝑚1 + 𝑚2)𝑣𝑐𝑚

2 +
1

2
(𝑚1𝑢1

2 + 𝑚2𝑢2
2) 

The last term is the sum of the kinetic energies calculated by using their speeds with respect to the 

center of mass; this is just the kinetic energy of rotation with the same angular speed 𝜔 = 𝑢 𝑟⁄ , then 

1

2
(𝑚1𝑢1

2 + 𝑚2𝑢2
2) =

1

2
(𝑚1𝜔2𝑟1

2 + 𝑚2𝜔2𝑟2
2) =

1

2
(𝑚1𝑟1

2 + 𝑚2𝑟2
2)𝜔2 =

1

2
(𝐼1 + 𝐼2)𝜔2 

Thus, the kinetic energy is the sum of a part associated with motion of the center of mass and a part 

associated with rotation about an axis through the center of mass:  

𝐾 =
1

2
(𝑚1 + 𝑚2)𝑣𝑐𝑚

2 +
1

2
(𝐼1 + 𝐼2)𝜔2 

For rigid bodies the rotational inertia does not change during motion. Thus, for any system of particles 

or a rigid body we can write 

𝐾 =
1

2
𝑀𝑣𝑐𝑚

2 +
1

2
𝐼𝑐𝑚𝜔2 (10.9) 

where 𝑀 is the total mass of the system, and 𝐼𝑐𝑚 is the rotational inertia associated with rotation 

about an axis through the center of mass. 

10.5.1 Smooth rolling 

An important case of combined translation and rotation is rolling without slipping, such as the motion 

of a wheel. The wheel is symmetrical, so its center of mass is at its geometric center. We view the 

motion in an inertial frame of reference in which the surface on which the wheel rolls is at rest. In this 

frame, the point on the wheel that contacts the surface must be instantaneously at rest so that it does 

not slip. Hence the velocity �⃗�1
′  of the point of contact relative to the center of mass must have the same 

magnitude but opposite direction as the center-of-mass velocity �⃗�𝑐𝑚′. If the radius of the wheel is 𝑅 

and its angular speed about the center of mass is 𝜔, then the magnitude of �⃗�𝑐𝑚′ is 𝑅𝜔; hence we must 

have 𝑣𝑐𝑚 = 𝑅𝜔 for smooth (without slipping) rolling motion. 
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As the figure above shows, the velocity of a point on the wheel is the vector sum of the velocity of the 

center of mass and the velocity of the point relative to the center of mass. Thus, while point 1, the 

point of contact, is instantaneously at rest, point 3 at the top of the wheel is moving forward twice as 

fast as the center of mass, and points 2 and 4 at the sides have velocities at 450 to the horizontal. 

Now, in the kinetic energy of rolling  

𝐾 =
1

2
𝑀𝑣𝑐𝑚

2 +
1

2
𝐼𝑐𝑚𝜔2 

we have 

𝑣𝑐𝑚 = 𝜔𝑅 (10.10) 

or the linear and angular velocities are not independent.  

10.5.2 The forces of rolling 

If a wheel rolls at constant speed it has no tendency to slide at the point of contact P, and thus no 

frictional force acts there. However, if a net force acts on the rolling wheel to speed it up or to slow it 

down, then that net force causes acceleration 𝑎𝑐𝑚 of the center of mass along the direction of travel. 

It also causes the wheel to rotate faster or slower, which means it causes an angular acceleration 𝛼 

about the center of mass. These accelerations tend to make the wheel slide at P. Thus, a frictional force 

must act on the wheel at P to oppose that tendency.  

If the wheel does not slide, the force is a static frictional force 𝑓𝑠 and the motion is smooth rolling. We 

can then relate the magnitudes of the linear acceleration and the angular acceleration by 

differentiating 𝑣𝑐𝑚 = 𝜔𝑅 with respect to time (with 𝑅 held constant). So, for smooth rolling we have 

𝑎𝑐𝑚 = 𝛼𝑅 

Let’s study rolling down a ramp. 

This figure shows a round uniform body of mass 𝑀 and radius 𝑅 rolling 

smoothly down a ramp at angle , along an x axis. We want to find 

expressions for the body's acceleration 𝑎𝑐𝑚 down the ramp. We do this 

by using Newton's second law in both its linear version (𝐹𝑛𝑒𝑡  =  𝑀𝑎) 

and its angular version (𝜏𝑛𝑒𝑡 = 𝐼𝛼). 

We start by drawing the forces on the body 

1. The gravitational force �⃗�𝑔 on the body is directed downward. The 

tail of the vector is placed at the center of mass of the body. The 

component along the ramp is 𝑓𝑔 sin 𝜃, which is equal to 𝑀𝑔 sin 𝜃. 

2. A normal force �⃗⃗⃗� is perpendicular to the ramp. It acts at the point of contact P, but the vector has 

been shifted along its direction until its tail is at the body's center of mass. 
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3. A static frictional force 𝑓𝑠 acts at the point of contact P and is directed up the ramp. (Do you see 

why? If the body were to slide at P, it would slide down the ramp. Thus, the frictional force opposing 

the sliding must be up the ramp.) We can write Newton's second law for components along the x axis 

in 

𝑓𝑠 − 𝑀𝑔 sin 𝜃 = 𝑀𝑎𝑐𝑚. 

This equation contains two unknowns, 𝑓𝑠 and 𝑎𝑐𝑚. We should not assume that 𝑓𝑠 is at its maximum 

value 𝑓𝑠,𝑚𝑎𝑥. All we know is that the value of 𝑓𝑠, is just right for the body to roll smoothly down the 

ramp, without sliding. 

We now wish to apply Newton's second law in angular form to the body's rotation about its center of 

mass 𝜏𝑛𝑒𝑡 = 𝐼𝛼. The frictional force produces a torque 𝑅𝑓𝑠, which is positive because it tends to rotate 

the body counterclockwise in Figure. Forces�⃗�𝑔 and �⃗⃗⃗� produce zero torques (do you see why?). So we 

can write the angular form of Newton's second law about an axis through the body's center of mass 

as 

𝑅𝑓𝑠 = 𝐼𝑐𝑚𝛼. 

This equation contains two unknowns, 𝑓𝑠 and 𝛼. 

Because the body is rolling smoothly, we can use 𝑎𝑐𝑚 = 𝛼𝑅 to relate the unknown accelerations. But 

we must be cautious because here 𝑎𝑐𝑚 is negative (in the negative direction of the x axis) and 𝛼 is 

positive (counterclockwise). Thus we substitute −𝑎𝑐𝑚/𝑅  for 𝛼, and 

𝑓𝑠 = −𝐼𝑐𝑚

𝑎𝑐𝑚

𝑅2
 

Substituting it to the first equation 𝑓𝑠 − 𝑀𝑔 sin 𝜃 = 𝑀𝑎𝑐𝑚 we find 

𝑎𝑐𝑚 = −
𝑔 sin 𝜃

1 + 𝐼𝑐𝑚 𝑀𝑅2⁄
 

We can use this equation to find the linear acceleration of any body rolling smoothly (without 

slipping) along an incline. 

For most rolling objects the rotational inertia 𝐼 can be written as 𝐼 = 𝛽𝑀𝑅2 where 𝛽 is a coefficient 

specific for specific shape (for example 𝛽 = 2 5⁄  for a solid sphere). Then  

𝑎𝑐𝑚 = −
𝑔 sin 𝜃

1 + 𝛽
 

and 

𝑓𝑠 =
𝛽

1 + 𝛽
𝑀𝑔 sin 𝜃 

Let’s find the static frictional force needed to prevent slipping 

𝜇𝑠𝑀𝑔 cos 𝜃 ≥
𝛽

1 + 𝛽
𝑀𝑔 sin 𝜃 
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or 

𝜇𝑠 ≥
𝛽

1 + 𝛽
tan 𝜃. 

10.6 Translation and rotation dynamics 

Rolling is a nice example of combined translation and rotation dynamics. Earlier we demonstrated 

(section 8.3) that for a body with total mass 𝑀, the acceleration of the center of mass is the same as 

that of a point mass 𝑀 acted on by all the external forces on the actual body: 

∑ �⃗�𝑒𝑥𝑡 = 𝑀�⃗�𝐶𝑀 

The rotational motion about the center of mass is described by the rotational analog of Newton’s 

second law, Eq. (10.7) 

∑ 𝜏𝑧 = 𝐼𝑐𝑚�⃗�𝑧 

provided the following two conditions are met for combined translation and rotation  motion  

1. The axis through the center of mass must be an axis of symmetry. 

2. The axis must not change direction. 

These conditions are satisfied for many types of rotation. We can now solve dynamics problems 

involving a rigid body that undergoes translational and rotational motions at the same time, if the 

rotation axis satisfies the two conditions just mentioned 

10.7 Work and Power in Rotational Motion 

In chapter 6 we related change in kinetic energy of a moving particle with force acting on that particle 

along some path 

∆𝐾 = 𝐾𝑓 − 𝐾𝑖 = ∫ �⃗� ∙ 𝑑𝑟
𝑓

𝑖

= 𝑊(𝑖 → 𝑓) 

Then the power was defined as  

𝑃 =
𝑑𝑊

𝑑𝑡
= �⃗� ∙ �⃗� 

We can easily derive similar equations for a rotational situation. Here are just resulting equations 

∆𝐾 = 𝐾𝑓 − 𝐾𝑖 =
1

2
𝐼𝜔𝑓

2 −
1

2
𝐼𝜔𝑖

2  = ∫ 𝜏𝑧𝑑𝜃
𝑓

𝑖

= 𝑊(𝑖 → 𝑓) 

When 𝜏𝑧 is constant 

∆𝐾 = 𝜏𝑧(𝜃𝑓 − 𝜃𝑖) = 𝑊(𝑖 → 𝑓) 

The rotational equivalent of power for rotational motion is 
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𝑃 =
𝑑𝑊

𝑑𝑡
= 𝜏𝑧𝜔𝑧 

10.8 Angular momentum 

Although we have only considered the special case of a rigid body thus far, the properties of torques 

and their mathematical relationships are interesting also even when an object is not rigid. In fact, we 

can prove a very remarkable theorem: just as external force is the rate of change of a quantity 𝑝, which 

we call the total momentum of a collection of particles, the external torque is the rate of change of a 

quantity �⃗⃗� which we call the angular momentum of the group of particles. 

To prove this, we shall suppose that there is a system of particles on which there are some forces 

acting and find out what happens to the system as a result of the torques due to these forces. First, of 

course, we should consider just one particle of mass 𝑚 moving around an axis 𝑂; the particle is not 

necessarily rotating in a circle about 𝑂, it may be moving in an ellipse, like a planet going around the 

sun, or in some other curve. The torque is   

𝜏𝑧 = 𝑥𝐹𝑦 − 𝑦𝐹𝑥 

and using Newton’s second law we can write it as 

𝜏𝑧 = 𝑥𝑚
𝑑2𝑦

𝑑𝑡2
− 𝑦𝑚

𝑑2𝑥

𝑑𝑡2
 

Now, although this does not appear to be the derivative of any simple quantity, it is in fact the 

derivative of the quantity  

𝑥𝑚 (
𝑑𝑦

𝑑𝑡
) − 𝑦𝑚 (

𝑑𝑥

𝑑𝑡
) 

𝑑

𝑑𝑡
[𝑥𝑚 (

𝑑𝑦

𝑑𝑡
) − 𝑦𝑚 (

𝑑𝑥

𝑑𝑡
)] = 𝑥𝑚 (

𝑑2𝑦

𝑑𝑡2 ) + (
𝑑𝑥

𝑑𝑡
) 𝑚 (

𝑑𝑦

𝑑𝑡
) − 𝑦𝑚 (

𝑑2𝑥

𝑑𝑡2 ) − (
𝑑𝑦

𝑑𝑡
) 𝑚 (

𝑑𝑥

𝑑𝑡
)

= 𝑥𝑚
𝑑2𝑦

𝑑𝑡2
− 𝑦𝑚

𝑑2𝑥

𝑑𝑡2
 

So it is true that the torque is the rate of change of something with time! So we pay attention to the 

"something," we give it a name: we call it 𝐿, the angular momentum, where for 𝑧 −component 

𝐿𝑧 = 𝑥𝑚 (
𝑑𝑦

𝑑𝑡
) − 𝑦𝑚 (

𝑑𝑥

𝑑𝑡
) = 𝑥𝑝𝑦 − 𝑦𝑝𝑥 

So we have found that there is also a rotational analog for the momentum, and that this analog, the 

angular momentum, is given by an expression in terms of the components of linear momentum that 

is just like the formula for torque in terms of the force components!  

Generally, in vector notation the angular momentum for a particle with constant mass m, velocity �⃗� 

momentum 𝑝 and position vector 𝑟 relative to the origin 𝑂 of an inertial frame is defined as  
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�⃗⃗� = 𝑟 × 𝑝 = 𝑟 × 𝑚�⃗� (10.11) 

Like torque, angular momentum depends upon the position of the axis about which it is to be 

calculated. 

10.8.1 Conservation of angular momentum 

Now we shall go on to consider what happens when there is a large number of particles, when an 

object is made of many pieces with many forces acting between them and on them from the outside. 

Now suppose we add the torques 𝜏𝑖 for all the particles and call it the total torque 𝜏. Now it might 

seem that the total torque is a complicated thing. There are all those internal forces and all the outside 

forces to be considered. But, if we take Newton's law of action and reaction to say, not simply that the 

action and reaction are equal, but also that they are directed exactly oppositely along the same line, 

then the two torques on the reacting objects, due to their mutual interaction, will be equal and 

opposite because the lever arms for any axis are equal. 

Let’s consider the total angular momentum  

�⃗⃗� = �⃗⃗�1 + �⃗⃗�2 = 𝑟1 × 𝑝1 + 𝑟2 × 𝑝2 

Differentiating with respect to 𝑡 

𝑑

𝑑𝑡
�⃗⃗� =

𝑑

𝑑𝑡
(𝑟1 × 𝑝1) +

𝑑

𝑑𝑡
(𝑟2 × 𝑝2) 

Because  

𝑑

𝑑𝑡
(𝑟 × 𝑝) = �⃗� × 𝑝 + 𝑟 ×

𝑑𝑝

𝑑𝑡
= 𝑟 × �⃗� 

then 

𝑑

𝑑𝑡
�⃗⃗� =

𝑑

𝑑𝑡
(𝑟1 × 𝑝1) +

𝑑

𝑑𝑡
(𝑟2 × 𝑝2) = 𝑟1 × �⃗�1 + 𝑟2 × �⃗�2 

Now let’s separate the effect of the internal and external forces. 

�⃗�1 = �⃗�𝑛𝑒𝑡,1 = �⃗�21 + �⃗�1
𝑒𝑥𝑡 ,   �⃗�2 = �⃗�𝑛𝑒𝑡,2 = �⃗�12 + �⃗�2

𝑒𝑥𝑡  

Substituting it into equation before, we find that 

𝑑

𝑑𝑡
�⃗⃗� = 𝑟1 × �⃗�21 + 𝑟1 × �⃗�1

𝑒𝑥𝑡 + 𝑟2 × �⃗�12 + 𝑟2 × �⃗�2
𝑒𝑥𝑡 

Let’s concentrate on the internal forces where �⃗�21 = −�⃗�12 (action-reaction). 
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𝑟1 × �⃗�21 + 𝑟2 × �⃗�12 = 𝑟1 × �⃗�21 − 𝑟2 × �⃗�21 = (𝑟1 − 𝑟2) × �⃗�21 

According to the vector diagram, vectors 𝑟1 − 𝑟2 and �⃗�21 are collinear 

and their cross product is zero. 

Therefore, the internal torques balance out pair by pair, and we have 

the remarkable theorem that the rate of change of the total angular 

momentum about any axis is equal to the external torque about that 

axis! 

𝜏 = ∑ 𝜏𝑖 = 𝜏𝑒𝑥𝑡 =
𝑑�⃗⃗�

𝑑𝑡
 (10.12) 

Thus we have a very powerful theorem concerning the motion of large collections of particles, which 

permits us to study the over-all motion without having to look at the detailed machinery inside. This 

theorem is true for any collection of objects, whether they form a rigid body or not.  

One extremely important case of the above theorem is the law of conservation of angular momentum: 

if no external torques acts upon a system of particles, the angular momentum remains constant. 

A special case of great importance is that of a rigid body, that is, an object of a definite shape that is just 

turning around. Consider an object that is fixed in its geometrical dimensions, and which is rotating 

about a fixed axis. For an object going around in a circle, the angular momentum is  

𝐿𝑖 = 𝑚𝑖𝑣𝑖𝑟𝑖 = 𝑚𝑖𝑟𝑖
2𝜔 

or, summing over all the particles 𝑖, we get 

�⃗⃗� = 𝐼�⃗⃗⃗� (10.13) 

where 𝑖 is the moment of inertia. This is the analog of the law that the momentum is mass times 

velocity. There is one important difference between mass and moment of inertia which is very 

dramatic. The mass of an object never changes, but its moment of inertia can be changed. If we stand 

on a frictionless, rotatable stand with our arms outstretched, and hold some weights in our hands as 

we rotate slowly, we may change our moment of inertia by drawing our arms in, but our mass does 

not change. If the external torque is zero, then the angular momentum remains constant. 

𝐼1ω⃗⃗⃗1 = 𝐼2�⃗⃗⃗�2 (10.14) 

Quite often in this course we consider rotational motion on 𝑥𝑦 plane, and then we can write 

𝐼1𝜔1𝑧 = 𝐼2𝜔2𝑧 (10.15) 

That is, if we reduce the moment of inertia, we have to increase the angular velocity. 
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10.9 Examples 

Example 10-1 

While exploring the castle, Exena the Exterminator is spotted by a dragon that chases her down a 

hallway. Exena runs into a safe room and attempts to swing a heavy door shut before the dragon gets 

her. The door is initially perpendicular to the wall, so it must be turned through 900 to be closed. The 

door is 3.00 m tall and 1.25 m wide, and its mass is 200.0 kg. If Exena applies a force of 220 N at the 

edge of the door and perpendicular to it, how much time does it take her to shut the door? Ignore the 

friction in the hinges. 

SOLUTION: 

1. Physics – Newton’s second law for rotational + motion with constant angular acceleration (because 

the  force is constant)  

2. The basic equations 

𝜏 = 𝐼𝛼 

𝜃 = 𝜃0 + 𝜔0𝑡 +
1

2
𝛼𝑡2 

3. For the door 𝐼 = (1 3⁄ )𝑀𝑤2, where 𝑤 is the width of the door. Then 

𝐹𝐸𝑤 =
1

3
𝑀𝑤2𝛼 

𝜃 =
𝜋

2
=

1

2
𝛼𝑡2 

4. From the first equation 

𝛼 =
3𝐹𝐸

𝑀𝑤
,   𝑡 = √

2𝜃

𝛼
 

5. Calculations 

𝛼 =
3 ∙ 220 𝑁

200.0 𝑘𝑔 ∙ 1.25 𝑚
= 2.64 

𝑁

𝑘𝑔 ∙ 𝑚
= 2.64

𝑘𝑔 ∙ 𝑚 ∙ 𝑠−2

𝑘𝑔 ∙ 𝑚
= 2.64

𝑟𝑎𝑑

𝑠2
 

𝑡 = √
2 ∙ 𝜋/2

2.64 𝑟𝑎𝑑 𝑠2⁄
= 1.09 𝑠 

6. Units are correct both for the angular acceleration and time. It is difficult to apply common sense 

to fairy tales, but with the force of 220 N (or about 50 lb) applied to the massive door (about 440 lb) 

the time seems realistic. 

 



10. Dynamics of rotational motion 

191 

 

Example 10-2 

Figure shows a uniform disk, with mass 𝑀 and radius 𝑅, 

mounted on a fixed horizontal axel. A block with mass 𝑚 hangs 

from a massless cord that is wrapped around the rim of the 

disk. Find the acceleration of the falling disk, and the tension in 

the cord. The cord does not slip, and there is no friction in the 

axel. 

SOLUTION: 

1. Physics – Newton’s second law for translational (the block) 

and rotational (the disk) motions.  

2. The basic equations 

𝐹 = 𝑚𝑎 

𝜏 = 𝐼𝛼 

3. As always we must have a free-body diagram for every object in the picture. Besides we use for the 

disk 𝐼 = (1 2⁄ )𝑀𝑅2, and since the cord does not slip 𝑎 = 𝛼𝑅. 

4. For the falling block 

𝑇 − 𝑚𝑔 = −𝑚𝑎 

For the disk 

−𝑅𝑇 = −𝐼𝛼 = −
1

2
𝑀𝑅2

𝑎

𝑅
= −

1

2
𝑀𝑅𝑎 

These two equations have two unknowns, namely 𝑇 and 𝑎. From the second equation 

𝑇 =
1

2
𝑀𝑎 

Using it in the first equation 

1

2
𝑀𝑎 − 𝑚𝑔 = −𝑚𝑎             𝑎 (𝑚 +

1

2
𝑀) = 𝑚𝑔 

𝑎 =
2𝑚

2𝑚 + 𝑀
𝑔 

𝑇 =
𝑚𝑀

2𝑚 + 𝑀
𝑔 

5. Calculations 

There were no data to calculate 

6. Let’s analyze the answer using our past knowledge. 
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It’s clear that for massless disk the acceleration of the block must be  . For 𝑀 = 0 we get  

𝑎 =
2𝑚

2𝑚 + 𝑀
𝑔 =

2𝑚

2𝑚
𝑔 = 𝑔 

For a very heavy disk 𝑀 ≫ 𝑚 we get 𝑎 ≈ 0 and 𝑇 ≈ 𝑚𝑔 (also this is what we expected). 

Example 10-3 

A golf ball (mass of 45.93 g and diameter of 42.67 mm) starts from rest and rolls without slipping a 

distance of 12.0 m down a hill towards a pond. The hill is inclined at 50. 

a) What fraction of the total kinetic energy of the golf ball is due to rotation as it gets to the pond? 

b) What is the speed of the golf ball at the bottom of the hill? 

SOLUTION: 

1. Physics – rolling, conservation of energy  

2. The basic equations 

𝐾𝑖 + 𝑈𝑖 = 𝐾𝑓 + 𝑈𝑓 

𝐾𝑡 =
1

2
𝑚𝑣2,     𝐾𝑟 =

1

2
𝐼𝜔2,     𝑈𝑔 = 𝑚𝑔ℎ 

3. For the first question we need to find 

𝐾𝑟

𝐾𝑡 + 𝐾𝑟
 

and the second question can be solved using conservation of energy  𝑈𝑖 = 𝐾𝑡 + 𝐾𝑟 

4. Additional information: a golf ball can be treated as a solid sphere, then 𝐼 = (2 5⁄ )𝑚𝑅2 and for 

rolling without slipping 𝑣 = 𝜔𝑅 

𝐾𝑟 =
1

2
(

2

5
𝑚𝑅2)

𝑣2

𝑅2
=

1

5
𝑚𝑣2 

𝐾𝑟

𝐾𝑡 + 𝐾𝑟
=

1
5

𝑚𝑣2

1
2 𝑚𝑣2 +

1
5

𝑚𝑣2
=

2

7
 

Note that the answer does not depend on the hill’s incline or even shape and size.  

Applying conservation of energy 

𝑚𝑔ℎ =
1

2
𝑚𝑣2 +

1

5
𝑚𝑣2 =

7

10
𝑚𝑣2 

where ℎ = 𝑑 sin 𝜃 (d=12.0 m, and =50) 
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𝑣 = √
10

7
𝑔ℎ = √

10

7
𝑔 𝑑 𝑠𝑖𝑛 𝜃 

5. Calculations 

The ratio has already being calculated as 2 7⁄ . 

𝑣 = √
10

7
9.8 𝑚 𝑠2⁄ ∙ 12 𝑚 ∙ sin 50 = 3.8 𝑚/𝑠 

6. Units are correct. The speed seems reasonable. By the way, we did not need data for the golf ball, 

except the shape. 

Example 10-4 

One warm April day, Tom and Jerry went hiking. On a quiet road going straight down a hill they found 

a rusty and abandoned Jeep Wrangler. They decided to compete in rolling various objects (the fastest 

object wins). Jerry took a tire (you may consider a tire as a hoop, with a diameter of 0.80 m and mass 

of 5.0 kg). Tom had no other choice but a custom made wheel (a solid cylinder with a diameter of 0.60 

m and mass of 20.0 kg). Both the tire and the wheel started from rest and rolled down half a mile 

without slipping. The incline of the road was 5.00.  

Was Jerry good in physics?  

Hint: you may answer this question if you can find what object was the first at the bottom of the hill, or 

what object had higher speed at the end (higher speed = less time). 

SOLUTION: 

1. Physics – rolling, conservation of energy  

2. The basic equations 

𝐾𝑖 + 𝑈𝑖 = 𝐾𝑓 + 𝑈𝑓 

𝐾𝑡 =
1

2
𝑚𝑣2,     𝐾𝑟 =

1

2
𝐼𝜔2,     𝑈𝑔 = 𝑚𝑔ℎ 

3. For a rolling object we have  

0 + 𝑚𝑔ℎ =
1

2
𝑚𝑣2 +

1

2
𝐼𝜔2.     

Rotational inertia can be written as 

𝐼 = 𝛽𝑚𝑅2 

where 𝛽 = 1 for a hoop, and 𝛽 = 1 2⁄  for a cylinder. Since 𝜔 = 𝑣 𝑅⁄ , then 
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1

2
𝐼𝜔2 =

1

2
(𝛽𝑚𝑅2) (

𝑣2

𝑅2) =
1

2
𝛽𝑚𝑣2 

4. Now conservation of energy can be written as 

𝑚𝑔ℎ =
1

2
𝑚𝑣2 +

1

2
𝐼𝜔2 =

1

2
𝑚𝑣2 +

1

2
𝛽𝑚𝑣2 =

1

2
(1 + 𝛽)𝑚𝑣2.     

𝑣 = √
2𝑔ℎ

1 + 𝛽
 

5. Calculations 

Actually, we do not need to do any calculations. An object with larger β has less speed. 𝛽ℎ𝑜𝑜𝑝 >

𝛽𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 . Therefore, Tom won the competition. 

6. Looking back. 

Units are correct. (This problem is very similar to example 10-3) 

Example 10-4 

While trying to escape, captain Jack Sparrow jumps off a bridge 

between two cliffs with a rope wrapped around his body (like 

a primitive yo-yo, see the picture). The bridge is 24.0 meters 

above the jungle and the cord is also 24.0 meters long. 

Evaluate the speed of his center of mass 𝑣𝑐𝑚 before touching 

the ground. You may consider his body as a solid cylinder with 

𝐼 = 𝑀𝑅2/2, with radius 18.0 cm, and mass of 72 kg. 

SOLUTION: 

1. Physics – dynamics of rotational motion (since we have to deal with forces), 

one dimensional vertical motion with constant acceleration.  

2. The basic equations for translational and rotational dynamics 

𝐹 = 𝑚𝑎 

𝜏 = 𝐼𝛼 

and for one dimensional (vertical) motion with constant acceleration 

𝑦 = 𝑦0 + 𝑣0𝑡 +
𝑎𝑡2

2
 

𝑣 = 𝑣0 + 𝑎𝑡 

3. Our first goal is to find the acceleration for Jack using the free-body diagram 
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Translational motion: 𝑇 − 𝑀𝑔 = −𝑀𝑎 

Rotational motion: 𝑇𝑅 = (1 2⁄ )𝑀𝑅2𝛼 

4. Since 𝑎 = 𝛼𝑅, then we use 𝛼 = 𝑎 𝑅⁄  in the rotational motion equation 

𝑇𝑅 = (1 2⁄ )𝑀𝑅2𝛼 = (1 2⁄ )𝑀𝑅2 𝑎 𝑅⁄  

or 𝑇 = (1 2⁄ )𝑀𝑅2𝛼 = (1 2⁄ )𝑀𝑎. Substituting this into the translational motion equation gives 

1

2
𝑀𝑎 − 𝑀𝑔 = −𝑀𝑎 

𝑎 =
2

3
𝑔,          𝑇 =

1

3
𝑀𝑔 

Now, eliminating time from one dimension motion equations with constant acceleration gives  𝑣2 −

𝑣0
2 = 2𝑎𝑦  and for 𝑣0 = 0 we get 𝑣 = √2𝑎𝑦.  

5. Calculations 

𝑣 = √2𝑎𝑦 = √
4

3
𝑔𝑦 = √1.333 ∙ 9.8 𝑚 𝑠2⁄ ∙ 24 𝑚 = 17.7 𝑚 𝑠⁄  

6. Units are correct. The speed is about 40 mph. That is a high speed to survive, but probably this is 

not a problem for Jack Sparrow. 

SOLUTION 2: 

Quite often the same problem can be solved by using rotational dynamics OR/AND conservation of 

energy. Let’s solve the same problem but now using conservation of energy 

1. Physics – conservation of energy with translational and rotational motion.  

2. The basic equations for rotational dynamics 

𝐾𝑖 + 𝑈𝑖 = 𝐾𝑓 + 𝑈𝑓 

𝐾𝑡 =
1

2
𝑚𝑣2,     𝐾𝑟 =

1

2
𝐼𝜔2,     𝑈𝑔 = 𝑚𝑔ℎ 

3. Conservation of energy with all terms 

𝐾𝑡𝑖 + 𝐾𝑟𝑖 + 𝑈𝑖 = 𝐾𝑡𝑓 + 𝐾𝑟𝑓 + 𝑈𝑓  

4. The body starts from rest (zero initial kinetic energy). We also can count the ground as zero 

potential energy level. 

𝑀𝑔𝑦 =
1

2
𝑀𝑣2 +

1

2
𝐼𝜔2 

The rotational inertia is 𝐼 = 𝑀𝑅2/2. We also use that 𝜔 = 𝑣/𝑅 then  
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1

2
𝐼𝜔2 =

1

2
(

1

2
𝑀𝑅2)

𝑣2

𝑅2
=

1

4
𝑀𝑣2 

Then conservation of energy can be written as 

𝑀𝑔𝑦 =
1

2
𝑀𝑣2 +

1

4
𝑀𝑣2 =

3

4
𝑀𝑣2 

Solving for 𝑣 gives 

𝑣 = √
4

3
𝑔𝑦 

Note that the same answer we got using rotational dynamics! 

5. Calculations 

𝑣 = √
4

3
𝑔𝑦 = √1.333 ∙ 9.8 𝑚 𝑠2⁄ ∙ 24 𝑚 = 17.7 𝑚 𝑠⁄  

6. The same result as before but using a different method. 

Example 10-5 

A block of mass 𝑚1 and a block of mass 𝑚2 are connected by a 

massless string over a pulley in the shape of a solid disk having radius 

𝑅 and mass 𝑀. The blocks are allowed to move as shown in figure. The 

coefficient of kinetic friction is 𝜇𝑘. Determine 

a) the acceleration of the two blocks 

b) the tensions in the string on both sides of the pulley. 

SOLUTION: 

1. Physics – dynamics of translational and rotational motion  (actually 

we can find acceleration using energy consideration but we must use rotational dynamics to find 

tensions).  

2. Newton’s second law for translational and rotational motion 

�⃗�𝑛𝑒𝑡 = 𝑚�⃗� 

𝜏𝑛𝑒𝑡 = 𝐼�⃗� 

3. We draw free body diagrams for EVERY object! 
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Using Newton’s second law (attention – note proper positive or negative signs for forces and 

accelerations) 

𝑇1 − 𝑓𝑘 = 𝑚1𝑎 

𝑁1 − 𝑚1𝑔 = 0 

𝑇2 − 𝑚2𝑔 = −𝑚2𝑎 

𝑅𝑇1 − 𝑅𝑇2 = −𝐼α 

where  

𝐼 = 𝛽𝑀𝑅2  (𝛽 = 1/2 for a disk), 𝛼 = 𝑎/𝑅 and 𝑓𝑘 = 𝜇𝑘𝑁1. From the second equation 𝑁1 = 𝑚1𝑔. 

4. The system can be written as 

𝑇1 − 𝜇𝑘𝑚1𝑔 = 𝑚1𝑎 

𝑇2 − 𝑚2𝑔 = −𝑚2𝑎 

𝑅𝑇1 − 𝑅𝑇2 = −𝛽𝑀𝑅2𝑎/𝑅 

The last equation can be simplified  

𝑇1 − 𝑇2 = −𝛽𝑀𝑎 

Now we have a system of three equations with three unknowns. Using the tensions from the first two 

equations and substituting them the last equation gives 

𝜇𝑘𝑚1𝑔 + 𝑚1𝑎 − 𝑚2𝑔 + 𝑚2𝑎 = −𝛽𝑀𝑎 

or 

𝑚1𝑎 + 𝑚2𝑎 + 𝛽𝑀𝑎 = 𝑚2𝑔 − 𝜇𝑘𝑚1𝑔 

and finally 

𝑎 =
𝑚2 − 𝜇𝑘𝑚1

𝑚1 + 𝑚2 + 𝛽𝑀
𝑔 

Having the acceleration we can easily find the tensions 𝑇1 and 𝑇2 

5. Calculations 

The problem does not need calculations 

6. We can analyze the problem for various “extreme” cases. 
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a) 𝛽 = 0 and 𝜇𝑘 = 0 then 

𝑎 =
𝑚2

𝑚1 + 𝑚2
𝑔 

Thus, we got the same answer as example 5-5 from chapter 5. 

b)  𝛽 = 0 (massless disk), then  

𝑎 =
𝑚2 − 𝜇𝑘𝑚1

𝑚1 + 𝑚2
𝑔 

Now we have a solution for problem 6 from the first exam (spring 2013) 

Example 10-6 

Consider the system shown in Figure with m1=20.0 kg, m2=10.0 

kg, R = 0.2 m, and the mass of the uniform pulley (cylinder) M = 

5.0 kg. Object m2 is resting on the floor, and object m1 is h=4.0 

meters above the floor when it is released from rest. The pulley 

axis is frictionless. The cord is light, does not stretch, and does 

not slip on the pulley.  

a) What is the acceleration of the two blocks? 

b) What are the tensions in the string on both sides of the 

pulley? 

c) What the force does the ceiling exerts on the pulley? 

 

 

SOLUTION: 

1. Physics – dynamics of translational and rotational 

motion  

(actually we can find acceleration using energy 

consideration but we must use rotational dynamics 

to find tensions).  

2. Newton’s second law for translational and 

rotational motion 

�⃗�𝑛𝑒𝑡 = 𝑚�⃗� 

𝜏𝑛𝑒𝑡 = 𝐼�⃗� 

3. We must have free body diagrams for EVERY 

object! Then we can write Newton’s second law 

using components 
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𝐹𝑛𝑒𝑡,𝑦1 = 𝑇1 − 𝑚1𝑔 = −𝑚1𝑎                   for mass 1 

𝐹𝑛𝑒𝑡,𝑦2 = 𝑇2 − 𝑚2𝑔 = 𝑚2𝑎                       for mass 2 

𝐹𝑛𝑒𝑡,𝑦𝑀 = 𝑇𝑝𝑢𝑙𝑙𝑒𝑦 − 𝑀𝑔 − 𝑇1 − 𝑇2 = 0   for pulley 

𝜏𝑛𝑒𝑡,𝑧 = 𝑅𝑇1 − 𝑅𝑇2 = 𝐼α                             for pulley 

where 𝐼 = 𝛽𝑀𝑅2  (𝛽 = 1/2 for a disk), 𝛼 = 𝑎/𝑅. Then the last equation can be written as 

𝑅𝑇1 − 𝑅𝑇2 = 𝐼α =
1

2
𝑀𝑅2

𝑎

𝑅
=

1

2
𝑀𝑅𝑎,       𝑜𝑟        𝑇1 − 𝑇2 =

1

2
𝑀𝑎 

4. The system of equation for the problem 

𝑇1 − 𝑚1𝑔 = −𝑚1𝑎 

𝑇2 − 𝑚2𝑔 = 𝑚2𝑎 

𝑇𝑝𝑢𝑙𝑙𝑒𝑦 = 𝑀𝑔 + 𝑇1 + 𝑇2 

𝑇1 − 𝑇2 =
1

2
𝑀𝑎 

Using the tensions from the first two equations in the torque equation gives 

𝑚1𝑔 − 𝑚1𝑎 − 𝑚2𝑔 − 𝑚2𝑎 =
1

2
𝑀𝑎 

or 

𝑚1𝑔 − 𝑚2𝑔 = 𝑚1𝑎 + 𝑚2𝑎 +
1

2
𝑀𝑎 = (𝑚1 + 𝑚2 +

1

2
𝑀) 𝑎 

and finally solving for a 

𝑎 =
𝑚1 − 𝑚2

𝑚1 + 𝑚2 +
1
2 𝑀

𝑔 

Having the acceleration we can easily find the tensions 𝑇1, 𝑇2 and 𝑇𝑝𝑢𝑙𝑙𝑒𝑦 

5. Calculations 

𝑎 =
(20 − 10)𝑘𝑔

(20 + 10 +
5
2

) 𝑘𝑔
9.8 𝑚 𝑠2⁄ = 3.0 𝑚 𝑠2⁄  

𝑇1 = 136 𝑁,       𝑇2 = 128 𝑁,   𝑇𝑝𝑢𝑙𝑙𝑒𝑦 = 313 𝑁 

6. Looking back. Units are correct. Note that 𝑇𝑝𝑢𝑙𝑙𝑒𝑦 = 313 𝑁 < 𝑚1𝑔 + 𝑚2𝑔 + 𝑀𝑔 = 343 𝑁 
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Example 10-7 

Collapsing Spinning Star: The volume of a collapsing spinning star changes to 1/27 of its initial value 

without losing the mass. 

a) What is the ratio of the new rotational inertia to the initial rotational inertia? 

b) What is the ratio of the new rotational kinetic energy to the initial rotational kinetic energy? 

Note: consider the star as a solid spherical object. 

SOLUTION: 

1. Physics – conservation of angular momentum, kinetic energy  

2. The basic equations for rotational dynamics 

𝐼𝑖𝜔𝑖 = 𝐼𝑓𝜔𝑓 

𝐾 =
1

2
𝐼𝜔2    

3. We need to connect the volume of a sphere with its rotational inertia. 

𝑉 =
4

3
𝜋𝑅3 

𝐼 =
2

5
𝑀𝑅2 

4. Using the given information 

𝑉𝑓 =
1

27
𝑉𝑖 

4

3
𝜋𝑅𝑓

3 =
1

27

4

3
𝜋𝑅𝑖

3 

then  

𝑅𝑓 =
1

3
𝑅𝑖  

5. Since the rotational inertia is proportional to 𝑅2 then 

𝐼𝑓 =
1

9
𝐼𝑖 

from conservation of angular momentum follows  

𝜔𝑓 = 9𝜔𝑖 

For their kinetic energies 

𝐾𝑓 =
1

2
𝐼𝑓𝜔𝑓

2 =
1

2

1

9
𝐼𝑖(9𝜔𝑖)2 = 9𝐾𝑖 
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6. It is clear that the final kinetic energy must be more than initial kinetic energy since some force 

pulled the matter closer to the center of rotation (normally it is gravity doing work). 

Example 10-8 

A door 1.0 m wide, of mass 25.0 kg, is hinged on one side so that it can rotate 

without friction. It is unlatched. A police office fires a bullet into the center of 

the door perpendicular to the center of the door (the mass and speed are 10 

g and 400 m/s respectively). 

a) Find the angular speed of the door just after the bullet embeds itself 

into the door.  

b) Is kinetic energy conserved? 

c) How much time will it take to have the door wide open (90 degrees)? 

Note that the rotational inertia of a door is given by 
1

3
𝑀𝐷2 

SOLUTION: 

1. Physics – conservation of angular momentum, kinetic energy, motion with constant angular 

velocity.  

2. The basic equations  

�⃗⃗� = 𝑟 × 𝑚�⃗�        Angular momentum of a particle 

�⃗⃗� = 𝐼�⃗⃗⃗�                 Angular momentum of a rigid body 

𝐾 =
1

2
𝑚𝑣2,            𝐾 =

1

2
𝐼𝜔2    

3. Let’s apply conservation of angular momentum  

𝐿𝑖 = 𝐿𝑓 

where  

𝐿𝑖 =
𝐷

2
𝑚𝑣𝑖                             the bulet 

𝐿𝑓 = (𝐼𝑏𝑢𝑙𝑙𝑒𝑡 + 𝐼𝑑𝑜𝑜𝑟)𝜔𝑓    the bullet + door   

𝐼𝑏𝑢𝑙𝑙𝑒𝑡 = 𝑚 (
𝐷

2
)

2

,              𝐼𝑑𝑜𝑜𝑟 =
1

3
𝑀𝐷2 

4. Then all together 

𝐷

2
𝑚𝑣𝑖 = (

1

4
𝑚𝐷2 +

1

3
𝑀𝐷2) 𝜔𝑓 

𝜔𝑓 =
𝑚𝑣𝑖

(
1
2 𝑚 +

2
3 𝑀) 𝐷
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𝑡 =
Δ𝜃

𝜔𝑓
=

𝜋 2⁄

𝜔𝑓
 

 

5. Calculations 

𝜔𝑓 = 0.24
𝑟𝑎𝑑

𝑠
,     𝑡 = 6.5 𝑠 

𝐾𝑖 = 800 𝐽,        𝐾𝑓 = 0.24 𝐽 

6. Dimensions for all units are correct. The time seems accurate though it is much less than in 

Hollywood movies. The energy is not conserved, only a tiny fraction of energy goes into the rotation 

(that is consistent with results for the example 8-5) 
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11 Equilibrium 

11.1 The conditions for equilibrium  

So far we were dealing with motion. However, a state with no motion (equilibrium) has a great deal 

of interest as well. We are surrounded by objects that are not moving in any way – either in translation 

or in rotation – in the reference frame from which we observe them. Such objects are in static 

equilibrium.  

The analysis of static equilibrium is particularly important in architecture and engineering. Such 

analysis is necessary to ensure that bridges do not collapse under there traffic and wind loads, 

building (even the tallest ones) are safe for work or living. However, design engineers are not the only 

ones who should do the equilibrium analysis. 
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The theory of equilibrium is based on Newton’s laws of motion. A particle is in equilibrium, whenever 

the vector sum of all forces acting on it is zero  

�⃗�𝑛𝑒𝑡 = 0. 

For extended bodies this condition is not enough because they have a tendency to rotate. Therefore 

for extended objects the sum of torques about any point must be zero 

𝜏𝑛𝑒𝑡 = 0. 

Therefore, the analysis of equilibrium is based on these two conditions. Despite the equations look 

awfully simple, applications to real problems can be challenging, and quite often require using 

computers for solving large system of equations.  

Thus, the two requirements for a body to be in equilibrium are follows 

These requirements obviously hold for static equilibrium. They also hold for the more general 

equilibrium in which total linear and angular momenta are constant but not zero.  In the special case 

of static equilibrium, which is the main subject of this chapter, the object is at rest and so has no linear 

or angular speed (that is, 𝑣𝑐𝑚 = 0, 𝜔 = 0). 

The equilibrium conditions, as vector equations, can be written in the component form, one for each 

direction of the coordinate axis. 

           Balance of forces                 Balance of torques 

𝐹𝑛𝑒𝑡.𝑥 = 0                                       𝜏𝑛𝑒𝑡,𝑥 = 0 

𝐹𝑛𝑒𝑡,𝑦 = 0                                       𝜏𝑛𝑒𝑡,𝑦 = 0 

𝐹𝑛𝑒𝑡,𝑧 = 0                                        𝜏𝑛𝑒𝑡,𝑧 = 0 

In introductory physics classes we normally consider situations in which the forces that act on the 

body are in xy-plane. That means that the only torques that act on the body can cause rotation around 

an axis parallel to the z-axis. Thus we eliminate one force equation, and two torques equations form 

the component equations, leaving 

1. The vector sum of all the external forces that act on the body, must be zero 

�⃗�𝑛𝑒𝑡 = ∑ �⃗�𝑖 = 0 (11.1) 

2. The vector sum of all the external torques that act on the body, measured about ANY possible 

point, must be zero 

𝜏𝑛𝑒𝑡 = ∑ 𝜏𝑖 = 0 (11.2) 
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𝐹𝑛𝑒𝑡,𝑥 = 0                 (balance of forces along 𝑥) 
𝐹𝑛𝑒𝑡,𝑦 = 0                  (balance of forces along 𝑦) 

𝜏𝑛𝑒𝑡,𝑧 = 0             (balance of torques around 𝑧) 
(11.3) 

Here 𝜏𝑛𝑒𝑡,𝑧 is the net torque that the external forces produce either around z-axis or about any axis 

parallel to it.  

If an object is in translational equilibrium and if the net torque is zero about one axis, then the net 

torque must also be zero about any other axis. The axis can be inside or outside the borders of the 

object. Consider an object being acted on by several forces  

�⃗�𝑛𝑒𝑡 = �⃗�1 + �⃗�2 + �⃗�3 + ⋯ = 0 

Let 𝑟1 is the point of application of �⃗�1 relative to some point 𝑂,  𝑟2 is the point of application of �⃗�2 

relative to the same point 𝑂 and so on. Then, the net torque about an axis through 𝑂 is  

𝜏𝑛𝑒𝑡 = 𝑟1 × �⃗�1 + 𝑟2 × �⃗�2 + ⋯ 

Now consider another arbitrary point 𝑂′ having a position vector 𝑟′ relative to O. Then, the point of 

application of �⃗�1 relative to 𝑂′ is identified by the vector 𝑟1 − 𝑟′. Likewise we can write for other forces 

�⃗�2, �⃗�3 … Therefore, the net torque about an axis through 𝑂′ is 

𝜏𝑛𝑒𝑡 = (𝑟1 − 𝑟′) × �⃗�1 + (𝑟2 − 𝑟′) × �⃗�2 + ⋯ = 𝑟1 × �⃗�1 + 𝑟2 × �⃗�2 + ⋯ − 𝑟′(�⃗�1 + �⃗�2 + ⋯ ) 

Because the net force is assumed to be zero (given that the object is in translational equilibrium), the 

last term vanishes, and we see that the torque about 𝑂′ is equal to the torque about 𝑂. Hence, if an 

object is in translational equilibrium and the net torque is zero about one point, then the net torque 

must be zero about any other point. 

There are many interesting problems when an object is in rotational equilibrium but not in 

translational (an accelerating car, when the center of gravity is above the road). It is still possible to 

solve such problems but the conditions for equilibrium are different. In this case we deal with 

mechanics of non-inertial frames. This subject is commonly considered in courses of theoretical 

classical mechanics. Here we only show a way to approach such problems. For example, for 

translational motion with acceleration along 𝑥 we have 

𝐹𝑛𝑒𝑡,𝑥 = 𝑚𝑎            (motion with acceleration along 𝑥) 

𝐹𝑛𝑒𝑡,𝑦 = 0                (balance of forces along 𝑦)             

𝜏𝑛𝑒𝑡,𝑧 = 0                 (balance of torques around 𝑧)      

Then we face a careful choice for a rotational axis because �⃗�𝑛𝑒𝑡 ≠ 0. Normally such point is located at 

the center of mass (see example 11-9, 11-10).  
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11.2 The center of gravity 

The gravitational force on an extended body is the vector sum of the gravitational forces acting on the 

individual elements (the atoms) of the body. Instead of considering all those individual elements, we 

can say: The gravitational force �⃗�𝑔 on a body effectively acts at a single point, called the center of 

gravity of the body. Here the word "effectively" means that if the forces on the individual elements 

were somehow turned off and force �⃗�𝑔 at the center of gravity were turned on, the net force and the 

net torque (about any point) acting on the body would not change. 

First we review the definition for the center of mass (see section 8.3) for a group of particles in (𝑥, 𝑦) 

plane with masses 𝑚1, 𝑚2, … and coordinates (𝑥1, 𝑥2, … ), (𝑦1, 𝑦2, … ) the center of mass is given  

𝑥𝑐𝑚 =
𝑚1𝑥1 + 𝑚2𝑥2 + 𝑚3𝑥3 + ⋯

𝑚1 + 𝑚2 + 𝑚3 + ⋯
 

𝑦𝑐𝑚 =
𝑚1𝑦1 + 𝑚2𝑦2 + 𝑚3𝑦3 + ⋯

𝑚1 + 𝑚2 + 𝑚3 + ⋯
 

We wish to locate the center of gravity (𝑥𝑐𝑔, 𝑦𝑐𝑔), the point at which application of the single 

gravitational force 𝑀�⃗� (where 𝑀 = 𝑚1 + 𝑚2 + ⋯  is the total mass of the object) has the same effect 

as does the combined effect of all the individual gravitational forces 𝑚𝑖�⃗�𝑖. Let’s proceed with the 

𝑥 coordinate (extension for the 𝑦 coordinate is trivial), then 

(𝑚1𝑔1 + 𝑚2𝑔2 + ⋯ )𝑥𝑐𝑔 = 𝑚1𝑔1𝑥1 + 𝑚2𝑔2𝑥2 + ⋯ 

If we assume uniform 𝑔 over the object (as is usually the case), then  

𝑥𝑐𝑔 = 𝑥𝑐𝑚 =
𝑚1𝑥1 + 𝑚2𝑥2 + 𝑚3𝑥3 + ⋯

𝑚1 + 𝑚2 + 𝑚3 + ⋯
 (11.4) 

We see that the center of gravity is located at the center of mass as long as the object is in a uniform 

gravitational field. This is approximately true for everyday objects because �⃗� varies only a little along 

Earth's surface and decreases in magnitude only slightly with altitude. 

Let’s show that the net torque acting on a body can be written as if all the gravitation force is applied 

to the center of mass (when �⃗� is the same for all elements of a body). 

We consider the individual elements of the body of mass M, and one of its elements, of mass 𝑚𝑖. A 

gravitational force acts on each such element and is equal to �⃗�𝑔𝑖 = 𝑚𝑖�⃗�. Each such force produces a 

torque on a single element about the origin 𝜏𝑖 = 𝑟𝑖 × 𝑚𝑖�⃗�. The net torque on all the elements of the 

body is then 

𝜏𝑛𝑒𝑡 = ∑ 𝜏𝑖 = ∑ 𝑟𝑖 × 𝑚𝑖�⃗� = ∑ 𝑚𝑖𝑟𝑖 × �⃗� 

Next we divide and multiple this by the total mass of the body 𝑀 = ∑ 𝑚𝑖  

𝜏𝑛𝑒𝑡 =
1

𝑀
∑ 𝑚𝑖𝑟𝑖 × 𝑀�⃗� 
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Using the definition for the center of mass 

𝑟𝑐𝑚 =
1

𝑀
∑ 𝑚𝑖𝑟𝑖 

we finally can write 

𝜏𝑛𝑒𝑡 = 𝑟𝑐𝑚 × 𝑀�⃗� = 𝑟𝑐𝑚 × �⃗�𝑔. (11.5) 

So, the total gravitational torque is the same as though the total gravitational force were acting on the 

position of the center of mass, which we also call the center of gravity. 

Finding the center of gravity (or the center of mass) can be challenging for bodies of complex shapes. 

However, the center of gravity of a homogeneous sphere, cube, circular sheet, or rectangular plate is 

at its geometric center. Symmetry considerations can help with more complex shapes when we 

sometimes can locate the center of gravity by thinking of the body as being made of symmetrical 

pieces.  

11.3 Few more words 

A body in static equilibrium, if left undisturbed, will undergo no translational or rotational 

acceleration since the sum of all the forces and the sum of all the torques acting on it are zero. 

However, if the object is displaced slightly, three different outcomes are possible: (1) the object 

returns to its original position, in which case it is said to be in stable equilibrium; (2) the object moves 

even farther from its original position, in which case it is said to be in unstable equilibrium; or (3) the 

object remains in its new position, in which case it is said to be in neutral equilibrium. 

Quite often we are interested in maintaining stable equilibrium or balance, as we sometimes say. In 

general, an object whose center of gravity is below its point of support, such as a ball on a string, will 

be in stable equilibrium. If the center of gravity is above the base of support, we have a more 

complicated situation. Consider a standing refrigerator If it is tipped slightly, it will return to its 

original position due to the torque on it. But if it is tipped too 

far, it will fall over. The critical point is reached when the 

center of gravity is no longer above the base of support. In 

general, a body whose center of gravity is above its base of 

support will be stable if a vertical line projected downward 

from the center of gravity falls within the base of support. This 

is because the normal force upward on the object (which balances out gravity) can be exerted only 

within the area of contact, so that if the force of gravity acts beyond this area, a net torque will act to 

topple the object. Stability, then, can be relative. A brick lying on its widest face is more stable than a 

brick standing on its end, for it will take more of an effort to tip it over.  

Standard physics textbooks usually offer two-dimensional problems in (𝑥, 𝑦) plane. Then we have 

only three independent equations for equilibrium, namely two balance of forces equations and one 

balance of torques equations about a given rotational axis. However, in real life applications we often 

have more unknowns than equations. Consider also an unsymmetrically loaded car. What are the 
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forces-all different on the four tires? Again, we cannot find them because we have only three 

independent equations with which to work. Similarly, we can solve an equilibrium problem for a table 

with three legs but not for one with four legs. Problems like these, in which there are more unknowns 

than equations, are called indeterminate. Yet solutions to indeterminate problems exist in the real 

world. What is eluding us in our efforts to find the individual forces by solving equations? The 

problem is that we have assumed-without making a great point of it that the bodies to which we apply 

the equations of static equilibrium are perfectly rigid. By this we mean that they do not deform when 

forces are applied to them. Strictly, there are no such bodies. The tires of the car, for example, deform 

easily under load until the car settles into a position of static equilibrium. To solve such indeterminate 

equilibrium problems, we must supplement equilibrium equations with some knowledge of elasticity, 

the branch of physics that describes how real bodies deform when forces are applied to them. 

11.4 Statically undetermined systems 

In this chapter we consider absolutely rigid bodies, no deformations under stress. However, such 

ideal picture is not always a realistic model. Let us consider a rigid beam on two supports and find 

forces on the beam from the supports. 

 

The conditions of equilibrium  

𝐹1 + 𝐹2 − 𝑚𝑔 = 0 

𝐹2𝐿 −
𝑚𝑔𝐿

2
= 0 

Where 𝐿 is the length of the beam. Solving the system of equations gives 𝐹1 = 𝐹2 = 𝑚𝑔 2⁄ . In this 

case the model of absolutely rigid body works well.  

However, a problem about distribution of weight of a rigid beam between three supports cannot be 

solved since we still have two equations for the equilibrium but three unknowns.  

 

𝐹1 + 𝐹2 + 𝐹3 − 𝑚𝑔 = 0 

𝐹2𝐿 + 𝐹3𝑥 −
𝑚𝑔𝐿

2
= 0 
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Mechanical systems, like a beam on three supports, are statically undetermined. The same situation 

occurs in equilibrium of a rigid table on a horizontal surface. The problem can be solved for a three 

leg table but it is statically undetermined for four or more leg tables. Sure, a real beam and a real 

four leg table have a very specific distribution of their weights. The uncertainty comes from an 

approximation to consider objects (a beam, a table) as ideally rigid ones. A more accurate model for 

a beam should include deformation, or the beam bends under its own weight. 

 

We need to take into account deformation of objects to find unique solutions.  

11.5 Few guidelines for solving most common problems in “Equilibrium” 

Three dimensional rigid body is a system with six “degrees of freedom” since it can move in three 

directions and rotate about three axis. In this chapter we consider two dimensional world, when a 

body is flat and located in 𝑥𝑦 −plane, and it can only rotate about 𝑧 −axis. Then there are three 

degrees of freedom left, with three equations with conditions for static equilibrium in (𝑥, 𝑦) plane. 

𝐹𝑛𝑒𝑡,𝑥 = 0            (balance of forces along 𝑥) 

𝐹𝑛𝑒𝑡,𝑦 = 0            (balance of forces along 𝑦) 

𝜏𝑛𝑒𝑡,𝑧 = 0             (balance of torques around 𝑧). 

Problem solving: 

1. You must always draw a free-body diagram showing all the forces acting on the selected body. 

2. While choosing the reference point for calculating torques is completely arbitrary, once 

selected, the same point must be used to calculate all torques on a body. A wise choice can 

considerably simplify your calculations. For example, you can reduce the number of 

unknowns by choosing the axis so that one of the unknown forces passes through the axis; 

then this force will produce zero torque and so will not appear in the equation. 

3. Remember that torque has a direction (positive for counterclockwise “rotation” and negative 

for clockwise one). 

4. You always need as many equations as you have unknowns. For more complicated problems 

you may need to computer torques with respect to two or more axes to obtain enough 

equations. 

5. Using the component form is much more efficient way to calculate torques. 

There is a group of problems in static equilibrium that is called as “balance” problems. Examples of 

such problems include: two children on a seesaw, a person walking along a plank extended beyond a 

support area. Quite often such problems can be easily solved by calculating the position of the center 
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of gravity instead of dealing with forces and torques. Remember that in general, a body whose center 

of gravity is above its base of support will be stable if a vertical line projected downward from the 

center of gravity falls within the base of support. The critical point is reached when the center of 

gravity is no longer above the base of support. 

A quick note on calculating torque (again) 

𝜏 = 𝑟 × �⃗� 

1. Using angles 

𝜏 = 𝑟𝐹 sin 𝜃 = 𝑟𝐹⊥ = 𝑟⊥𝐹 

As you probably see using angles may need more steps. Namely 

the angle between vectors (counting from 𝑟 to �⃗�) on this diagram 

is 900 − 𝜃. Then 

𝜏 = 𝑟𝐹 sin 𝜃 = 𝑟𝐹 sin(900 − 𝜃) 

Since sin(900 − 𝜃) = cos 𝜃 

𝜏 = 𝑟𝐹 sin(900 − 𝜃) = 𝑟 cos 𝜃 𝐹 = 𝑥𝐹 

2. Using components in 𝑥𝑦 −plane we have 

𝜏𝑧 = 𝑟𝑥𝐹𝑦 − 𝑟𝑦𝐹𝑥. 

This way is much more straightforward. For the diagram you immediately get 𝜏𝑧 = 𝑥𝐹.  

The component form is invaluable for arbitrary orientations of vectors 𝑟 and �⃗� relative to the 

coordinate system. It also provides you with a proper sign (positive or negative) for torques. 
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11.6 Examples 

Example 11-1 

A uniform beam, of length 𝐿 and mass 𝑚 is at rest with its ends on two scales. A uniform block, with 

mass 𝑀, is at rest on the beam, with its center a distance 𝑥 from the beam’s left end. What do the scales 

read?  

SOLUTION: 

1. Physics – static equilibrium  

2. The basic equations 

𝐹𝑛𝑒𝑡,𝑥 = 0            (𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑜𝑓 𝑓𝑜𝑟𝑐𝑒𝑠) 

𝐹𝑛𝑒𝑡,𝑦 = 0            (𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑜𝑓 𝑓𝑜𝑟𝑐𝑒𝑠) 

𝜏𝑛𝑒𝑡,𝑧 = 0             (𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡𝑜𝑟𝑞𝑢𝑒𝑠). 

3. We choose the beam as the object of interest 

(choosing the block does not help to find the forces on 

the scales). The free-body diagram shows all forces 

acting on the beam. 

The first condition of equilibrium (balance of forces) 

for the y-direction (there are no forces acting along x-

direction and 𝐹𝑛𝑒𝑡,𝑥 provides no information) 

𝐹𝑛𝑒𝑡,𝑦 = 𝐹1 + 𝐹2 − 𝑀𝑔 − 𝑚𝑔 = 0 

For the second condition we need to choose a rotational axis perpendicular to the plane xy. Let’s 

choose it through the left end of the beam. Using the component form for calculating torques we get 

𝜏𝑧 = 0𝐹1 − 𝑥𝑀𝑔 −
𝐿

2
𝑚𝑔 + 𝐿𝐹2 = 0 

4. Now we have a system of two equations with two unknowns 

𝐹1 + 𝐹2 − 𝑀𝑔 − 𝑚𝑔 = 0 

−𝑥𝑀𝑔 −
𝐿

2
𝑚𝑔 + 𝐿𝐹2 = 0 

Since the second equation (balance of torques) has only one unknown we can solve it immediately 

𝐹2 =
𝑥

𝐿
𝑀𝑔 +

1

2
𝑚𝑔 

With this solution we can solve the first equation to find the first force 

𝐹1 = −𝐹2 + 𝑀𝑔 + 𝑚𝑔 = −
𝑥

𝐿
𝑀𝑔 −

1

2
𝑚𝑔 + 𝑀𝑔 + 𝑚𝑔 = (1 −

𝑥

𝐿
) 𝑀𝑔 +

1

2
𝑚𝑔 
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5. Calculations – no calculation for this problem 

6. Looking back – we cannot have a dimension analysis here, but we can consider a special case when 

we may guess right answer. It is clear that placing the block in the middle would give equal reading 

for the scales. Let’s see our solutions for 𝑥 = 𝐿 2⁄  

𝐹1 = (1 −
1

2
) 𝑀𝑔 +

1

2
𝑚𝑔 =

1

2
𝑀𝑔 +

1

2
𝑚𝑔,    𝐹2 =

1

2
𝑀𝑔 +

1

2
𝑚𝑔. 

Example 11-2 

A pickup truck has a wheelbase of 𝐿 meters. Ordinary 𝑀1 kg rests on the front wheels, and 𝑀2 kg on 

the rear wheels, when the truck is parked on a level road. A pig of 𝑚 kg is now placed on the tailgate, 

𝑥 meters behind the rear axel.  

a) How much total weight now rests on the front wheels? On the rear wheels? 

b) How much weight would need to be placed on the tailgate to make the front wheels come off 

the ground? 

SOLUTION: 

1. Physics – static equilibrium  

Basically this problem is not much different from 

the first example 

2. The basic equations 

𝐹𝑛𝑒𝑡,𝑥 = 0            (𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑜𝑓 𝑓𝑜𝑟𝑐𝑒𝑠) 

𝐹𝑛𝑒𝑡,𝑦 = 0            (𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑜𝑓 𝑓𝑜𝑟𝑐𝑒𝑠) 

𝜏𝑛𝑒𝑡,𝑧 = 0             (𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡𝑜𝑟𝑞𝑢𝑒𝑠). 

3. We choose the truck as the object of interest 

(choosing the pig does not help to find the normal 

forces on the wheels). The free-body diagram 

shows all forces acting on the truck 

The first condition of equilibrium (balance of 

forces) for the y-direction (there are no forces 

acting along x-direction and 𝐹𝑛𝑒𝑡,𝑥 provides no 

information) 

𝐹𝑛𝑒𝑡,𝑦 = 𝑁1 + 𝑁2 − 𝑀1𝑔 − 𝑀2𝑔 − 𝑚𝑔 = 0 

For the second condition we need to choose a rotational axis perpendicular to the plane xy. Let’s 

choose it through the left wheels. Using the component form for calculating torques we get 

𝜏𝑧 = 0𝑁1 − 0𝑀1𝑔 + 𝐿𝑁2 − 𝐿𝑀2𝑔 − (𝐿 + 𝑥)𝑚𝑔 = 0 

The condition for the front wheels to come off the ground means  



11. Equilibrium 

213 

 

𝑁1 = 0 

Later we will use this condition when we have a solution for 𝑁1 

4. Now we have a system of two equations with two unknowns 

𝑁1 + 𝑁2 − 𝑀1𝑔 − 𝑀2𝑔 − 𝑚𝑔 = 0 

𝐿𝑁2 − 𝐿𝑀2𝑔 − (𝐿 + 𝑥)𝑚𝑔 = 0 

Since the second equation (balance of torques) has only one unknown we can solve it immediately 

𝑁2 = 𝑀2𝑔 + (1 +
𝑥

𝐿
) 𝑚𝑔 

With this solution we can solve the first equation to find the first force 

𝑁1 = −𝑁2 + 𝑀1𝑔 + 𝑀2𝑔 + 𝑚𝑔 = −𝑀2𝑔 − (1 +
𝑥

𝐿
) 𝑚𝑔 + 𝑀1𝑔 + 𝑀2𝑔 + 𝑚𝑔 = 𝑀1𝑔 −

𝑥

𝐿
𝑚𝑔 

from 𝑁1 = 0 

𝑁1 = 𝑀1𝑔 −
𝑥

𝐿
𝑚𝑔 = 0 

follows 

𝑚 = 𝑀1

𝐿

𝑥
 

With so heavy pig the front wheels will come off the ground. Let’s note that the large 𝑥 the fewer load 

needed on the tailgate to have the front wheels off the ground. 

5. Calculations – no calculation for this problem 

6. Looking back – we cannot have a dimension analysis here, but we can consider a special case when 

we may guess right answer. It is clear that without the pig and for 𝑀1 = 𝑀2 = 𝑀 we should expect the 

same normal force acting on both front and rear wheels. 

𝑁1 = 𝑀1𝑔 = 𝑀𝑔,    𝑁2 = 𝑀2𝑔 = 𝑀𝑔. 

We got it right. 

Method II for question b). 

By the way, the second question is an equilibrium question. It can be easily answered by calculating 

the position for the center of gravity. Let’s choose the position of the rear wheels as an origin. Then 

the center of gravity of the systems is 

𝑥𝑐𝑔 =
−𝑀1𝐿 + 𝑀20 + 𝑚𝑥

𝑀1 + 𝑀2 + 𝑚
 

The critical point is reached when the center of gravity is just above the rear wheels or 𝑥𝑐𝑔 = 0. Then 

we have 𝑀1𝐿 = 𝑚𝑥, or 𝑚 = 𝑀1𝐿 𝑥⁄ , or this the same result that we got using forces and torques.  
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Example 11-3 

A long uniform wooden plank of length L=9.0 m 

and mass of M=100.0 kg rests on a deck of a ship. 

Only two thirds of the plank is on the deck. How far 

from the edge of the ship can Popeye of mass m=60 

kg go on the hanging side of the plank if the plank 

is to remain at rest? 

Assume that the plank does not slide back as 

Popeye goes forward 

SOLUTION: 

1. Physics – static equilibrium, balance problem  

2. The basic equations for equilibrium 

𝐹𝑛𝑒𝑡,𝑥 = 0            (𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑜𝑓 𝑓𝑜𝑟𝑐𝑒𝑠) 

𝐹𝑛𝑒𝑡,𝑦 = 0            (𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑜𝑓 𝑓𝑜𝑟𝑐𝑒𝑠) 

𝜏𝑛𝑒𝑡,𝑧 = 0             (𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡𝑜𝑟𝑞𝑢𝑒𝑠). 

For balance problems we calculate the center of gravity 

𝑥𝑐𝑔 = 𝑥𝑐𝑚 =
𝑚1𝑥1 + 𝑚2𝑥2 + 𝑚3𝑥3 + ⋯

𝑚1 + 𝑚2 + 𝑚3 + ⋯
 

3. We choose the wooden plank as the object of interest. The free-body diagram shows all forces acting 

on the plank 

Method I: using the center of gravity.  Choosing the 

red dot as the origin (𝑥 = 0) we have 

𝑥𝑐𝑔 =
−𝑀𝑥𝑐 + 𝑚𝑥

𝑀 + 𝑚
 

The critical point is reached when the center of 

gravity is just above the edge of the ship (the red 

dot). Then from 𝑥𝑐𝑔 = 0 one has  

𝑥 = 𝑥𝐶

𝑀

𝑚
 

Method II: general approach to equilibrium 

problems. The problem looks very similar the first 

two problems. However, there is something new. 

Where is the normal force applied? Should it be at 

the same x position as the gravity on the plank? If we place the normal vector at the location of the 

center of gravity, then we would get rotation from 𝑚�⃗� around the center of gravity! 
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One may say, well I expect the normal force be at the edge of the ship when Popeye is going to start 

falling. 

Let’s avoid any guesses and proceed with equations. 

The first condition of equilibrium (balance of forces) for the y-direction (there are no forces acting 

along x-direction and 𝐹𝑛𝑒𝑡,𝑥 provides no information). 

𝐹𝑛𝑒𝑡,𝑦 = 𝑁 − 𝑀𝑔 − 𝑚𝑔 = 0 

For the second condition we need to choose a rotational axis perpendicular to the plane xy. Let’s 

choose it through the “red” point (the edge of the ship) as the origin for the coordinate system. Using 

the component form for calculating torques we get 

𝜏𝑧 = 𝑥𝐶𝑀𝑔 − 𝑥𝑁𝑁 − 𝑥𝑚𝑔 = 0 

4. Now we have a system of two equations with two unknowns (𝑁 and 𝑥𝑁) for some position 𝑥.  

𝑁 − 𝑀𝑔 − 𝑚𝑔 = 0 

𝑥𝐶𝑀𝑔 − 𝑥𝑁𝑁 − 𝑥𝑚𝑔 = 0 

Solving for the unknowns 

𝑁 = 𝑀𝑔 + 𝑚𝑔 

𝑥𝑁 =
𝑥𝐶𝑀𝑔 − 𝑥𝑚𝑔

(𝑀 + 𝑚)𝑔
=

𝑋𝐶𝑀 − 𝑥𝑚

𝑀 + 𝑚
 

As we can see the location of the normal force is not at the center of gravity! 

Now, when the position of the normal force at the edge of the ship, then this is where a delicate 

balance happens, any more step and Popeye goes swimming (normal force cannot act from the air, it 

has to be from a surface). Thus, the balance condition is 𝑥𝑁 = 0. From this condition  

𝑥𝑁 =
𝑥𝐶𝑀 − 𝑥𝑚

𝑀 + 𝑚
= 0 

we get 

𝑥 = 𝑥𝐶

𝑀

𝑚
 

5. Calculations  

Note that from the condition for the plan’s position follows that 𝑥𝐶 = (1 2⁄ − 1 3⁄ )𝐿 = 𝐿 6⁄  

𝑥 =
1

6
9 𝑚

100 𝑘𝑔

60 𝑘𝑔
= 2.5 𝑚 

6. Looking back – correct dimensions.  

Let’s consider a special case when we may guess right answers. If our solution is able to reproduce 

our special case consideration then we probably have a correct solution. 
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Without Popeye the position of the normal force should be at the same horizontal position as the 

gravitational force. For 𝑚 = 0 we have 𝑥𝑁 = 𝑥𝐶 . Correct. 

By the way, using the “center-of-gravity” approach (method I) to this balance problem produced the 

answer in just few equations. 

Example 11-4 

A crane is mounted on a truck. The mass of the truck is 𝑀 = 5,000 𝑘𝑔, the width of the truck (the 

distance between outer sides of the tires) is 𝐷 = 3.2 𝑚, the center of mass of the truck (with the crane) 

is ℎ = 2 𝑚 above the ground, the end of the boom of the crane is extended 𝐿 = 5 𝑚 from the center of 

the gravity of the truck (assume that the mass of the boom is much less than the mass of the truck). 

What is the maximum mass of a load the crane can lift without going overturned? 

SOLUTION: 

1. Physics – static equilibrium, balance problem  

2. The basic equations for equilibrium 

𝐹𝑛𝑒𝑡,𝑥 = 0            (𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑜𝑓 𝑓𝑜𝑟𝑐𝑒𝑠) 

𝐹𝑛𝑒𝑡,𝑦 = 0            (𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑜𝑓 𝑓𝑜𝑟𝑐𝑒𝑠) 

𝜏𝑛𝑒𝑡,𝑧 = 0             (𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡𝑜𝑟𝑞𝑢𝑒𝑠). 

the center of gravity 

𝑥𝑐𝑔 = 𝑥𝑐𝑚 =
𝑚1𝑥1 + 𝑚2𝑥2 + 𝑚3𝑥3 + ⋯

𝑚1 + 𝑚2 + 𝑚3 + ⋯
 

3. While this problem can be solved using the 

equilibrium conditions, it is much easier to approach it as a balance problem. Choosing the origin (𝑥 =

0) at the right side of the truck we have 

𝑥𝑐𝑔 =
−

𝑀𝑑
2 + 𝑚 (𝐿 −

𝐷
2)

𝑀 + 𝑚
 

4. The critical point is reached when the center of gravity is just above the right side of the truck, then 

from 𝑥𝑐𝑔 = 0 

𝑚 = 𝑀
𝐷

2𝐿 − 𝐷
 

5. Calculations 

𝑚 = 5000 𝑘𝑔 
3.2 𝑚

2 ∙ 5 𝑚 − 3.2 𝑚
= 2352 𝑘𝑔 

6. Looking back – we have right dimensions, and the results looks as a credible one. 
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Example 11-5 

A safe of mass 𝑀 hanging by a rope from a boom with 

dimensions 𝑎 and 𝑏. The boom consists of a hinged beam and 

a horizontal cable that connects the beam to a wall. The 

uniform beam has a mass 𝑚. The masses of the cable and the 

rope are negligible. 

a) What is the tension in the cable? 

b) Find the magnitude of the net force on the beam from 

the hinge. 

SOLUTION: 

1. Physics – static equilibrium  

This problem, unlike the first two, is a two-dimensional problem 

2. The basic equations 

𝐹𝑛𝑒𝑡,𝑥 = 0            (𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑜𝑓 𝑓𝑜𝑟𝑐𝑒𝑠) 

𝐹𝑛𝑒𝑡,𝑦 = 0            (𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑜𝑓 𝑓𝑜𝑟𝑐𝑒𝑠) 

𝜏𝑛𝑒𝑡,𝑧 = 0             (𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡𝑜𝑟𝑞𝑢𝑒𝑠). 

3. We choose the beam as the object of interest (see why not 

the cable or the rope?) 

Let’s note that 𝑇𝑟 = 𝑀𝑔 from the equilibrium condition for the 

safe. We will use it in a moment. 

The balance of forces 

𝐹𝑛𝑒𝑡,𝑥 = 𝐹ℎ − 𝑇𝑐 = 0 

𝐹𝑛𝑒𝑡,𝑦 = 𝐹𝑣 − 𝑚𝑔 − 𝑀𝑔 = 0 

For the balance of torques we need to choose a rotational axis 

perpendicular to the plane xy. Let’s choose it through the hinge. Thus we will have fewer unknowns 

in our equation. 

Using the component form for calculating torques we get 

𝜏𝑧 = −
𝑏

2
𝑚𝑔 − 𝑏𝑀𝑔 + 𝑎𝑇𝑐 = 0 

Using the component from makes it much easier to calculate the torques. Otherwise you would be 

wrestling with the angles.  

4. Now we have a system of three equations with three unknowns (𝑇𝑐 , 𝐹ℎ , 𝐹𝑣) 

𝐹ℎ − 𝑇𝑐 = 0 

𝐹𝑣 − 𝑚𝑔 − 𝑀𝑔 = 0 
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−
𝑏

2
𝑚𝑔 − 𝑏𝑀𝑔 + 𝑎𝑇𝑐 = 0 

The last equation immediately gives the tension in the cable 

𝑇𝑐 =
𝑏

2𝑎
𝑚𝑔 +

𝑏

𝑎
𝑀𝑔 =

𝑏

𝑎
(

1

2
𝑚 + 𝑀) 𝑔 

Then the horizontal and vertical components of the force on the hinge 

𝐹ℎ = 𝑇𝑐 =
𝑏

𝑎
(

1

2
𝑚 + 𝑀) 𝑔 

𝐹𝑣 = (𝑚 + 𝑀)𝑔 

The magnitude of the net force on the beam from the hinge 

𝐹ℎ𝑖𝑛𝑔𝑒 = √𝐹ℎ
2 + 𝐹𝑣

2 

5. Calculations – no calculation for this problem 

6. Looking back – we cannot have a dimension analysis here, but we can consider a special case when 

we may guess right answer.  

We can assume that for a vertical beam there is no need for the supporting cable, or if 𝑏 = 0, then 

𝑇𝑐 = 0. This is exactly what follows from our general solution 

Example 11-6 

A sign of mass Ms= 8.0 kg is supported by a uniform m=4.0 kg beam 

as shown on the figure. A cat (Tom) of mass Mc=5.0 kg walks slowly 

from the wall toward the end of the beam to talk to Jerry (mm= 0.2 kg) 

probably about physics of equilibrium.  

a) Will the cable break before the cat reaches the end of the 

beam, if the cable will break up under tension of 280.0 N? 

b) If so, how far from the wall the cat will be when the cable 

breaks? 

The cable is d=2.0 meters long. It makes 300 degrees with the beam. 

Assume that the mass of the cable is negligible.  

SOLUTION: 

1. Physics – static equilibrium  

2. The basic equations 

𝐹𝑛𝑒𝑡,𝑥 = 0            (𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑜𝑓 𝑓𝑜𝑟𝑐𝑒𝑠) 

𝐹𝑛𝑒𝑡,𝑦 = 0            (𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑜𝑓 𝑓𝑜𝑟𝑐𝑒𝑠) 

𝜏𝑛𝑒𝑡,𝑧 = 0             (𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡𝑜𝑟𝑞𝑢𝑒𝑠). 



11. Equilibrium 

219 

 

3. We choose the beam as the object of interest 

(not the cat, or the mouse or the cable). The beam 

is 𝐿 = 𝑑 cos 𝜃 long. 

There are two ways to approach the problem.  

a. We can place the cat at the end of the beam 

(distance 𝐿 from the wall) to see if the cable 

breaks under this condition. If it breaks then we 

have to solve the problem again to find at what 

position 𝑥 of the cat it will happen.  

b. Or we can find the tension in the cable having 

the cat distance 𝑥 from the wall. Then we use the 

condition 𝑇 = 𝑇𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 to find 𝑥𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙. If it less than the size of the beam, then the cable will break. 

The second way is preferable since we have to solve the problem once. 

The balance of forces 

𝐹𝑛𝑒𝑡,𝑥 = 𝐹𝑥 − 𝑇 cos 𝜃 = 0 

𝐹𝑛𝑒𝑡,𝑦 = 𝐹𝑦 − 𝑀𝑐𝑔 − 𝑚𝑔 − (𝑀𝑠 + 𝑚𝑚)𝑇 sin 𝜃 = 0 

Let’s choose the rotational axis at the left end of the beam (thus we will have fewer unknowns in our 

equation. Using components the balance of torques is  

𝜏𝑧 = −𝑥𝑀𝑐𝑔 −
𝐿

2
𝑚𝑔 − (𝑀𝑠 + 𝑚𝑚)𝑔 + 𝐿𝑇 sin 𝜃 = 0 

(Note that we used here the component equation for torques, namely 𝜏𝑧 = 𝑟𝑥𝐹𝑦 − 𝑟𝑦𝐹𝑥.) 

 

4. We have a system of three equations with three unknowns (𝑥, 𝐹𝑥 , 𝐹𝑦), but we need to find only one 

– the distance when the cable will break.  

𝐹𝑥 − 𝑇 cos 𝜃 = 0 

𝐹𝑦 − 𝑀𝑐𝑔 − 𝑚𝑔 − (𝑀𝑠 + 𝑚𝑚)𝑇 sin 𝜃 = 0 

−𝑥𝑀𝑐𝑔 −
𝐿

2
𝑚𝑔 − 𝐿(𝑀𝑠 + 𝑚𝑚)𝑔 + 𝐿𝑇 sin 𝜃 = 0 

With the wise choice of the rotational axis, we have it right in the third equation where we use 𝑇 =

𝑇𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙. 

𝑥 = 𝐿
1

𝑀𝑐
(

𝑇𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 sin 𝜃

𝑔
−

1

2
𝑚 − 𝑀𝑠 − 𝑚𝑚) 

5. Calculations are straightforward 
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For the given critical tension, the cat should be 1.42 m from the wall to have the cable broken. 

However, the beam is 𝐿 = 2.0 𝑚 ∙ cos 300 = 1.73 𝑚. That means that the cable will break before Tom 

gets to the end of the beam.  

6. Looking back. 

Since tension is measured in [N] (where [N]=[m][g]), then we have right units for the distance. 

A quick analysis of equation for 𝑥 shows that for heavier cats the critical distance is getting shorter.   

If there is no Tom and Jerry (𝑀𝑐 = 0, 𝑚𝑚 = 0), the tension in the cable 

𝑇 =
1

sin 𝜃
(

1

2
𝑚 + 𝑀𝑠) 𝑔 

Example 11-7  

This problem may look a bit challenging but could be a practical one. 

Two friends are carrying a 200-kg crate up a flight of 

stairs. The crate is L=1.25 m long and w=0.500 m high, and 

its center of gravity is at its center. The stairs make a 450 

angle with respect to the floor. The crate is also carried at 

a 450 angle, so its bottom side is parallel to the slope of the 

stairs. If the force each person applies is vertical, what is 

the magnitude of each of these forces? Is it better to be the 

person above or below on the stairs? 

SOLUTION: 

1. Physics – static equilibrium.  

2. The basic equations 

𝐹𝑛𝑒𝑡,𝑥 = 0            (𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑜𝑓 𝑓𝑜𝑟𝑐𝑒𝑠) 

𝐹𝑛𝑒𝑡,𝑦 = 0            (𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑜𝑓 𝑓𝑜𝑟𝑐𝑒𝑠) 

𝜏𝑛𝑒𝑡,𝑧 = 0             (𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡𝑜𝑟𝑞𝑢𝑒𝑠). 

3. We choose the crate as the object of interest. Here 𝜃 is 

the angle that the crate makes with the floor (not with 

the flight of stairs. Since this problem involves using 

geometry and trigonometry we better have a good set of 

notations on our diagram. 

The balance of forces 

𝐹𝑛𝑒𝑡,𝑥 = 0 

𝐹𝑛𝑒𝑡,𝑦 = 𝐹1 + 𝐹2 − 𝑀𝑔 = 0 
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Let’s choose the rotational axis at the lower left end of the crate.  Using components ( 𝜏𝑧 = 𝑟𝑥𝐹𝑦 −

𝑟𝑦𝐹𝑥) 

the balance of torques is  

𝜏𝑧 = −𝑥𝑀𝑔 + 𝐿 cos 𝜃 𝐹2 = 0 

4. We have a system of two equations with two unknowns (𝐹1, 𝐹2).  

𝐹1 + 𝐹2 − 𝑀𝑔 = 0 

−𝑥𝑀𝑔 + 𝐿 cos 𝜃 𝐹2 = 0 

Now we need to find 𝑥 in terms of 𝐿, 𝑤, 𝜃. Here geometry + trigonometry come. For the small “orange” 

triangle inside the crate we have the same angle 𝜃 as the angle with the floor (do you see why?). Since 

we know 𝑏 = 𝑤/2 we can find 𝑎 

𝑎 = 𝑏 tan 𝜃 =
𝑤

2
tan 𝜃 

Since 𝑠 + 𝑎 = 𝐿/2 

𝑠 =
𝐿

2
−

𝑤

2
tan 𝜃 

because 𝑥 = 𝑠 cos 𝜃 we finally get 

𝑥 = (
𝐿

2
−

𝑤

2
tan 𝜃) cos 𝜃 =

1

2
(𝐿 cos 𝜃 − 𝑤 sin 𝜃) 

With this 𝑥 we can write the solution from the balance of torques as 

𝐹2 =
𝑥𝑀𝑔

𝐿 cos 𝜃
=

1

2
(

𝐿 cos 𝜃

𝐿 cos 𝜃
−

𝑤 sin 𝜃

𝐿 cos 𝜃
) 𝑀𝑔 =

1

2
(1 −

𝑤

𝐿
tan 𝜃) 𝑀𝑔 

Then the first force can be found from the balance of forces 

𝐹1 = 𝑀𝑔 − 𝐹2 =
1

2
(1 +

𝑤

𝐿
tan 𝜃) 𝑀𝑔 

5. Calculations  

𝐹1 =
1

2
(1 +

0.50 𝑚

1.25 𝑚𝐿
tan 300) 200 𝑘𝑔 ∙ 9.8 𝑚 𝑠2⁄ = 1372 𝑁 

𝐹2 =  
1

2
(1 −

0.50 𝑚

1.25 𝑚𝐿
tan 300) 200 𝑘𝑔 ∙ 9.8 𝑚 𝑠2⁄ = 588 𝑁 

It is clear that it is better to be the person above on the stairs. But if you are a good friend you will 

probably take the place at the lower end. 

6. Looking back. 

Let’s consider a special case (or two) when we may guess right answers. If our general solution is able 

to reproduce our special case considerations then probably we have a correct general solution. 
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It is clear that if the friend were on the floor (then the angle 𝜃 = 0) we should expect equal load for 

both. From our general solution it follows for 𝜃 = 0 

𝐹1 =
1

2
𝑀𝑔,    𝐹2 =

1

2
𝑀𝑔 

What if it was not a crate but a beam (or a log) with negligible width comparing to its length (𝑤 ≪ 𝐿)? 

Then we have 

𝐹1 =
1

2
𝑀𝑔,    𝐹2 =

1

2
𝑀𝑔 

That means that we see the difference if you are on a flight of stairs carrying a wide object. By the way 

we can easily find such an angle when the person above on the stairs does not carry anything, or 𝐹2 =

0, thus from 

𝐹2 =
1

2
(1 −

𝑤

𝐿
tan 𝜃) 𝑀𝑔 = 0 

we have 

tan 𝜃 =
𝐿

𝑤
 

(for the given crate this angle is about 680).  

Example 11-8 

You are trying to move a dresser of mass 𝑀 and dimensions of length 𝐿 and height 𝐻 by pushing it 

with a constant velocity by applying a horizontal force 𝐹 a height ℎ above the floor. The coefficient of 

kinetic friction between the dresser and the floor is 𝜇. The ground exerts upward normal forces of 

magnitudes 𝑁1 and 𝑁2 at the two ends of the dresser.  

Find the height about the floor that you can push a dresser before it starts to topple.  
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SOLUTION: 

1. Physics – static equilibrium, friction  

2. The basic equations 

𝐹𝑛𝑒𝑡,𝑥 = 0            (𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑜𝑓 𝑓𝑜𝑟𝑐𝑒𝑠) 

𝐹𝑛𝑒𝑡,𝑦 = 0            (𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑜𝑓 𝑓𝑜𝑟𝑐𝑒𝑠) 

𝜏𝑛𝑒𝑡,𝑧 = 0             (𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡𝑜𝑟𝑞𝑢𝑒𝑠). 

Friction 

𝑓 = 𝜇𝑁 

3. The balance of forces 

𝐹𝑛𝑒𝑡,𝑥 = 𝐹 − 𝑓1 − 𝑓2 = 𝐹 − 𝜇𝑁1 − 𝜇𝑁2 = 0 

𝐹𝑛𝑒𝑡,𝑦 = 𝑁1 + 𝑁2 − 𝑀𝑔 = 0 

Let’s choose the rotational axis at the RIGHT end of the 

dresser.  Using components ( 𝜏𝑧 = 𝑟𝑥𝐹𝑦 − 𝑟𝑦𝐹𝑥) 

the balance of torques is  

𝜏𝑧 = −ℎ𝐹 − 𝐿𝑁1 +
𝐿

2
𝑀𝑔 = 0 

4. Our system of equations.  

𝐹 − 𝜇𝑁1 − 𝜇𝑁2 = 0 

𝑁1 + 𝑁2 − 𝑀𝑔 = 0 

−ℎ𝐹 − 𝐿𝑁1 +
𝐿

2
𝑀𝑔 = 0 

From the first equation 𝐹 = 𝜇(𝑁1 + 𝑁2). Since 𝑁1 + 𝑁2 = 𝑀𝑔 (from the second equation), the we have 

that the force to push with constant velocity is 

𝐹 = 𝜇𝑀𝑔 

or the net frictional force. With this information, the last equation immediately gives 𝑁1 

𝑁1 =
1

2
𝑀𝑔 −

ℎ

𝐿
𝜇𝑀𝑔 

and then 

𝑁2 = 𝑀𝑔 − 𝑁1 =
1

2
𝑀𝑔 +

ℎ

𝐿
𝜇𝑀𝑔 

Let’s note that the left end will lose contact with the floor (𝑁1 = 0) at the moment the dresser begins 

to topple. Thus  

𝑁1 = 0 =
1

2
𝑀𝑔 −

ℎ𝑚 

𝐿
𝜇𝑀𝑔 
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where ℎ𝑚 is the maximum height about the floor that you can push a dresser before it starts to topple. 

ℎ𝑚 =
𝐿

2𝜇
 

5. No calculations  

6. Looking back. 

Let’s consider a special case (or two) when we may guess right answers. If our general solution is able 

to reproduce our special case considerations then probably we have a correct solution. 

It is clear that in absence of friction 𝜇 = 0 𝑎𝑛𝑑 ℎ𝑚 → ∞  there is no way to get a problem with furniture 

(but then how could we move furniture if we do not have traction?).  

Example 11-9 

A car is travelling at a constant speed 𝑣 on a horizontal curved ramp of radius 𝑅 = 100 𝑚. Assume the 

height of the car’s center of mass above the ground is ℎ = 1.0 m, and the separation between its wheels 

(the axle track or car’s width) is 𝐿 = 1.6 𝑚. The maximum coefficient of static friction between the 

tires and the surface of the road is 𝜇𝑠 = 0.9. 

a) Find its maximum speed if the car is to negotiate this path without skidding. 

b) Find its maximum speed if the car is to negotiate the path without overturning. 

SOLUTION: 

1. Physics – circular motion with acceleration, friction, rotational equilibrium.  

Let’s note that the first question has been answered in example 5-11 (question a), namely,   𝑣𝑚𝑎𝑥 =

√𝜇𝑠𝑔𝑅. However, it is interesting to compare the two solutions, for skidding and overturning, or what 

is going to happen first. Now, we concentrate on question b). 

2. The basic equations 

𝐹𝑛𝑒𝑡,𝑥 =
𝑀𝑣2

𝑅
            (𝑐𝑒𝑛𝑡𝑟𝑖𝑝𝑒𝑡𝑎𝑙 𝑓𝑜𝑟𝑐𝑒) 

𝐹𝑛𝑒𝑡,𝑦 = 0                   (𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑜𝑓 𝑓𝑜𝑟𝑐𝑒𝑠) 

𝜏𝑛𝑒𝑡,𝑧 = 0                   (𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡𝑜𝑟𝑞𝑢𝑒𝑠). 

Friction   𝑓 = 𝜇𝑁 
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3. The balance of forces is a bit more complicated because 

the car is following a circular path (with a centripetal force 

to provide centripetal acceleration in 𝑥 −direction) 

𝐹𝑛𝑒𝑡,𝑥 = 𝑓1 + 𝑓2 =
𝑀𝑣2

𝑅
 

𝐹𝑛𝑒𝑡,𝑦 = 𝑁1 + 𝑁2 − 𝑀𝑔 = 0 

where 𝑓1 = 𝜇𝑁1 and 𝑓2 = 𝜇𝑁2. 

Let’s choose the rotational axis at the center of the gravity 

(center of mass) of the car.  Using components for the 

torques we get the balance equation as  

𝜏𝑧 = −𝑁1

𝐿

2
+ 𝑓1ℎ + 𝑁2

𝐿

2
+ 𝑓2ℎ = 0 

or  

𝜏𝑧 = −𝑁1

𝐿

2
+ 𝜇𝑁1ℎ + 𝑁2

𝐿

2
+ 𝜇𝑁2ℎ = 0 

4. Now we have three equations with three unknowns, explicitly 𝑁1, 𝑁2 and 𝜇. One may be surprised 

that we have the coefficient 𝜇 as unknown. Indeed, it is less than the maximum static friction 

coefficient 𝜇𝑠 if one drives with speed less than 𝑣𝑚𝑎𝑥 = √𝜇𝑠𝑔𝑅. So, let’s find all the unknowns. Using 

the second equation for balance of forces together with balance of torques gives 

𝑁1 + 𝑁2 = 𝑀𝑔 

𝑁1 (
𝐿

2
− 𝜇ℎ) = 𝑁2 (

𝐿

2
+ 𝜇ℎ) 

then solving the system of equation 

𝑁1 = 𝑀𝑔 (

𝐿
2

+ 𝜇ℎ

𝐿
),     𝑁2 = 𝑀𝑔 (

𝐿
2

− 𝜇ℎ

𝐿
) 

It is interesting that the two normal forces are different if moving on a circular pass.  

However, for a car moving along a straight line (no radial motion, or 𝜇 = 0) then 𝑁1 = 𝑁2 = 𝑀𝑔/2. 

The car is about to overturn if 𝑁2 = 0 that happens if 

𝐿

2
− 𝜇ℎ = 0 

or 𝜇 = 𝐿/2ℎ. 

From the first balance equation 

𝑓1 + 𝑓2 = 𝜇𝑁1 + 𝜇𝑁2 = 𝜇(𝑁1 + 𝑁2) = 𝜇𝑀𝑔 =
𝑀𝑣2

𝑅
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or  

𝜇 =
𝑣2

𝑔𝑅
 

Using 𝜇 = 𝐿/2ℎ from the above solution gives 

𝐿

2ℎ
=

𝑣2

𝑔𝑅
 

𝑣𝑜𝑣𝑒𝑟 = √
𝐿

2ℎ
𝑔𝑅 

where 𝑣𝑜𝑣𝑒𝑟 is the maximum speed a car may have before starting to overturn. By the way, the larger 

ℎ the lower the critical 𝑣𝑜𝑣𝑒𝑟 speed (that is the case for SUVs where the ratio 𝐿/2ℎ is lower than for 

regular cars). 

5. For the given conditions 

 𝑣𝑚𝑎𝑥 = √𝜇𝑠𝑔𝑅 = √0.9 ∙ 9.8
𝑚

𝑠2
∙ 100𝑚 = 30 𝑚/𝑠 = 67 𝑚𝑝ℎ 

𝑣𝑜𝑣𝑒𝑟 = √
𝐿

2ℎ
𝑔𝑅 = √

1.6 𝑚

2 ∙ 1 𝑚
9.8

𝑚

𝑠2
∙ 100𝑚 = 28 𝑚/𝑠 = 63 𝑚𝑝ℎ 

6. Looking back. 

For the given conditions the care will rather overturn than skid.  

Example 11-10 

A driver of a car on a horizontal road makes an emergency stop by applying the brakes so that all four 

wheels lock and skid along the road. The coefficient of kinetic friction between tires and road is 𝜇 =

0.80. The wheelbase (the separation between the front and rear axles) is 𝐷 =  2.8 𝑚, and the center 

of mass of the car is located at distance 𝑑 =  1.2 𝑚 behind the front axle and distance ℎ =  0.90 𝑚 

above the road. The car mass is 𝑀 = 1000 𝑘𝑔. Find the magnitude of the normal force on rear wheels 

and the normal force on front wheels.  

SOLUTION: 

1. Physics – motion with translational acceleration, friction, rotational equilibrium. (While the car is 

not in translational equilibrium, it is in rotational equilibrium!). 

This problem is remarkably similar to example 11-8.  

2. The basic equations 

𝐹𝑛𝑒𝑡,𝑥 = 𝑀𝑎               (𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑥 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛) 

𝐹𝑛𝑒𝑡,𝑦 = 0                   (𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑜𝑓 𝑓𝑜𝑟𝑐𝑒𝑠) 
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𝜏𝑛𝑒𝑡,𝑧 = 0                   (𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡𝑜𝑟𝑞𝑢𝑒𝑠). 

Friction   𝑓 = 𝜇𝑁 

3. For translational forces 

𝐹𝑛𝑒𝑡,𝑥 = −𝑓1 − 𝑓2 = −𝑀𝑎 

𝐹𝑛𝑒𝑡,𝑦 = 𝑁1 + 𝑁2 − 𝑀𝑔 = 0 

where 𝑓1 = 𝜇𝑁1 and 𝑓2 = 𝜇𝑁2. 

Let’s choose the rotational axis at the center of the gravity 

(center of mass) of the car.  Then  

𝜏𝑧 = 𝑁1𝑑 − 𝑓1ℎ − 𝑁2(𝐷 − 𝑑) − 𝑓2ℎ = 0 

or  

𝜏𝑧 = 𝑁1𝑑 − 𝜇𝑁1ℎ − 𝑁2(𝐷 − 𝑑) − 𝜇𝑁2ℎ = 0 

4. Three equations but two unknowns, namely 𝑁1, 𝑁2. Is there a problem? In fact the first two 

equations can be considered as one because 

𝐹𝑛𝑒𝑡,𝑥 = −𝑓1 − 𝑓2 = −𝑀𝑎           𝜇(𝑁1 + 𝑁2) = 𝑀𝑎 

𝐹𝑛𝑒𝑡,𝑦 = 𝑁1 + 𝑁2 − 𝑀𝑔 = 0              𝑁1 + 𝑁2 = 𝑀𝑔 

they are connected in a simple way 𝑎 = 𝜇𝑔. 

Then we solve simultaneously these two equations 

𝑁1 + 𝑁2 = 𝑀𝑔 

𝑁1(𝑑 − 𝜇ℎ) = 𝑁2(𝐷 − 𝑑 + 𝜇ℎ) = 0 

Solving the system of equation gives 

𝑁1 = 𝑀𝑔 (
𝐷 − 𝑑 + 𝜇ℎ

𝐷
),     𝑁2 = 𝑀𝑔 (

𝑑 − 𝜇ℎ

𝐷
) 

where 𝜇 = 𝑎/𝑔 

5. For the given conditions 

𝑁1 = 𝑀𝑔 (
𝐷 − 𝑑 + 𝜇ℎ

𝐷
) = 8120 𝑁 

𝑁2 = 𝑀𝑔 (
𝑑 − 𝜇ℎ

𝐷
) = 1680 𝑁 

6. Looking back. 

Much more force is on the front wheels. Let’s see what we get if there was no acceleration 𝜇 = 0 and 

the center of gravity was in the middle 𝑑 = 𝐷/2. Then we have 𝑁1 = 𝑁2 = 𝑀𝑔/2.  
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Example 11-11 

A ladder having a uniform density and a mass m = 10 kg rests against a frictionless vertical wall at an 

angle of 600. The lower end rests on a flat surface where the coefficient of static friction is 0.40. A 

student with a mass M = 65 kg attempts to climb the ladder. What fraction of the length L = 5 m of the 

ladder will the student have reached when the ladder begins to slip? 

SOLUTION: 

1. Physics – static equilibrium, friction  

2. The basic equations 

𝐹𝑛𝑒𝑡,𝑥 = 0            (𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑜𝑓 𝑓𝑜𝑟𝑐𝑒𝑠) 

𝐹𝑛𝑒𝑡,𝑦 = 0            (𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑜𝑓 𝑓𝑜𝑟𝑐𝑒𝑠) 

𝜏𝑛𝑒𝑡,𝑧 = 0             (𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡𝑜𝑟𝑞𝑢𝑒𝑠). 

Friction 

𝑓 = 𝜇𝑁 

3. The balance of forces 

𝐹𝑛𝑒𝑡,𝑥 = 𝑓𝑠 − 𝑁𝑤 = 0 

𝐹𝑛𝑒𝑡,𝑦 = 𝑁 − 𝑀𝑔 − 𝑚𝑔 = 0 

Let’s choose the rotational axis at the low end of the ladder (the red 

dot).  Also we assume that 𝛼 is a fraction of the leader that the student 

has reached, or he climbed 𝛼𝐿 along the ladder. 

Using components ( 𝜏𝑧 = 𝑟𝑥𝐹𝑦 − 𝑟𝑦𝐹𝑥) 

the balance of torques is  

𝜏𝑧 = −
𝐿

2
𝑚𝑔 cos 𝜃 − 𝛼𝐿𝑀𝑔 cos 𝜃 + 𝐿𝑁𝑤 sin 𝜃 = 0 

4. After using 𝑓𝑠 = 𝜇𝑁  our system of equations is 

𝜇𝑁 − 𝑁𝑤 = 0 

𝑁 − 𝑀𝑔 − 𝑚𝑔 = 0 

−
𝐿

2
cos 𝜃 𝑚𝑔 − 𝛼𝐿 cos 𝜃 𝑀𝑔 + 𝐿 sin 𝜃 𝑁𝑤 = 0 

There are three unknowns in the system: 𝑁, 𝑁𝑤 and 𝛼. From the second equation 

𝑁 = (𝑚 + 𝑀)𝑔 

then from the first equation 

𝑁𝑤 = 𝜇(𝑚 + 𝑀)𝑔 

and from the third equation 
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𝛼 =
𝐿 sin 𝜃 𝑁𝑤 − −

𝐿
2

cos 𝜃 𝑚𝑔

𝐿 cos 𝜃 𝑀𝑔
=

𝐿 sin 𝜃 𝜇(𝑚 + 𝑀)𝑔 − −
𝐿
2

cos 𝜃 𝑚𝑔

𝐿 cos 𝜃 𝑀𝑔
 

and after some algebra 

𝛼 = 𝜇 (
𝑚 + 𝑀

𝑀
) tan 𝜃 −

1

2
(

𝑚

𝑀
) 

5. Calculations 

  

𝛼 = 0.4 (
10 𝑘𝑔 + 65 𝑘𝑔

65 𝑘𝑔
) tan 600 −

1

2
(

10 𝑘𝑔

65 𝑘𝑔
) = 0.72 

or the student will beat  ℎ = 0.72 ∙ 5 𝑚 ∙ sin 600 = 3.1 𝑚 above the ground. 

6. Looking back. 

Units (actually no units) are correct. 

I cannot imagine some special case with an obvious solution.  

The ladder problem is a classic example in most textbooks. You might noticed that we took into account 

only one frictional force, namely from the floor. Most discussions of this problem assume that the static 

frictional force between the ladder and wall can be ignored. Can it? Indeed, we would expect one. 

However in this case the problem is getting very complicated with no unique solution (four unknowns 

but three equations!). Without modeling the elasticity of the ladder, it is not possible to solve the ladder 

problem for all the external forces. It is interesting how a simple problem can get complicated in no time, 

just by adding one more force 

 

More for the ladder problem: We can analyze the major dependences. 

a) let’s see how 𝛼 changes with 𝑀 for fixed 𝜃 = 600, 𝑚 = 10 𝑘𝑔 and 𝜇 = 0.4 

This is quite interesting. As the mass 

increases the fraction decreases but 

only to a certain critical point on the 

ladder. 
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b) let’s explore the angle dependence for 𝑀 = 65 𝑘𝑔 

As the angle increase, the safe point on 

the ladder goes up in a non-linear way. 

For given conditions, At about 700 it is 

safe to stand at the top of the ladder. 
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12 The Law of Gravitation 

This law has been called “the greatest generalization achieved by the human mind”. For centuries 

scientists and curious minds tried to understand the motions of planets among the stars, and causes 

behind the motion.   Ancient Greeks deduced from simple observations that planets went around the 

sun. However, they were not able to identify exactly how the planets went around the sun, with 

exactly what causes. By the beginning of the fifteenth century there were heated debates as to 

whether the planets really went around the sun or not. These debates were mostly philosophical. It 

was Tycho Brahe, a Danish astronomer, who suggested to resolve the dispute by accurate 

measurements of positions of the planets. After a couple decades of careful observations he published 

extensive tables of data. Years later a mathematician Johannes Kepler derived three laws of planetary 

motion based on Brahe’s tables of data. 1) All planets move in elliptical orbits with the Sun at one 

focal point, 2) the radius vector drawn from the Sun to a planet sweeps out equal areas in equal time 

intervals, and 3) the square of the orbital period of any planet is proportional to the cube of the semi-

major axis of the elliptical orbit. However still no explanation was provided for causes of motion. 

Decades later, in 1686, Isaac Newton published his law of gravitation 

12.1 Newton’s law of gravitation 

The Law of Gravitation is that two bodies attract each other with a force upon each other which varies 

inversely as the square of the distance between them, and varies directly as the product of their 

masses. Mathematically we can write that great law as a simple formula 
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𝐹 = 𝐺 
𝑚1𝑚2

𝑟2
, (12.1) 

where 𝑚1 and 𝑚2 are masses of bodies, 𝑟 is the distance between them, and 𝐺 is a fundamental 

proportionality constant called the universal gravitational constant or simply gravitational constant. 

In SI unites its value is 

𝐺 = 6.67408 × 10−11 𝑁 ⋅ 𝑚2 𝑘𝑔2⁄  

Please note that this is a recommended value by International Council for Science: Committee on Data 

for Science and Technology (CODATA) as of 2014. Most standard textbooks, as well as Wikipedia, use 

𝐺 = 6.67384 × 10−11𝑁 ⋅ 𝑚2 𝑘𝑔2⁄  that is a value based on less precise measurements. It is also 

interesting to note that it took 112 years, after publishing the law of gravitation by Newton, to 

measure 𝐺 for the first time. 

We can also write the law in a vector form (remember that forces are vectors) 

�⃗�21 = 𝐺
𝑚1𝑚2

𝑟21
2 �̂�21 (12.2) 

where �̂�21 is a unit vector in the direction from 1 toward 2 (note that 𝑟21 = 𝑟2 − 𝑟1).  

 

Figure 12.1 Notations for positions and forces  

Using the components we can write 

𝐹21,𝑥 = 𝐺
𝑚1𝑚2

𝑟21
3

(𝑥2 − 𝑥1),         𝐹21,𝑦 = 𝐺
𝑚1𝑚2

𝑟21
3

(𝑦2 − 𝑦1),         𝐹21,𝑧 = 𝐺
𝑚1𝑚2

𝑟21
3

(𝑧2 − 𝑧1). 

In case of three or more objects we simply use the superposition of forces to find a net force on every 

object in a system. For example, a net force on object 1 from n other objects is written as 

�⃗�𝑖1 = ∑ 𝐺
𝑚1𝑚𝑖

𝑟𝑖1
2 �̂�𝑖1

𝑛

𝑖=2
 

Having the law of gravitation together with second newton’s law we have everything required to 

derive many consequences of these two principles. The problem of motion of objects interacting by 

the law of gravity can analytically be solved only for two objects. For three or more objects the 

problem can be treated only numerically.  
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It is amazing that the fundamental law of gravity, looking so simply elegant, explains motion of stars, 

planet, comets and satellites. Besides, any object on a planet is a subject of the gravitational force 

following the same law of gravity. There is something even more astonishing. The fundamental law 

of gravity is valid for every object in the universe.  

12.1.1 Law of gravitation and physical objects 

The law of gravitation (12.1) is formulated for point-like objects. We know very well from our 

experience that planets, stars, people, textbooks are not point-like objects. Therefore we need to do 

additional work to apply the gravitational law to objects of arbitrary shapes or consider conditions 

when a point-like approximation is a good one.   

The point like approximation works very well if a distance between centers of masses of objects is 

much larger than physical sizes of the objects. In particularly, for the solar system it is a good 

approximation (the radius of the sun 𝑅𝑆𝑢𝑛 = 6.955 × 108𝑚 and the distance to the closes planet 

Mercury 6.532 × 1010𝑚, with distance to Earth 1.485 × 1011𝑚).  

In a general case (when the point-like approximation cannot be applied) we can divide two objects 

𝐼 and 𝐽  into small elements Δ𝑚𝑖 and Δ𝑚𝑗.  

 

Then every small element of object 𝐼 attracts every small element of object 𝐽. For every pair of 

elements we apply the law of gravity 

Δ𝑓𝑖𝑗 = 𝐺
Δ𝑚𝑖Δ𝑚𝐼

𝑟𝑖𝑗
2  

The net force of gravitational interaction between two objects is a vector sum of all elementary forces 

�⃗�12 = 𝐺 ∑ ∑
Δ𝑚𝑖Δ𝑚𝑗

𝑟𝑖𝑗
2 �̂�𝑖𝑗

𝑗𝑖

 

In the limit when Δ𝑚𝑖 → 0 and Δ𝑚𝑗 → 0 the sum above is reduced to multiple integration. In 

particular, a force between a particle of mass 𝑚 and an extended object of mass 𝑀 with a density 

distribution 𝜌(𝑟) can be written as 

�⃗� = 𝐺𝑚 ∫
𝑑𝑀

𝑟2
�̂� = 𝐺𝑚 ∫

𝜌(𝑟)𝑑𝑉

𝑟2
𝑉

�̂� (12.3) 
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where the integration is carried out over the volume of an object.  

Let us consider a simple application, namely a force of gravity between a homogeneous bar of length 

𝐿 and mass 𝑀 and a particle of mass 𝑚 located at distance 𝑎 from the bar. 

 

Keeping in mind that 𝑑𝑀 can be written as 𝑑𝑀 = (𝑀 𝐿⁄ )𝑑𝑥 = 𝜆𝑑𝑥, where 𝜆 is a linear density,  we can 

write the total gravitational force exerted by the bar on the particle as 

�⃗� = 𝐺𝑚 ∫
𝑑𝑀

𝑥2

𝑎+𝐿

𝑎

𝑖̂ = 𝐺𝑚 ∫
𝜆𝑑𝑥

𝑥2

𝑎+𝐿

𝑎

𝑖̂ = 𝐺𝑚 ∫ (
𝑀

𝐿
)

𝑑𝑥

𝑥2

𝑎+𝐿

𝑎

𝑖̂ = 

𝐺𝑚𝑀

𝐿
𝑖̂ ∫

𝑑𝑥

𝑥2

𝑎+𝐿

𝑎

=
𝐺𝑚𝑀

𝐿
𝑖̂(−1) (

1

𝑎 + 𝐿
−

1

𝑎
) 

and finally 

�⃗� =
𝐺𝑚𝑀

𝐿

𝐿

𝑎(𝑎 + 𝐿)
𝑖̂ = 𝐺

𝑚𝑀

𝑎(𝑎 + 𝐿)
𝑖 ̂

We can see that in the limit 𝐿 → 0,  

�⃗� = lim
𝐿→0

𝐺
𝑚𝑀

𝑎(𝑎 + 𝐿)
𝑖̂ = 𝐺

𝑚𝑀

𝑎2
𝑖̂ 

and the force of gravity corresponds to a force between two point-like masses. Additionally, if 𝑎 ≫ 𝐿 

(the distance between the objects is much larger that objects), then again we have it like a force 

between two particles.  

Generally, calculations of multiple integrals, in cases of physical objects of various shapes, can be quite 

cumbersome. However, for this chapter we only need a couple special cases, namely gravitational 

force between a star and a planet, between a planet and a satellite, and between a planet and an object 

on or close to a planet’s surface. 

12.1.2 Newton's shell theorem 

Most planets and starts are spheres (or almost spheres) with spherically symmetric mass distributions. 

Then we can use Newton’s shell theorem that states “A uniform spherical shell of matter attracts a 

particle that is outside the shell if all the shell’s mass were concentrated at its center”. From the shell 

theorem follows that bodies having a spherically symmetric mass distribution over their volume  
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interact as if their masses were concentrated at the centers of these spheres 

𝐹 = 𝐺 
𝑚1𝑚2

𝑅2
 (12.4) 

Planets and stars are either far away from each other (𝑅 ≫ 𝑟1, 𝑟2) or have geometric shapes very close 

to spherical. Therefore equation (12.4) is a very good one for celestial mechanics.  

For a physical object outside a uniform solid sphere or spherical shell  

 

the magnitude of gravitational force on this object is 

𝐹 = 𝐺 
𝑚𝑀

(𝑅 + ℎ)2
 (12.5) 

where 𝑅 is the radius of a sphere and ℎ is the distance to the sphere’s surface from a physics object. If 

a size of a physics object is much less than 𝑅 + ℎ then the physics object can be treated as a point like 

object (its real shape does not matter). Equation (12.5) is a very good approximation for gravitational 

for between a planet and a satellite and for any objects on or above a surface of a planet.  

Near the Earth surface ℎ ≪ 𝑅 then 

1

(𝑅 + ℎ)2
=

1

𝑅2

1

(1 + ℎ 𝑅⁄ )2
≈  

1

𝑅2
(1 − 2

ℎ

𝑅
+ ⋯ ), 

where we have neglected the quadratic and higher-order terms in (h/R)2 since h/R is very small. For 

example, at the top of Everest we have ℎ/𝑅 ≈ 1.4 × 10−3. In most cases, there is no need to take into 

account insignificant variations in the force of gravity. Within the accuracy 10−3, we can consider that 

for objects on Earth the force of gravity is constant and independent of the altitude. 

It is instructive to evaluate magnitudes of gravitational force between some objects. Thus the force 

between Earth and Sun is 3.53 × 1022𝑁 (quite a large number!), the force between a human body and 

Earth is simply its weight, for a 60 kg body it is about 590 𝑁, the force between two humans (assume 
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they have spherical shapes) separates by a distance of 10 meters is 2.4 × 10−9𝑁 (or about 10,000 

times less than a weight of mosquito). As we can see gravitational force between objects on Earth is 

very small comparing to their weights.  

Some people believe that positions of stars at birth influence somebody’s life. Assume that they are 

taking about gravitational force. Let’s calculate gravitational force from the closest star outside the 

solar system (Sirius) on a human body at birth, we can easily get it is about 1.6 × 10−7𝑁, or about ten 

times less than one eyelash hair. (### check these numbers) 

12.1.3 Gravitational and Inertial Masses 

Expressing the law of gravity (12.1) we silently assumed that masses in the law are the same masses 

that we have in the second newton’s law (4.5). However this assumption is not solid without 

additional insight. The law of gravity and the second newton’s law are two independent laws. In the 

second newton’s law mass characterizes the property of inertia of motion, or inertial mass is the 

property of an object that measures the object’s resistance to acceleration. In the law of gravity mass 

characterizes a property of objects to attract each other with gravitational force. Therefore it is 

reasonable to ask a question if we should rather assign 𝑚𝐼 for the inertial mass, and 𝑚𝐺  for the 

gravitational mass and to treat them differently. It is clear that only experiments can answer this 

questions. From the second Newton’s law follows for the free-fall acceleration 

𝑔 =
𝐹𝑔

𝑚𝐼
= 𝐺

𝑀𝐸

𝑅𝐸
2

𝑚𝐺

𝑚𝐼
 

where 𝑀𝐸  is the mass of Earth, and 𝑅𝐸  is the radius of Earth. Experiments show that free fall 

acceleration 𝑔 is the same for all objects at the same location. Since 𝐺, 𝑀𝐸 , 𝑅𝐸 are constants for the 

same locations, then the ratio 𝑚𝐺 𝑚𝐼⁄  must be the same for all objects. At this time highly precise 

measurement show no difference between the two masses with accuracy 10−18. The equivalence of 

inertial and gravitational masses (the equivalence principle)  

𝑚𝐼 = 𝑚𝐺 

is at the foundation of general theory of relativity. 

 

12.2 Acceleration due to gravity g 

In previous chapters we use for the magnitude of the gravitational force on objects from Earth as 

𝐹 = 𝑚𝑔 

Assuming that the earth is a uniform sphere of radius 𝑅𝐸  and mass 𝑀𝐸 , then a small body of mass 𝑚 

at the earth’s surface (a distance 𝑅𝐸  from its center) experiences gravitational force 

𝐹 = 𝐺
𝑚𝑀𝐸

𝑅𝐸
2 = 𝑚𝑔 

We can easily find that the acceleration due to gravity at the earth’s surface 
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𝑔 = 𝑔𝐸 = 𝐺
𝑀𝐸

𝑅𝐸
2  (12.6) 

The acceleration due to gravity 𝑔 is independent of the mass 𝑚 of the object. By the way, equation 

(12.6) provided a way to calculate the mass of the Earth since the radius was known since ancient 

times. 

However we need to note that under closer examination the free-fall acceleration 𝑔 is not a constant. 

In reality it is a bit different from (12.6) for three reasons.  

First, Earth is not uniform. Its density varies radially, and the density of the crust varies slightly from 

region to region (larger in mountain regions). 

Second, Earth is not a perfect sphere but approximately an ellipsoid flattered at the poles and bulging 

at the equator. Its polar radius is smaller than its equatorial radius by about 21 km (that is 0.33% 

difference). So, a point at the poles is closer to the dense core of Earth, than a point on the equator, 

and the free-fall acceleration is large at the poles.  

Third, Earth is rotating. Therefore a point on equator has the largest centripetal force due do the 

rotation. We can easily analyze this effect using our knowledge from previous chapters. Let us 

consider an object located on the equator.  

 

There are two forces acting on the object, namely the gravitational force and a normal force. We 

normally assume that the magnitude of the normal force is 𝑁 = 𝑚𝑔. From (12.6) 

𝑔𝐸 = 𝐺
𝑀𝐸

𝑅𝐸
2  

Then we can write 

𝑁 − 𝑚𝑔𝐸 = −
𝑚𝑣2

𝑅
,     𝑚𝑔 − 𝑚𝑔𝐸 = −

𝑚𝑣2

𝑅
 

then 

𝑔 = 𝑔𝐸 −
𝑣2

𝑅
= 𝑔𝐸 − 𝜔2𝑅 

where 𝜔 is the angular speed of Earth. Practically the equation above says that free-fall acceleration 

is gravitational acceleration minus centripetal acceleration. For an object on the equator this 
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centripetal acceleration is very small (about 0.034 m/s2 compared with 9.8 m/s2). If the Earth had a 

perfectly spherical shape, then an object moved from a pole to the equator would “lose” 0.35% of its 

weight. Accounting for the deviation from the ideal spherical shape of Earth makes such “loss of 

weight” even larger, namely about 0.5%. Therefore the free fall acceleration changes with latitude 

from 9.780 m/s2 at the equator to 9.832 m/s2 at the poles. For this course neglecting the difference 

between 𝑔 and 𝑔𝐸  is often well justified. Therefore within the accuracy 10−2 we can consider the free-

fall acceleration as constant and independent of the altitude and position on Earth. The standard 

acceleration of gravity recommended by CODATA is 

𝑔 = 9.80665 𝑚 𝑠2⁄  

* This acceleration corresponds to a location at 45 degrees of latitude. For practical purposes in this 

book we use 𝑔 = 9.8 𝑚 𝑠2⁄ . 

12.3 Gravitational potential energy 

In chapter 7 we introduced potential energy for conservative forces, which is which is energy 

associated with a configuration of objects. The gravitational force (12.1) is a conservative force (no 

proof here). We already evaluated gravitational potential energy as 𝑈 = 𝑚𝑔(𝑦𝑓 − 𝑦𝑖).  However that 

evaluation has been done under assumption for the free-fall acceleration to be constant. This 

assumption is a good one as soon as objects are not too far from Earth’s surface comparing to Earth’s 

radius. Now we want to derive a more general expression for the gravitational potential energy. A 

conservative force and potential energy are connected (7.2) 

𝑈(𝑟) = − ∫ 𝐹(𝑟′)𝑑𝑟′
𝑟

𝑟0

 

We can easily notice that the gravitational force (12.1) on object 𝑚 is spherically symmetrical   

�⃗� = −𝐺
𝑚𝑀

𝑟2
�̂� 

where 𝑟 is a vector directed from the origin to the body (that is why we have the negative sign here). 

Since the integral above is independent of paths we can integrate the force along a radius 

𝑈(𝑟) = − ∫ 𝐹(𝑟′)𝑑𝑟′
𝑟

𝑟0

= 𝐺𝑚𝑀 ∫
𝑑𝑟′

𝑟′2

𝑟

𝑟0

= −𝐺𝑚𝑀 (
1

𝑟
−

1

𝑟0
) 

For any potential energy the choice of a reference point is entirely arbitrary. It is common to choose 

it where the force is zero. Thus setting 𝑈(𝑟) = 0 at 𝑟 = ∞  where 𝐹(𝑟) → 0 we get 

𝑈(𝑟) = −𝐺
𝑚𝑀

𝑟
 (12.7) 

The equation above can be applied to any two particles with masses 𝑚 and 𝑀. The gravitational 

potential energy between two objects increases with distance because the gravitational force attracts 

masses.  



12. The Law of Gravitation 

239 

 

The gravitational potential energy for a system with more than two particles is the sum over all pairs 

of particles. For example, for three particles we have 

𝑈𝑡𝑜𝑡𝑎𝑙 = −𝐺 (
𝑚1𝑚2

𝑟12
+

𝑚1𝑚3

𝑟13
+

𝑚2𝑚3

𝑟23
) 

The absolute value of the gravitational potential characterizes the work needed to separate the 

particles by an infinite distance. 

By inspecting formula (12.7) one may be wondering why do we have two definitions for the 

gravitational potential energy, namely 𝑈 = 𝑚𝑔ℎ and (12.7). Let us consider a change in the 

gravitational potential energy of an object raised from the ground of Earth to a height ℎ 

𝑈(𝑅𝐸 + ℎ) − 𝑈(𝑅𝐸) = −𝐺
𝑚𝑀𝐸

𝑅𝐸 + ℎ
+ 𝐺

𝑚𝑀𝐸

𝑅𝐸
= 𝐺𝑚𝑀𝐸 (

1

𝑅𝐸
−

1

𝑅𝐸 + ℎ
) = 𝐺𝑚𝑀𝐸

ℎ

𝑅𝐸(𝑅𝐸 + ℎ)
 

When the height ℎ is very small compared with the radius of Earth 𝑅𝐸 , we can disregard terms ℎ 𝑅⁄ , 

yielding 

𝑈(𝑅𝐸 + ℎ) − 𝑈(𝑅𝐸) ≈ 𝐺𝑚𝑀𝐸

ℎ

𝑅𝐸
2 = 𝑚ℎ

𝐺𝑀𝐸

𝑅𝐸
2 = 𝑚ℎ𝑔 

since according to (12.6) the last term 𝐺𝑀𝐸 𝑅𝐸
2⁄  in the equation is free fall acceleration 𝑔. 

12.4 Motion of planets and satellites 

Motion of three or more objects interacting by force of gravity has been a challenging problem for 

both physicists and mathematicians since Newton. It has been demonstrated that even 3-body 

problem does not have an analytic solution. There are either infinite series solutions or solutions for 

specific modes of motion. Interesting enough French mathematician and physicist Poincaré working 

with the problem laid the foundations of modern chaos theory (the butterfly effect). Thus, motion of 

celestial (or astronomical) objects can only be calculated numerically8. Quite often when we do not 

need high accuracy we can substitute a many-body problem with a two-body one. If one of the bodies 

has a mass much larger than the other, then we practically dealing with a one-body problem moving 

in a gravitational field of a heavy body. If we disregard interaction between the planets in the solar 

system (a simplified view of the solar system) comparing to their interaction with the Sun, then we 

approximate their motion as one-body motion around the sun. Using astronomical data you can easily 

evaluate quality of this approximation by comparing gravitational forces in the solar system.  

For the Earth-Sun system we have that the mass of the Sun (2 × 1030𝑘𝑔) is 332,000 times the mass 

of the Earth (6 × 1024𝑘𝑔). Hence the Sun can be considered to be stationary to a high degree of 

accuracy, and the Earth can be expected to be revolving around a fixed center. Besides, the Sun and 

                                                             

8 Millennium Simulation or Millennium Run is likely the most impressive N-body simulation. The 
Millennium Run was populated by about 20 million "galaxies" to trace the evolution of the matter 
distribution in a cubic region of the Universe over 13 billion light-years. 
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the Earth have almost spherical shapes, and also the distance between the Sun and the Earth is much 

larger than diameters of the Sun and the Earth. Therefore, we can treat them as point-like objects. The 

other example is motion of satellites orbiting the Earth. Sure, their gravitational interactions is many 

orders of magnitude less than the force of gravity from the planet.  

Equation of motion for an object of mass 𝑚 (a planet or a satellite) in a field of a heavy object of mass 

𝑀  (a star or a planet accordingly) can be written in the form 

𝑚
𝑑�⃗�

𝑑𝑡
= −𝐺

𝑚𝑀

𝑟2
�̂� (12.8) 

where 𝑟 is the radius vector of the planet relative to the mass 𝑀. This is a second-order ordinary 

differential equation. Solving it together with initial conditions provide a position of the planet as a 

function of time. All Kepler’s laws can be derived from such solutions. Such an exercise is a good one 

for courses of classical mechanics and mathematical physics.  

Here are the most important result from analysis of (12.8). The force of gravity acting on a point mass 

is directed along the radius vector. The moment of this force about the center of force is zero, and for 

angular momentum 𝐿 (10.9) we have 

𝑑𝐿

𝑑𝑡
= 𝑟 × �⃗� = 𝑟 ×

𝑑

𝑑𝑡
𝑚�⃗� = 0 

Therefore the angular momentum of a point mass in our case has a constant magnitude as well as 

direction 

𝐿 = 𝑟 × 𝑚�⃗� = 𝑐𝑜𝑛𝑠𝑡. 

For an elementary displacement this equation can be rewritten as 

𝐿 = 𝑚𝑟 × �⃗� = 𝑚𝑟 ×
𝑑𝑟

𝑑𝑡
 

Hence the elementary displacement 𝑑𝑟 and the radius vector 𝑟 are in a plane perpendicular to the 

angular momentum �⃗⃗�. This means that all the time the motion happens in the same plane. 

In polar coordinates (𝑟, 𝜑) the general solution (Kepler orbit) is given by 

𝑟(𝜑) =
𝑐

1 + 𝜖 cos 𝜑
 

where 𝑐 is a constant and 𝜖 is the eccentricity. There are four different Kepler orbits (depending on 

initial conditions). For total energy 𝐸 < 0 the solutions are bounded orbits either a circle (𝜖 = 0) or 

an ellipse (0 < 𝜖 < 1). For total energy 𝐸 ≥ 0 the solution are either a parabola (𝐸 = 0, 𝜖 = 0) or a 

hyperbola (𝐸 > 0, 𝜖 > 1).  
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12.5 Planets and satellites: circular orbits, escape speed. 

Since solving ordinary differential equation goes well beyond this course, we are going to consider a 

very simple, but quite practical case or motion, namely a uniform circular motion under gravity. In 

this case it is gravitational force that works as a centripetal force for uniform circular motion. 

Consider a planet of mass 𝑚 moving around the Sun of mass 𝑀 in a circular orbit with 𝑟 a distance 

between their centers of masses and 𝑀 ≫ 𝑚, 

𝐺
𝑚𝑀

𝑟2
=

𝑚𝑣𝑐
2

𝑟
 

or the orbital speed 𝑣𝑐 of the planet is related to its circular orbit as 

𝑣𝑐 = (𝐺
𝑀

𝑟
)

1 2⁄

 (12.9) 

Note that the orbital speed does not depend on the plant’s mass, and is simply a function of its orbital 

radius. That means that any object inside or outside a satellite moves with the same velocity as the 

satellite without even touch the satellite. For example, astronauts on board of the International Space 

Station (ISS) move with the same velocity as the station, so nothing pushes them against the walls of 

the station. This state is called a state of apparent weightlessness. This is the same as being in a freely 

falling elevator. Note that the free fall acceleration at the height of the ISS is 0.885*g (pretty far from 

being true weightlessness).  
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Since the period of revolution is circumference divided by speed, then 

𝑇𝑐 =
2𝜋𝑟

𝑣
 

Substituting the orbital speed from (12.9) the preceding expression becomes 

𝑇𝑐 =
2𝜋𝑟3 2⁄

(𝐺𝑀)1 2⁄
 (12.10) 

We can also apply equation (12.10) to satellite motion around a planet if we consider 𝑀 as mass of a 

planet, and 𝑚 as mass of a satellite.  

Quite often for satellite motion it is convenient to denote the distance between the centers of masses 

𝑟 as 𝑟 = 𝑅 + ℎ where 𝑅 is the radius of the planet, and ℎ is a distance form surface of the planet to a 

satellite, then 

𝑣𝑐 = (𝐺
𝑀

𝑅 + ℎ
)

1 2⁄

             𝑇𝑐 =
2𝜋(𝑅 + ℎ)3 2⁄

(𝐺𝑀)1 2⁄
 (12.11) 

Using (12.11) we can calculate the orbital speed and the period for the International Space Station 

with ℎ = 250  miles or about 400 𝑘𝑚 that gives us 𝑣𝑐 = 7670 𝑚/𝑠 and 𝑇𝑐 = 92 minutes. For the Earth 

orbiting the Sun we get for the orbital velocity 𝑣𝑐 = 30 𝑘𝑚/𝑠 (or about 70,000 mph), the period (a 

year) is 365.3 days. 

Some communication satellites are moving in a circle in the earth’s equatorial plane. They are at such 

height that they always remain above the same point. Such orbits are called as geosynchronous orbits. 

Using 24 hours for the period of revolution we can find from (12.11)  

ℎ + 𝑅 = (
𝑇𝑐

2𝐺𝑀

4𝜋2 )

1 3 ⁄

 

that such satellites must be placed at about ℎ=35,800 km above the Earth surface.  
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Since we assumed that 𝑀 ≫ 𝑚 (the heavier object is located at the origin and does not move) then 

then the total mechanical energy 𝐸 of the two-body system is 

𝐸 =
1

2
𝑚𝑣2 − 𝐺

𝑚𝑀

𝑟
 

Using (12.9) for a circular orbit gives 

𝐸 =
1

2
𝐺

𝑚𝑀

𝑟
− 𝐺

𝑚𝑀

𝑟
= −𝐺

𝑚𝑀

2𝑟
 

One can see that for circular orbits the kinetic energy is equal to one-half the absolute value of the 

potential energy. The absolute value of total energy 𝐸 is binding energy of the system. It is this amount 

of energy is needed for the system to separate the two masses infinitely. Thus we can derive another 

characteristic speed, also called escape speed. This is the minimum value of the initial speed needed 

to let the object of mass  𝑚 to escape the gravitational force of object with mass 𝑀 (for example for a 

satellite to leave the Earth without coming back). Let at the surface of the Earth the initial speed is 𝑣𝑖 

and 𝑟 = 𝑅𝐸 . When the satellite approaches 𝑟 → ∞ its speed 𝑣𝑓 → 0, thus 𝐾𝑓 → 0 anf 𝑈𝑓 → 0 Using 

conservation of energy gives 

1

2
𝑚𝑣𝑖

2 − 𝐺
𝑚𝑀𝐸

𝑅𝐸
= 0 

and we obtain 

𝑣𝑖 = 𝑣𝑒𝑠𝑐 = (2𝐺
𝑀

𝑅𝐸
)

1 2⁄

 (12.12) 

Note that the escape speed is independent of the mass of the object, and independent of the direction 

of the velocity (but sure ignores air resistance). Equation (12.12) can be applied to any object 

launched from any planet.  

 

*** add following topics 

 How to change an orbit of a satellite 

 Black holes and escape speed 

 Tides: Moon-Earth interaction 

 Shell theorem – gravity inside a planet 

 Calculating gravitational force from a physical object – much easier to calculate the potential, 

then force 

 Dark matter 
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12.6 Examples 

Example 12-1 

A satellite with a mass of 1000 kg is placed in Earth orbit at an orbit of 500 km above the surface. 

Assuming a circular orbit,  

a) How long does the satellite take to complete one orbit?  

b) What is the satellite’s orbital speed? 

c) What is the minimum energy necessary to place this satellite in orbit (assume there is no air 

resistance)? 

d) For how many miles would this energy power an automobile? (Assume 1 gal. of gasoline 

produces 1.1*108 J of energy, and this energy is sufficient to operate a car for 25 miles) 

Example 12-2 

Two spherical objects of masses 𝑚1and 𝑚2 are released from rest at a separation distance of 𝐿. Find 

their speeds and positions when their separation distance is 𝑟. Assume that the first particle initially 

is at the origin. 

Example 12-3 

The fastest possible rate of rotation of a planet is that for which the gravitational force on material at 

the equator just barely provides the centripetal force needed for the rotation. Calculate this rotation 

period for Earth. 

Example 12-4 

The Schwarzschild radius is a distance from a black hole where the escape velocity equals the speed 

of light (even light cannot escape from a black hole). Determine the Schwarzschild radius for a black 

hole with the mass of the Sun. 

Example 12-5 

Consider an asteroid of a size of Texas (see Armageddon movie). Assume that the asteroid has a 

spherical shape, its radius is 400 𝑘𝑚 and density is 5.5 𝑔 𝑐𝑚3⁄ . Estimate speed needed to provide to 

a baseball to make it a satellite orbiting the asteroid just above the surface. 

Example 12-6 

Calculate the time taken by the Earth to fall from the orbit onto the Sun if its instantaneous radial 

velocity became zero. 
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13 Periodic Motion 

We encounter periodic motion in both our everyday lives and in science and engineering. Periodic 

motion is also a basis for any time keeping device, from the Earth rotation (24 hours) to atomic clocks. 

We also use vibration, oscillation, or harmonic motion as synonyms for periodic motion.  

In this chapter we are going to study periodic motion caused by a force that we know explicitly. Thus 

we can understand all the details from first principles.  

13.1 Simple harmonic motion 

There are remarkable equations in physics which appear in various branches of physics, so that vary 

many effects can be described by same equations. Very many of such equations are linear differential 

equations with constant coefficients. Examples of phenomena described by such equations are the 

oscillations of a mass on a spring; the oscillations of current in an electrical circuit. 

The simplest mechanical system whose motion follows a linear differential equation with constant 

coefficients is a mass on a spring. Such a system is also called a harmonic oscillator. Consider a block 

of mass 𝑚 attached to the end of a horizontal spring. The block is free to move on a frictionless surface. 

In this case we have only one force affecting the motion, namely the spring force. 

�⃗� = −𝑘�⃗� 

The minus sign tell us that the spring force is a restoring force pulling always back in the direction of 

the equilibrium and opposite to the displacement. 
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Thus the second Newton’s law, mass times the acceleration, must equal to – 𝑘𝑥 

𝑚
𝑑2𝑥

𝑑𝑡2
= −𝑘𝑥 (13.1) 

There is a more common form for this equation, namely 

𝑑2𝑥

𝑑𝑡2
= −𝜔2𝑥 (13.2) 

where, in case of the spring force 

𝜔 = (
𝑘

𝑚
)

1
2⁄

 (13.3) 

Equation (13.2) is called a simple harmonic motion equation (SHM), and it plays an extraordinary 

role in practically all fields of physics. There are two major reasons for this equation to be the 

exceptional one. First, harmonic motion is caused by a force that is linear proportional to the 

displacement. For small displacements any force can be expanded into a Taylor series, where the first 

linear term, is a leading one. Therefore, physics of a simple harmonic motion is often the first step in 

studying many periodic motions. Second, many oscillating systems “resonate” to external harmonic 

oscillations when their frequencies of oscillations are close. 

Mathematically, the SHM differential equation has a very simple general solution as 

𝑥(𝑡) = 𝐶1 cos 𝜔𝑡 + 𝐶2 sin 𝜔𝑡 (13.4) 

or in the equivalent form 

𝑥(𝑡) = 𝐴 cos(𝜔𝑡 + 𝜑) (13.5) 

it is easy to test these solutions by a simple substitution of (13.5) into (13.2).  

Let us first analyze the meanings of all terms in the solution (13.5). The constant 𝜔 is called the 

angular frequency of the motion (units - radians per second). It is the number of radians by which the 

phase changes in a second. That is determined by the differential equation. We know that the 

trigonometric function cos 𝑥 is periodic and repeats itself every time 𝜔𝑡 increases by 2𝜋. Then 

𝜔𝑡 + 2𝜋 = 𝜔(𝑡 + 𝑇) 

where 𝑇 is the period of the motion, and hence 
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𝑇 =
2𝜋

𝜔
 (13.6) 

And for a spring it becomes 

𝑇 = 2𝜋√
𝑚

𝑘
 (13.7) 

 

It is very common to also use frequency 𝑓 of the motion. The frequency represents the number of 

oscillations that the particle makes per unit time 

𝑓 =
1

𝑇
=

𝜔

2𝜋
 (13.8) 

The units for the frequency are cycles per second (s-1) or hertz (Hz). For the angular frequency: 

𝜔 = 2𝜋𝑓 =
2𝜋

𝑇
 (13.9) 

The other constants of motion (𝐴 and 𝜑) are not determined by the equation, but by how the motion 

is started. For a second order differential equations we need two initial conditions to define a specific 

solution. Very often it is done by setting an initial position and velocity at some initial time, i.e. 

𝑥(𝑡 = 0) = 𝑥0, 𝑣(𝑡 = 0) = 𝑣0. Of these constants, 𝐴 measures the maximum displacement attained 

by the mass, and is called the amplitude of oscillation. We can see that by plotting a graph for two 

values of 𝐴 namely 𝐴 and 2𝐴. 

 

The constant 𝜑 is sometimes called the phase of the oscillation. But that is a confusion, because other 

people call 𝜔𝑡 + 𝜑 as the phase, and say the phase changes with time. We might say that 𝜑 is a phase 

shift from some defined zero. The following graph should help in visualizing this 
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We can obtain the linear velocity of a particle undergoing simple harmonic motion by differentiating 

(13.5) with respect to time 

𝑣(𝑡) =
𝑑𝑥

𝑑𝑡
= −𝐴𝜔 sin(𝜔𝑡 + 𝜑) (13.10) 

And the acceleration is 

𝑎(𝑡) =
𝑑𝑣

𝑑𝑡
=

𝑑2𝑥

𝑑𝑡2
= −𝐴𝜔2 cos(𝜔𝑡 + 𝜑) (13.11) 

Because 𝑥(𝑡) = 𝐴 cos(𝜔𝑡 + 𝜑) we can write (13.11) as 

𝑎(𝑡) = −𝜔2𝑥(𝑡) 

it is instructive to plot the displacement, velocity and acceleration to compare their evolutions with 

time.  
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We can see that the velocity has the largest values ±𝜔𝐴 when the displacement𝑣𝑥 = 0. The 

acceleration reaches the largest values of ±𝜔2𝐴 when the displacement has its largest values 𝑥 = ±𝐴. 

It is understandable since the restoring force is the largest  at those displacements.  

13.1.1 Initial conditions 

Now let us consider what determines the constants 𝐴 and 𝜑 or 𝐶1 and 𝐶2. As we said before, these 

constants are determined by how we start the motion, not by any other features of the situation. These 

are called the initial conditions. We would like to connect the initial conditions with the constants. It 

is a bit easier to do it for the form (13.4) but we will do it for more often used form (13.5). Suppose 

that at 𝑡 =  0 we have started with an initial displacement 𝑥0 and a certain velocity 𝑣0. The 

displacement and velocity in this case 

𝑥0 = 𝐴 cos 𝜑
𝑣0 = −𝐴𝜔 sin 𝜑

 

Hence the initial phase is 

𝜑 = atan (−
𝑣0

𝜔𝑥0
) 

From the initial conditions 

cos 𝜑 =
𝑥0

𝐴

sin 𝜑 = −
𝑣0

𝐴𝜔

 

Since cos 𝜑2 + sin2 𝜑 = 1 

𝑥0
2

𝐴2
+

𝑣0
2

𝐴2𝜔2
= 1 

and finally 

𝐴 = (𝑥0
2 +

𝑣0
2

𝜔2)

1
2⁄

 

In a special case when the mass starts with zero initial velocity 𝑣(𝑡 = 0) = 0 we get 

𝐴 = 𝑥0,     𝜑 = 0 

Then we see that for this setup, the amplitude is equal to the maximum deviation from the 

equilibrium.  

13.2 Energy of the simple harmonic motion 

Now we want to check the conservation of energy. Since there are no frictional losses, energy ought 

to be conserved. Let us write again the formulae 

𝑥(𝑡) = 𝐴 cos(𝜔𝑡 + 𝜑)
𝑣(𝑡) = −𝐴𝜔 sin(𝜔𝑡 + 𝜑)
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For a spring, the potential energy at any moment is 𝑘𝑥2 2⁄ , where 𝑥 is the displacement and 𝑘 is the 

constant of the spring. The kinetic energy is 𝑚𝑣2 2⁄ . If we substitute for 𝑥 and 𝑣 for our expressions 

above, we get 

𝐸 = 𝐾 + 𝑈 =
1

2
𝑚𝑣2 +

1

2
𝑘𝑥2 =

1

2
𝑚𝐴2𝜔2 sin2(𝜔𝑡 + 𝜑) +

1

2
𝑘𝐴2 cos2(𝜔𝑡 + 𝜑) 

Since 𝜔2 = 𝑘 𝑚⁄  - see (13.3) 

𝐸 = 𝐾 + 𝑈 =
1

2
𝑚𝜔2𝐴 =

1

2
𝑘𝐴2 (13.12) 

The energy is dependent on the square of the amplitude; if we have twice the amplitude, we get an 

oscillation which has four times the energy. From the properties of the trigonometric functions 

follows that the maximum potential energy stored in the spring when there is no kinetic energy. And 

at the equilibrium position the total energy of the system is in the form of kinetic energy. 

13.3 Applications of simple harmonic motion 

13.3.1 Vertical spring 

So far we considered a horizontal motion of a body attached to a spring, practically having only one 

force involved in the motion. Naturally it is reasonable to see if we have a simple harmonic motion for 

a vertical spring, when both the spring force and gravity are involved. 

 

let us choose the downward direction as the positive direction, then the spring’s force in the 

equilibrium position with the mass 𝑚 attached is  

𝐹𝑛𝑒𝑡,𝑦 = −𝑘𝑦0 + 𝑚𝑔 = 0  

When the body oscillates and at the position 𝑦 then 

𝐹𝑛𝑒𝑡,𝑦 = −𝑘𝑦 + 𝑚𝑔 = −𝑘(𝑦0 − 𝑦′) + 𝑚𝑔 = −𝑘𝑦0 + 𝑘𝑦′ + 𝑚𝑔 = 𝑘𝑦′ 

Note that we used 𝑘𝑦0 = 𝑚𝑔. The equation of the motion (where  

𝑚
𝑑2𝑦

𝑑𝑡2
= 𝑚

𝑑2(𝑦0 − 𝑦′)

𝑑𝑡2
= −𝑚

𝑑2𝑦′

𝑑𝑡2
= 𝑘𝑦′ 
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or 

𝑑2𝑦′

𝑑𝑡2
= −𝑘𝑦′ 

which is the same as the equation for the horizontal spring (13.1) with 𝑦′substituting 𝑥. The only 

physical change is that the equilibrium position 𝑦0 corresponds to the point at which 𝑘𝑦0 = 𝑚𝑔. The 

effect of the gravitational force is simply shifting the equilibrium position from 𝑦 = 0 to 𝑦0 = 𝑚𝑔 𝑘⁄ . 

The angular frequency of oscillation and the period are the same as for a sprong with a horizontal 

orientation. 

13.3.2 The simple pendulum 

The simple pendulum consists of a particle-like mass 𝑚 (also called a bob) suspended by a massless, 

unstretchable string of length 𝐿. The motion occurs in the vertical plane and is driven by the force of 

gravity. 

 

There are two forces acting on the mass, namely the tension in the string 𝑇 and the gravitational force 

𝑚𝑔. The tangential component of the gravitational force 𝑚𝑔 sin 𝜃 at all times acts opposite the 

displacement. In this case Newton’s second law for rotational motion (10.8)  

𝐼
𝑑2𝜃

𝑑𝑡2
= 𝜏 

Since for a point-like mass on a string 𝐼 = 𝑚𝐿2, 𝜏 = 𝐿𝑚𝑔 sin 𝜃 we have 

𝑚𝐿2
𝑑2𝜃

𝑑𝑡2
= −𝐿𝑚𝑔 sin 𝜃 

This equation can be rewritten as 

𝑑2𝜃

𝑑𝑡2
= −

𝑔

𝐿
sin 𝜃 

that does not look like a SHM equation. However, for small angles when 𝜃 ≪ 1 (in radians) we Taylor 

series as 
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sin 𝜃 = 𝜃 −
𝜃3

6
+

𝜃5

120
+ 𝑂(𝜃7) 

Keeping only the first linear term gives equation of motion for the simple pendulum 

𝑑2𝜃

𝑑𝑡2
= −

𝑔

𝐿
sin 𝜃 (13.13) 

With  

𝜔 = (
𝑔

𝐿
)

1
2⁄

 

this is exactly equation for simple harmonic motion with the solution 

𝜃 = 𝜃𝑚 cos(𝜔𝑡 + 𝜑) (13.14) 

The period of the motion is 

𝑇 = 2𝜋√ 
𝐿

𝑔
  (13.15) 

Thus, the period of a simple pendulum depend only on the length of the string and the acceleration 

due to gravity. 

It is reasonably to ask what small angle (in degrees) is a good small angle approximation. Simple 

calculations show that for 140 angle we get 1% accuracy for the linear approximation, and we need a 

higher accuracy then 60 angle gives 0.2% accuracy.  

Note that from (13.15) follows  

𝑔 = (2𝜋)2
𝐿

𝑇2
 (13.16) 

and this result can be used for very precise measurement of free fall acceleration.  

13.3.3 The physical pendulum 

A physical (real) pendulum can be a complicated distribution of mass. Consider a rigid body pivoted 

at a point that is a distance ℎ from the center of mass. The force of gravity provides a torque about an 

axis through.  The magnitude of the torque is 𝑚𝑔 sin 𝜃.  
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Second newton’s law for rotation reads 

𝐼
𝑑2𝜃

𝑑𝑡2
= 𝜏 = −𝑚𝑔ℎ sin 𝜃 

Using, again, the small angle approximation we can rewrite the above equation 

𝑑2𝜃

𝑑𝑡2
= −

𝑚𝑔ℎ

𝐼
𝜃 

We can see that for small angular displacements the physical pendulum is follows simple harmonic 

motion with  

𝜔 = √
𝑚𝑔ℎ

𝐼
 

and the period of oscillations 

𝑇 = 2𝜋√
𝐼

𝑚𝑔ℎ
 (13.17) 

Equation (13.17) reduces to the period of a simple pendulum (13.15) when 𝐼 = 𝑚𝐿2, or when all the 

mass is concentrated at the center of mass. This result can be used to measure the moment of inertia 

of a flat rigid body if the location of the center of mass is known. The moment of inertia can be obtained 

by measuring the period.  

13.4 Simple harmonic motion and circular motion 

The fact that the solution 𝑥(𝑡) = 𝐴 cos(𝜔𝑡 + 𝜑) contains cosines assumes that there might be 

connection to a circular motion. Of course, such connection, if exists, is artificial because there are two 

different kinds of motion. However, let us consider a uniform circular motion of a particle moving in 

a circle of radius 𝑥𝑚 with a constant speed 𝑣.  The angular position of a particle is 𝜃 that changes with 



13.5 Damped and forced oscillations* 

254 

 

time as 𝜔𝑡 + 𝜙. Then 𝑑𝜃 𝑑𝑡⁄ = 𝜔 = 𝑣 𝑥𝑚⁄ . We know that there is an acceleration 𝑎 = 𝑣2 𝑥𝑚⁄ = 𝜔2𝑥𝑚 

toward the center. At a given moment 𝑡 the positions along the 𝑥 and 𝑦 are 

𝑥 = 𝑥𝑚 cos 𝜃 ,    𝑦 = 𝑥𝑚 sin 𝜃 

Using geometry and trigonometry we can write for the projection on the 𝑥 axis 

 

𝑥(𝑡) = 𝑥𝑚 cos(𝜔𝑡 + 𝜙)

𝑣(𝑡) = −𝜔𝑥𝑚 sin(𝜔𝑡 + 𝜙)

𝑎(𝑡) = −𝜔2𝑥𝑚 cos(𝜔𝑡 + 𝜙)

 

which is exactly equations (13.5), (13.10) and (13.11).  

Because uniform circular motion is so closely related mathematically to oscillatory up-and-down 

motion, we can analyze oscillatory motion in a simpler way if we imagine it to be a projection of 

something going in a circle.  

13.5 Damped and forced oscillations* 

So far we considered oscillations free from frictional forces. However, a spring or a pendulum 

eventually stops because the mechanical energy is dissipated by friction (fluid/air resistance). Such 

motion is said to be damped. For relatively slow speeds the frictional force of fluid resistance can be 

expressed as 

𝐹𝑑 = −𝑎𝑣 

where 𝑎 is a damping coefficient. The minus sign indicates that the force opposes the motion. 

13.5.1 Damped motion 

We consider a body of mass 𝑚 attached to a spring and oscillating horizontally about its position of 

equilibrium. Let 𝑥 be the horizontal distance of the body from the equilibrium position.  Suppose that 

the motion takes place in a medium whose resistance is proportional to the velocity. The differential 

equation of motion becomes: 

𝑚
𝑑2𝑥

𝑑𝑡2
= −𝑎

𝑑𝑥

𝑑𝑡
− 𝑘𝑥 = 0 

or with notations 2𝑏 = 𝑎/𝑚 and 𝜔0
2 = 𝑘/𝑚 we can write 
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𝑑2𝑥

𝑑𝑡2
+ 2𝑏

𝑑𝑥

𝑑𝑡
+ 𝜔0

2𝑥 = 0 

There are two types of solutions depending on the value of 𝐷 = 𝑏2 − 𝜔0
2 < 0. Most interesting motion 

happens when the coefficient of resistance 𝑏 is fairly small compared with the coefficient of 

restoration 𝑘, so that 𝑏2 − 𝜔0
2 is negative: 𝑏2 − 𝜔0

2 = −𝜔′2.  

Then the solution can be written in the form 

𝑥(𝑡) = 𝐴𝑒−𝑏𝑡 cos(𝜔′𝑡 + 𝜑) 

 

where  

𝜔′ = √𝜔0
2 − 𝑏2 

Here, 𝜔′ is the angular frequency of free vibrations, 𝐴 is the initial amplitude, and 𝜑 is the initial phase. 

This formula represents damped oscillations, the speed of damping being characterized by the factor 

𝑒−𝑏𝑡. In an interval of time equal to the period, the amplitude decreases in the ratio 𝑒−𝑏𝜏.  

When 𝜔′ = 0, the condition is called critical damping. The system no longer oscillates but returns to 

its equilibrium position without oscillation as 

𝑥(𝑡) = 𝑒−𝑏𝑡(𝐶1 + 𝑥𝐶2) 

where 𝐶1 and 𝐶2 are defined by initial conditions. 

If 𝑏2 − 𝜔0
2 = 𝛾2 is positive, the solution is  

𝑥(𝑡) = 𝐶1𝑒(−𝑏+𝛾)𝑡 + 𝐶2𝑒−(𝑏+𝛾)𝑡 

Since we obviously have here 𝛾 < 𝑏, therefore 𝑥 tends to zero on indefinite increase of 𝑡 but the 

system returns to equilibrium more slowly than with critical damping. 
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13.5.2 Forced oscillations and resonance 

Assume that there is an additional external force 𝑓(𝑡) = 𝑓0 sin(𝜔𝑡) acting on the block. Then we can 

modify the dumping equation as  

𝑑2𝑥

𝑑𝑡2
+ 2𝑏

𝑑𝑥

𝑑𝑡
+ 𝜔0

2𝑥 = 𝑓0 sin(𝜔𝑡) 

This differential equation can be solved either by variation of parameters or using the method of 

undetermined coefficients. This subject belong to courses on ordinary differential equations. The 

general solution can be written as 

𝑥 = 𝐶1𝑒−𝑏𝑡 cos 𝛽𝑡 + 𝐶2𝑒−𝑏𝑡 sin 𝛽𝑡 +
𝑓0

(𝜔0
2 − 𝜔2)2 + (2𝑏𝜔)2

{(𝜔0
2 − 𝜔2) sin 𝜔𝑡 − 2𝑏𝜔 cos 𝜔𝑡} 

The solutions shows that, because an external force is driving it, the motion is not damped. The 

external force provides the necessary energy to overcome the losses due to the retarding force. Note 

that the system oscillates at the angular frequency 𝜔 of the driving force. For small damping, the 

amplitude becomes very large when the frequency of the driving force is near the natural frequency 

of oscillation. The dramatic increase in amplitude near the natural frequency 𝜔0 is called resonance. 

 

13.6 Examples 

Example 13-1 

In what time after motion begins will a harmonically oscillating point be brought out of the 

equilibrium position by half the amplitude? The oscillation period is 24 s and the initial phase is zero. 

Answer: 4 s 

Example 13-2 

The initial phase of harmonic oscillation is zero. What fraction of the period will it take for the velocity 

of the point be equal to half its maximum velocity? Answer t=(1/6)T 
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Example 13-3 

A ball suspended from a thread 2 m long is deflected through an angle of 4 degrees and its oscillations 

are observed. Assuming the oscillations to be undamped and harmonic, find the velocity of the ball 

when it passes through the position of equilibrium. Check the solution by finding this velocity from 

the equations of mechanics. Answer: 0.31 m/s 

𝑣 = 𝜃0√𝑔𝑙 

Example 13-4 

A mass 𝑚 is connected to two springs of force constants 𝑘1 and 𝑘2 , In each case, the mass moves on 

a frictionless table and is displaced from equilibrium and then released. Find the periods of motion 

for both configurations 

 

 

 

As small variation of the above problem: Find the period of 

small vertical oscillations of a body with mass 𝑚 for the system 

 

Example 13-5 

How will the period of vertical oscillations of a load hanging on two identical springs change if instead 

of tandem connection the springs are connected in parallel? Answer: The period will be halved. 

Example 13-6 

A particle of mass m is located in a unidimensional potential field where the potential energy of the 

particle depends on the coordinate 𝑥 as 𝑈(𝑥) = 𝑈0(1 − cos 𝑎𝑥); 𝑈0 and 𝑎 are constants. Find the 

period of small oscillations that the particle performs about the equilibrium position.  

Answer: 2𝜋√𝑚 𝑎2𝑈0⁄   

Solve the foregoing problem if the potential energy has the form  
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𝑈(𝑥) =
𝑎

𝑥2
−

𝑏

𝑥
 

where 𝑎 and 𝑏 are positive constants.  Answer 4𝜋𝑎√𝑚𝑎 𝑏2  ⁄  

 

Example 13-7 

A body of mass 𝑚 fell from a height h onto the pan of a spring scale. The masses of the pan and the 

spring are negligible, the  spring coefficient is 𝑘. Having stuck to the pan, the body starts performing 

harmonic oscillations in the vertical direction. Find the amplitude and the energy of these oscillations. 

𝐴 =
𝑚𝑔

𝑘
√1 +

2𝑘ℎ

𝑚𝑔
,        𝐸 = 𝑚𝑔ℎ +

1

2

𝑚2𝑔2

𝑘
 

(b) Solve the problem for the case of the pan having a mass 𝑀. Find the oscillation amplitude in this 

case. 

Example 13-8 

A physical pendulum is positioned so that its center of gravity is above the suspension point. From 

that position the pendulum started moving toward the stable equilibrium and passed it with an 

angular velocity 𝜔. Neglecting the friction find the period of small oscillations of the pendulum. 

Answer: 𝑇 = 4𝜋/𝜔 

Example 13-9* 

A pendulum clock is mounted in an elevator car which starts going up with a constant acceleration a, 

with a < g. At a height h the acceleration of the car reverses, its magnitude remaining constant and the 

elevator car goes another h to stop. Compare time measured by the pendulum clock to time measured 

by not moving clock  

𝑇𝑝𝑒𝑛𝑑 = 𝑇0 (√
𝑔

𝑔 − 𝑎
+ √

𝑔

𝑔 + 𝑎
) 

Example* 

Imagine a shaft going all the way through the Earth from pole to pole along its rotation axis. Assuming 

the Earth to be a  homogeneous ball and neglecting the air drag, find: (a) the equation of motion of a 

body falling down into the shaft; (b) how long does it take the body to reach the other end of the shaft; 

(c) the velocity of the body at the Earth's center. 

Answers:  
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𝑑2𝑦

𝑑𝑡2
= −

𝑔

𝑅
𝑦,      𝑇 = 𝜋√

𝑅

𝑔
   42 𝑚𝑖𝑛,   𝑣 = √𝑔𝑅 = 7.9 𝑘𝑚/𝑠,      

Example* 

A mathematical pendulum 0.5 m long brought out of equilibrium deflects by 5 cm during the first 

oscillation and by 4 cm during the second one (in the same direction). Find the time of relaxation, i.e., 

the time during which the amplitude of the oscillations decreases 𝑒 times, where 𝑒 is the base of 

natural logarithms. 

6.4 s. 

Example* 

A pendulum clock is mounted in an elevator car which starts going up with a constant acceleration a, 

with a < g. At a height h the acceleration of the car reverses, its magnitude remaining constant. How 

soon after the start of the motion will the clock show the right time again? 

𝑡 = √
2ℎ

𝑎

√1 + 𝜇 − √1 − 𝜇

1 − √1 − 𝜇
,   𝜇 = 𝑎/𝑔 

 

A pendulum clock is placed inside a rocket taking off vertically with acceleration a. What will be the 

reading of the clock after the rocket fall back to the ground, if the engine worked for T seconds? 

 𝑇1 = 𝑇√1 + 𝑎/𝑔 

 

??? 

A particle moves along the 𝑥 axis as 𝑥 = 2.7 cos 𝜋𝑡.  Find the distance that the particle covers during 

the time interval from t = 0 to 60 s. (both calculus and thinking) 
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14 Fluids 

It is impossible to imagine life without water and air. They are both fluids. The main property that 

differentiates fluids from solids is that fluids do not maintain their own shape but conforms to 

boundaries of a container in which we put them.  In other words – a fluid is a substance that flows 

because it will move under the shear. On molecular level it means that molecules in fluids are held 

together by weak forces that are not strong enough to maintain a shape under gravity or other 

external force.  

14.1 Density and pressure 

So far we mostly work with mass and force. Since fluids are extended substances we need to introduce 

two properties of fluids. Such properties that they can vary from point to point inside that fluid. 

First we need to define an equivalent of a force acting locally on a point in a fluid, and it is called 

pressure. We express the average pressure 𝑝 as the normal force per unit area 

𝑝 =
Δ𝐹⊥

Δ𝐴
 

In the limit Δ𝐴 → 0 

𝑝 =
𝑑𝐹⊥

𝑑𝐴
 (14.1) 

Note that pressure is a scalar quantity. It does not have a specific direction inside a fluid because it 

acts in all directions. At a surface the pressure acts perpendicular to the surface. 

The SI unit of pressure is the pascal, where 1 pascal = 1Pa = 1 N/m2. 
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Most common units for pressure in everyday life are millibars (mb) or atmosphere (atm) for 

atmospheric pressure, pound per square inch (psi) in engineering (tire pressure).  

Another local characteristic that we need is the density that we define as  

𝜌 =
Δ𝑚

Δ𝑉
   

or in the limit 𝛥𝑉 → 0 

𝜌 =
𝑑𝑚

𝑑𝑉
. 

For a fluid with uniform density (like water) we use 

𝜌 =
𝑚

𝑉
 (14.2) 

where 𝑚 and 𝑉 are the whole mass and volume of the fluid.  

Density is also a scalar quantity. The SI unit of density is the kilogram per cubic meter (1 kg/m3). Note 

that the density of a gas varies with pressure, (compressible fluids) but the density of a liquid (e.g. 

water) does not (uncompressible fluid).  

The density of air is about 1.21 kg/m3. It is interesting to estimate how many kg or lb of air in an 

average classrooms. We may feel it is a very little number. Assume that a classroom has following 

dimensions: 12 m deep, 8 m wide and 4 m tall. Than according to (14.2) 𝑚 = 𝜌𝑉 = 465 𝑘𝑔 (or 

1024 lb) which is quite a large number!.  

14.2 Hydrostatics 

Hydrostatics is the theory of liquids at rest. When liquids are at rest, there are no shear forces. There 

are two conclusions from this. First, the pressure stress is the same in all directions. Second, the 

stresses are always normal to any surface inside the fluid. (Here we state both conclusions without 

proof. But the proof is quite straightforward).  

The pressure in a fluid may vary from place to place. From our experience we know that as we dive, 

even in a swimming pool, we feel water pressure increases with depth.  

14.2.1 Hydrostatic pressure 

Let us analyze an effect of gravity on pressure in a fluid if the density 𝜌 of the fluid is considered 

constant (it means liquid – uncompressible fluid). 

Let us select a volume of the liquid contained within an imaginary boundaries. Let the cross-sectional 

area of the top and bottom surfaces is 𝐴, and 𝑦1 and 𝑦2 are depths below the surface.  

In case of a static equilibrium (hydrostatic) the sampled volume does not move, that if the net forces 

in all directions are zero. We will concentrate on forces active in the vertical direction since there is 

no gravity acting in the horizontal directions. Assume that the liquid pressure is 𝑝1 at 𝑦1 level and 𝑝2 

at 𝑦2 level.  
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Then the force acting on the top surface of the volume is 𝐹1 = 𝑝1𝐴 and on the bottom surface if 𝐹2 =

𝑝2𝐴. The net force in the vertical direction is 

𝐹𝑛𝑒𝑡 = 𝐹2 − 𝐹1 − 𝑚𝑔 

The net force acting in the horizontal direction is zero (fluid is in equilibrium) 

𝐹𝑅 + 𝐹𝐿 = 0 

The mass of the liquid in the volume is 𝑚 = 𝜌𝑉 = 𝜌𝐴(𝑦1 − 𝑦2). (Note that both 𝑦1 and 𝑦2 are 

negative). Then together with forces defined through the pressures 

𝑝2𝐴 = 𝑝1𝐴 + 𝜌𝐴𝑔(𝑦1 − 𝑦2) 

or 

𝑝2 = 𝑝1 + 𝜌𝑔(𝑦1 − 𝑦2) (14.3) 

If we seek for the pressure as a function of depth ℎ (where ℎ is positive) below the liquid surface, then 

we choose 𝑝0 to be the atmospheric pressure at the surface (𝑦1 = 0) and (14.3) becomes 

𝑝 = 𝑝0 + 𝜌𝑔ℎ (14.4) 

and it is a constant in the static fluid for given ℎ.  

We can apply the above analysis to a small change in the vertical position 𝑑𝑦. Then the change in 

pressure will be 𝑝 + 𝑑𝑝 can be written as 

𝑝 + 𝑑𝑝 = 𝑝 − 𝜌𝑔𝑑𝑦 

where 𝑑𝑦. 

𝑑𝑝

𝑑𝑦
= −𝜌𝑔 (14.5) 

If 𝜌 and 𝑔 are constants then  

𝑑𝑝 = −𝜌𝑔𝑑𝑦 

Integrating both parts 
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∫ 𝑑𝑝
𝑝

𝑝0

= −𝜌𝑔 ∫ 𝑑𝑦
𝑦2

𝑦1

         then        𝑝 − 𝑝0 = 𝜌𝑔(𝑦1 − 𝑦2) = 𝜌𝑔ℎ 

and we come to equation (14.3) (remember that ℎ > 0 for depth). 

14.2.2 Air pressure with height* 

For gases (compressed fluids) the relation between pressure and depth (or altitude) is more 

complicated because the gas density changes with pressure and temperature. Let us consider a 

simplified model for air pressure as a function of height. Assume that air density is proportional to 

pressure or 𝜌 = 𝛼𝑝 where 𝛼 is some constant. Then we can rewrite  (14.5) as 𝑑𝑝 = 𝛼𝑝𝑔𝑑𝑦.  Note that 

we keep 𝑑𝑦 positive for height. Then equation becomes 

𝑑𝑝

𝑝
= 𝛼𝑔𝑑𝑦 

Integrating both sides 

∫
𝑑𝑝

𝑝

𝑝

𝑝0

= 𝛼𝑔 ∫ 𝑑𝑦
𝑦

𝑦0

       gives      ln 𝑝 − ln 𝑝0 = 𝛼𝑔(𝑦 − 𝑦0) 

or  

𝑝 = 𝑝0𝑒−𝛼𝑔ℎ (14.6) 

where ℎ = 𝑦 − 𝑦0. 

14.2.3 Pascal’s principle 

From equation (14.4) follows that if we increase the pressure 𝑝0 at the top surface, then the pressure 

𝑝 at any depth increases by exactly the same amount. A change in the pressure applied to an enclosed 

incompressible fluid is transmitted undiminished to every point of the fluid and to the walls of its 

container. This fact was recognized by Blaise Pascal in 17th century.  

There is a very interesting and practical application based on this principle. Let us consider a 

hydraulic lever.  
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Assume we applied a force of magnitude 𝐹1 to a piston of surface area 𝐴1 thus increasing pressure in 

the liquid as 𝑝 = 𝐹1/𝐴1. The pressure is transmitted through a liquid to another piston of surface 

area 𝐴2. Because the pressure must be the same on both sides 𝑝 = 𝐹1 𝐴1⁄ = 𝐹2 𝐴2⁄  and then  

𝐹2 = 𝐹1

𝐴2

𝐴1
 

 
(14.7) 

Equation (14.7) shows that the output force 𝐹2 must be greater than the input force if 𝐴2 > 𝐴1. When 

we move the input piston downward by a distance 𝑑1, the output piston moves upward by a distance 

𝑑2 so that the same volume of the incompressed liquid is displaced 𝑉 = 𝐴1𝑑1 = 𝐴2𝑑2  

𝑑2 = 𝑑1

𝐴1

𝐴2
 

and it demonstrate that if 𝐴2 > 𝐴1 then the output piston moves a smaller distance. We can also 

evaluate the work done on the input piston and the work done by the output piston on a load 

𝑊 = 𝐹2𝑑2 = (𝐹1

𝐴2

𝐴1
) (𝑑1

𝐴1

𝐴2
) = 𝐹1𝑑1 

which shows that they are equal. We do not get any energy advantage (sure we cannot!) but we have 

a force-multiplying device. The number of applications for hydraulic levers are enormous.  

14.2.4 Archimedes’ principle 

Some 2000 years ago Archimedes stated that the magnitude of the buoyant force always equals the 

weight of the fluid displaced by the object. The buoyant force acts vertically upward through the the 

center of gravity of the displaced fluid. 

We can derive Archimedes’ principle using Newton’s laws. In equilibrium (hydrostatic) the net force 

acting on a portion of a fluid must be zero.  

Let us consider an object insider a fluid.  

 

The downward force on the top surface is 

𝐹1 = 𝑝1𝐴 

and the upward force on the bottom surface is 
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𝐹2 = 𝑝2𝐴 

The buoyant force on the object if a vector sum of the two forces 

𝐹𝑏 = 𝐹2 − 𝐹1 = (𝑝2 − 𝑝1)𝐴 

Using equation (14.4) we get 

𝐹𝑏 = (𝑝1 + 𝜌𝑓𝑔ℎ − 𝑝1)𝐴 = 𝜌𝑓𝑔ℎ𝐴 = 𝜌𝑓𝑔𝑉𝑓 = 𝑚𝑓𝑔 

or the buoyant force on an object in a fluid is 

𝐹𝑏 = 𝜌𝑓𝑉𝑔 = 𝑚𝑓𝑔 (14.8) 

where 𝜌𝑓 is the density of a fluid, and 𝑚𝑓 = 𝜌𝑓𝑉 is the mass of a fluid. This result is true for an object 

with arbitrary shape (the proof is a bit longer). 

For a body to float the buoyant force must exceed the force of gravity acting on that body. 

Case 1: A completely submerged body.  

Let us consider a body of mass 𝑚 and density 𝜌 that is completely submerged into a fluid. Then the 

net vertical force acting on the body 

𝐹𝑛𝑒𝑡 = 𝐹𝑏 − 𝑚𝑔 = 𝜌𝑓𝑉𝑔 − 𝜌𝑉𝑔 = (𝜌𝑓 − 𝜌)𝑉𝑔 

Thus, for the body to float in a fluid its density must be less or equal to the density of the fluid 𝜌 ≤ 𝜌𝑓 . 

If the density of the object is greater than the density of the fluid, then the buoyant force is less than 

the downward force of gravity, and the object sinks. 

If we place an object on a scale and measure its weight then we have 𝑤 = 𝑚𝑔. But is we do the same 

inside a fluid than the reading is  

𝑤𝑎𝑝𝑝 = 𝑤 − 𝐹𝑏 

that is called an apparent weight.  

𝑤𝑎𝑝𝑝 = 𝑚𝑔 − 𝜌𝑓𝑉𝑔 = 𝑚𝑔 − 𝜌𝑓

𝑚

𝜌
𝑔 = 𝑚𝑔 (1 −

𝜌𝑓

𝜌
) 

Note that air has density different from zero (otherwise we would not be able to breath). Therefore 

there is the buoyant force acting on all objects, including human bodies. Let us quickly estimate such 

force assuming a volume of a human body to be 0.7m3. With the air density 1.21 kg/m3 we get 

𝐹𝑏 = 8.3 𝑁 or about 1.9 𝑙𝑏.  

Case 2: A partly submerged body. 

In this case a body floats at a surface of a fluid, or the body is only partially submerged.  
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Assume that 𝑉𝑓 = 𝑠𝐴 is the volume of the body submerged into a fluid. Then the buoyant force on the 

body is  

𝐹𝑏 = 𝑝𝐴 = 𝜌𝑓𝑔𝑠𝐴 = 𝜌𝑓𝑔𝑉𝑓 

The force of gravity on the body is 

𝐹𝑔 = 𝜌𝑉𝑔 

For the body to float we need at least 𝐹𝑏 = 𝐹𝑔. This we can find the volume of the body that is 

submerged 

𝑉𝑓 = 𝑉
𝜌

𝜌𝑓
 (14.9) 

It is instructive to evaluate what fraction of an iceberg is submerged. For the density of seawater we 

have 𝜌𝑤 = 0.998 × 103 𝑘𝑔 𝑚3⁄ , and for ice 𝜌𝑖𝑐𝑒 = 0.917 × 103 𝑘𝑔 𝑚3⁄ , then more than 90% of an 

iceberg is hidden under water.  Now you see the meaning of expression “tip of the iceberg”. 

Case 3: Maximum load on a floating object. 

It is interesting to evaluate the maximum possible load 𝑀 to place on a floating object just to keep it 

floating. Assume that the object has a volume of 𝑉𝑜 and density 𝜌𝑜. 

 

The buoyancy force in this case is  

𝐹𝑏 = 𝜌𝑓𝑉𝑂𝑔 

The whole gravitational force  

𝐹𝑔 = 𝑀𝑔 + 𝑚𝑜𝑔 = 𝑀𝑔 + 𝜌𝑜𝑉𝑜𝑔 

From the balance of forces it follows 
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𝑀 = (𝜌𝑓 − 𝜌𝑜)𝑉𝑂 

where 𝜌𝑓 is the density of the fluid. 

14.2.5 Center of buoyancy and stability 

There are two requirements for a body to be in equilibrium, namely 1) the vector sum of all the 

external forces that act on the body, must be zero, and 2) the vector sum of all the external torques 

that act on the body, measured about ANY possible point, must be zero.  

So far, using simple geometries, our analysis was centered on the net vertical forces acting upon a 

body. It is time to analyze the net torque created by gravity and the force of buoyancy.  

The gravitational force on an extended body is the vector sum of the gravitational forces acting on the 

individual elements (the atoms) of the body. In section 11.2 we proved that the center of gravity is 

located at the center of mass as long as the object is in a uniform gravitational field.  

The net buoyant force on a body immersed in fluid is also a vector sum of buoyant forces acting on 

elementary (Δ𝐴 → 0) surfaces. It is possible to show (not in this course) that the center of buoyancy 

(the point at which the net buoyancy force acts on the body) is equivalently the geometric center of 

the submerged portion of the body. Or the center of buoyancy of an object is located at the point that 

would be the center of mass of the displaced fluid.  

Case 1: A completely submerged body.  

For a completely submerged body of a uniform density its center of gravity is the same as the center 

of buoyancy. Then the net torque is zero for any orientation of the body. We have neutral equilibrium. 

However, if a body does not have uniform density then the outcome depends on relative locations of 

the two centers. Let us consider an object of a spherical shape when its center of gravity is shifter 

from the center of the sphere  

 

If the center of gravity is located below the center of buoyancy, then after a small rotation the net 

torque (around any point) works as a “restoring” torque by bringing the body back to its original 

position of stable equilibrium. However if the center of gravity is above the center of buoyancy, then 

a small deviation from the original position results in a net torque that rotates the body from its 

unstable equilibrium to a stable position (that is different from the initial).   
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Case 2: A partly submerged body. 

For a floating body the situation is more complicated since the center of buoyancy usually shifts when 

the body is rotated. Such a shift depends on the shape of the body and the orientation in which it is 

floating. 

 

Understanding physics of stability of floating objects is of paramount importance for engineering, like 

shipbuilding.   

On the figure we consider three situations for a partly submerged object (imagine it is a ship) 

For the first situation (the center of gravity is below the center of buoyancy) a deviation from the 

initial positions results in torques rotating the ship back (we have stable equilibrium here).  For B) 

and C) the center of gravity is located above the center of buoyancy. However, for B) situations, the 

horizontal shift of the force of buoyancy is larger than for the force of gravity. Therefore the ship will 

be back to its original upright position. For C) situation the center of gravity is so high that the center 

of buoyancy is not shifted enough to restore the original position thus both torques rotate the ship in 

the same direction resulting in capsizing of the ship.    

Applying the same analysis to a pencil floating in water we can understand why pencils float only 

horizontally unless we attach a weight to one of the ends.  

14.3 Hydrodynamics 

Modelling motion of fluids is one of most challenged problems in physics, including computational 

challenges. To describe the motion of a fluid we need to describe its properties at every point. First, 

at different points fluid is moving with different velocities. It means we must know the velocity vector 

(the three components) at every point and for any time. However, the velocity is not the only property 

that which varies from point to point. We need to deal with the variation of the pressure from point 

to point. There may also be a variation of density from point to point. So the number of fields needed 

to describe the complete situation will depend on how complicated the problem is. 

In this section we are going to consider motion of a fluid at a lower level of complexity. We will focus 

on the motion of an ideal fluid.  
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1. We will reduce the complexity of our work by making the assumption that the density is a 

constant – or the fluid is essentially incompressible. Putting it another way, we are supposing 

that the variations of pressure are so small that the changes in density produced thereby are 

negligible. 

2. The flow is steady (laminar), such that the velocity of the fluid at each point does not change 

with time. 

3. We suppose that the viscosity of the liquid is unimportant. Viscosity characterizes internal 

friction. This is a very strong approximation and it has almost nothing to do with real fluids. 

John von Neumann characterized the theorist who made such analyses as a man who studied 

"dry water”. However, even such idealized picture leads to understanding of some basic 

principles of motion of fluids. Motion of fluids with viscosity is a subject of upper level 

courses. 

14.3.1 Conservation of mass 

Let us consider a portion of a tube with variable cross section. For a common tube, fluid cannot 

created or destroyed within the tube, and it cannot be stored. If a mass 𝑀of the fluid enters through 

area 𝐴1 during some time interval, then the same mass leaves through area 𝐴2 during the same time 

interval.  

 

Since the volume can be written as 𝑉 = 𝐴𝑑𝑥 = 𝐴𝑣𝑑𝑡 where 𝑣 is the fluid’s speed, we get for the 

conservation of mass 

𝑀 = 𝜌1𝐴1𝑣1𝑑𝑡 = 𝜌2𝐴2𝑣2𝑑𝑡 

or 

𝜌1𝐴1𝑣1 = 𝜌2𝐴2𝑣2 = a constant (14.10) 

The expression above states that the mass flow rate per unit time is constant 

For uncompressible fluids (like water) 𝜌1 = 𝜌2 and then  

𝐴1𝑣1 = 𝐴2𝑣2 = a constant (14.11) 

or the volume flow rate is constant. 
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14.3.2 Bernoulli’s equation 

Normally Bernoulli’s equation is derived from a more general equation of motion of a fluid. Since it 

involves using vector calculus we take an easier approach assuming from the beginning a steady flow 

of a fluid. By steady flow we mean that at any one place in the fluid the velocity never changes. The 

fluid at any point is always replaced by new fluid moving in exactly the same way. The velocity picture 

always looks the same or �⃗� is a static vector field. A steady flow does not mean that nothing is 

happening – atoms in the fluid are moving and changing their velocities. It only means that 

𝜕�⃗�/𝜕𝑡 =  0 

Then we can choose two areas in a non-uniform pipe where the speed of fluid is 𝑣1 in the first are and 

𝑣2 in the second area do not change with time.  

Now we are ready to apply energy consideration. The force exerted by the fluid is 𝑝𝐴 . The work done 

by this force in a time 𝑡 is 𝑝𝐴Δ𝑥 = 𝑝Δ𝑉,  where Δ𝑉 is the volume of the corresponding section. The 

work done by pressure on fluid in the first section is positive  

𝑊1 = 𝑝1Δ𝑉 

but the work in the second section id negative because the fluid force opposes the displacement 

𝑊2 = −𝑝2Δ𝑉 

 

Considering pressure as a cause of an external force that changes kinetic and gravitational potential 

energy of the fluid we can write 

Δ𝐾 + Δ𝑈𝑔 = 𝑊1 + 𝑊2 

Assuming that the mass of fluid is conserved, Δ𝑚 is our at the first area and Δ𝑚 is in at the second 

area 

1

2
Δ𝑚𝑣2

2 −
1

2
Δ𝑚𝑣1

2 + Δ𝑚𝑔𝑦2 − Δ𝑚𝑔𝑦1 = 𝑝1Δ𝑉 − 𝑝2Δ𝑉 

Using Δ𝑚 = 𝜌Δ𝑉 and rearranging the terms yields 
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𝑝1 +
1

2
𝜌𝑣1

2 + 𝜌𝑔𝑦1 = 𝑝2 +
1

2
𝜌𝑣2

2 + 𝜌𝑔𝑦2 = a constant (14.12) 

This is Bernoulli's theorem. The constant may in general be different for different flows; all we know 

is that it is the same all along a given flow. The Bernoulli’s principle is in fact nothing more than a 

statement of the conservation of energy. A conservation theorem such as this gives us a lot of 

information about a flow without having to solve the detailed equations of motion. 

Attentions: Bernoulli’s principle is valid only for incompressible and steady flow fluids with no 

internal friction (no viscosity). 

You can quickly test the Bernoulli principle by using two pieces of paper holding them close together 

and trying to blow them apart. They actually come together. The reason, of course, is that the air has 

a higher speed going through the constricted space between the sheets than it does when it gets 

outside. The pressure between the sheets is lower than atmospheric pressure, so they come together 

rather than separating. 
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14.4 Examples 

* force on a vertical wall (calculus – integration) 

*** see more in my handwritten notes 

*** problems on ice in a glass of water, melting ice.  

* water flowing from a water tank (find speed) F2-40-7 

 

A friend asks you how much pressure is in your car tires. You know that the tire manufacturer 

recommends 30 psi, but it's been a while since you've checked. You can’t find a tire gauge in the car, 

but you do find the owner's manual and a ruler. Fortunately, you've just finished taking physics, so 

you tell your friend, "I don’t know, but I can figure it out." From the owner's manual you find that the 

car's mass is 1500 kg. It seems reasonable to assume that each tire supports one-fourth of the weight. 

With the ruler you find that the tires are 15 cm wide and the flattened segment of the tire in contact 

with the road is 13 cm long. What answer will you give your friend? 

 

How many helium-filled toy balloons would be required to lift you? Take the size of an average helium 

toy balloon to be 40 cm in diameter. 

 

The three stooges (Moe, Larry, and Curly) make a log raft by lashing together oak logs of diameter 0.3 

m and length 1.8 m. The total weight of the stooges is 480 lb.  

a) How many logs will be needed to keep them afloat in fresh water? 

b) What fraction of the raft will be above the water surface without the stooges on the raft? 

c) Curly says that there is no point to make the raft since, as he read in a magazine, the average 

density of a human body is less than the density of water. They would float anyway. Do you 

agree or disagree with Curly? Provide a very good and supported answer. 

Reference data for density: fresh water 1.0 g/cm3, wood (oak) 0.8 g/cm3. 

 

A hurricane wind blows across a 6.0 m * 15.0 m flat roof at a speed of 130 km/h.  

a) Is the air pressure above the roof higher, or lower than the pressure inside the house? Explain 

b) What is the pressure difference? 

c) How much force is exerted on the roof? If the roof cannot withstand this much force, will it 

“blows in” or “blows out”? 
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Water stands at a depth H in a large, open tank whose side walls are vertical. A hole is made in one of 

the walls at a depth h below the water surface.  

a) At what distance R from the foot of the wall does the emerging stream strike the floor 

b) At what depth should the hole be placed to make the emerging stream strike the ground at the 

maximum distance from the base of the tank? 

 

Also find time to have water out of the tank 

 

4.8. A liquid flows along a horizontal pipe AB (Fig. 6). The difference between the levels of the liquid 

in tubes a and b is 10 cm. The diameters of tubes a and b are the same. Determine the velocity of the 

liquid flowing along pipe AB. 

 

Answer: 1.4 m/s. 
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15 Waves 

Most likely when you hear a word ‘weaves’ you think about water waves. If you had physics classes 

before you may have some knowledge about sound waves, or even electromagnetic waves.  

15.1 Mechanical waves (physics behind the scene)  

In this chapter we are going to talk about mechanical waves that propagate in some physical medium 

(liquid, gas, solid body). And sure the first question – what physics is behind mechanical waves?  

In a physical medium atoms and/or molecules interact with their neighbors. Therefore, if we create 

a perturbation in one point of physical medium, such perturbation propagates through the medium.  

Imagine a long chain of balls connected by springs. If we provide a short perturbation (a kick) to a 

spring on the left, then this perturbation will propagate in time from one ball to another. 

 

We may reasonably guess that the speed of such perturbation is linked to the spring constants (the 

larger the spring constant the faster the perturbation propagates) and to the mass of the blocks (the 

larger the mass, the slower the speed of the propagation). Replacing balls and springs on atoms 

provides a simple model that represents what is called longitudinal waves, when a traveling wave 
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causes the particles of the medium to move parallel to the direction of wave motion. Quite often a 

continuous spring serves as a good model for longitudinal waves. 

 

Now we kick one of the masses in a vertical direction. Then a travelling perturbation causes the 

masses to move perpendicular to the wave motion.  

 

Such wave is called a transverse wave.  It is also possible to well model such a wave with a continuous 

spring as 

 

There are waves that are a combination of transverse and longitudinal displacements. For example, 

water molecules on the surface of water, in which a wave is propagating, move in nearly circular 

paths.  

 

Each molecule is displaced both horizontally and vertically from its equilibrium position. 
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It is important to note that in every of these waves each atom/molecule oscillates about its 

equilibrium point. Therefore a wave is a propagation of a perturbation (propagation of energy), not 

matter. 

15.2 Wave equation* 

For describing a motion of a particle we use Newton’s second that provides a position as a function of 

time 𝑟(𝑡).  A wave is not localized in space but is a function of a position and time. For example for a 

transverse wave in the above example we need 𝑦(𝑥, 𝑡) to describe such a wave.   

Let us analyze a wave on a string under tension. Such example allows us apply Newton's second law 

in a straightforward way. This analysis goes a bit beyond requirements for standard university 

physics course. However it is very instructive to see how much can we derive from Newton’s second 

law. 

 

 

Figure below shows a rope displaced transversely from its equilibrium position along the horizontal 

𝑥 −axis. In equilibrium, we assume that the string lies exactly on the 𝑥 axis. 

 

To explore the motion of the string, we shall apply Newton's second law to a small segment 𝐴𝐵 of the 

string, between 𝑥 and 𝑥 + 𝑑𝑥. To simplify our discussion we shall ignore gravity, and we shall assume 

that the displacement 𝑦(𝑥, 𝑡) remains so small for all 𝑥 and all 𝑡, that the string remains nearly parallel 

to the 𝑥 axis. This guarantees that the string's length is essentially unchanged and hence that the 

tension 𝑇 remains the same for all 𝑥 and all 𝑡. 

Let us now consider the net force �⃗� = �⃗�1 + �⃗�2 acting on the element of the rope. The horizontal 

component of this force is 

𝐹𝑥,𝑛𝑒𝑡 = 𝑇 cos(𝜙 + 𝑑𝜙) − 𝑇 cos 𝜙 = −𝑇 sin 𝜙 𝑑𝜙 



15. Waves 

277 

 

where 𝑇 is the magnitude of the tension in the rope. Since 𝜙 and 𝜙 + 𝑑𝜙 are both small, this is doubly 

small, and 𝐹𝑥,𝑛𝑒𝑡 is negligible, consistent with our assumption that the motion is in the 𝑦 direction 

only.  

The 𝑦 component is  

𝐹𝑦,𝑛𝑒𝑡 = 𝑇 sin(𝜙 + 𝑑𝜙) − 𝑇 sin 𝜙 

That we can write (do you see the derivative of the sine function here?) 

𝐹𝑦,𝑛𝑒𝑡 = 𝑇 cos 𝜙 𝑑𝜙 

Certainly that the 𝑦 component is not negligible. Since 𝜙 is small we can replace cos 𝜙 by 1, and we 

can write 𝑑𝜙 = (𝜕𝜙 𝜕𝑥⁄ )𝑑𝑥. The derivative is a partial derivative since 𝜙(𝑥, 𝑡) depends on 𝑥 and 𝑡. 

Finally, again since 𝜙 is small, 𝜙 = 𝜕𝑦 𝜕𝑥⁄ , the slope of the string. Therefore, 

𝐹𝑦,𝑛𝑒𝑡 = 𝑇𝑑𝜙 = 𝑇
𝜕𝜙

𝜕𝑥
𝑑𝑥 = 𝑇

𝜕2𝑦

𝜕𝑥2
𝑑𝑥. 

By newton’s second law, 𝐹𝑦,𝑛𝑒𝑡 = 𝑚𝑎𝑦, where 𝑎𝑦 is the acceleration 

𝑎𝑦 =
𝜕2𝑦

𝜕𝑡2
 

and mass is the mass of the segment 𝐴𝐵, equal to 𝜇𝑑𝑙 where 𝜇 is the linear density (mass per unit 

length) and 𝑑𝑙 is the length of the segment 𝐴𝐵. For small angles 𝜙 we have 𝑑𝑥 = cos 𝜙 𝑑𝑙 = 𝑑𝑙. Thus 

𝐹𝑦,𝑛𝑒𝑡 = 𝜇
𝜕2𝑦

𝜕𝑡2
𝑑𝑥 

Equating the two expressions for the force we get for the equation of the string 

𝜕2𝑦

𝜕𝑡2
= (

𝑇

𝜇
)

𝜕2𝑦

𝜕𝑥2
 (15.1) 

Introducing the notation 

𝑣 = √
𝑇

𝜇
 (15.2) 

where 𝑇 is the tension in our string and 𝜇 is its linear mass density. Then we can rewrite (15.1) as 

𝜕2𝑦

𝜕𝑡2
= 𝑣2

𝜕2𝑦

𝜕𝑥2
 (15.3) 

The equation of motion (15.3) is called the one-dimensional wave equation since its solutions are 

waves traveling along the string. It is a partial differential equation, involving derivatives with respect 

to 𝑥 and 𝑡. The constant 𝑣 has the dimensions of speed 

[
Tension

𝜇
] =

[𝑀𝐿 𝑇2⁄ ]

[𝑀 𝐿⁄ ]
= [

𝐿2

𝑇2
] = speed2  
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and it is the speed with which the waves travel.  Here we just note that this quantity depends on 

internal properties of the medium, in this case the tension and mass density of a rope. The wave 

equation (15.3) governs the motion of many different waves.  

For waves on strings, 𝑦 represents the vertical displacement of the string. For sound waves, 𝑦 

corresponds to displacement of air molecules from equilibrium or variations in either the pressure 

or the density of the gas through which the sound waves are propagating. 

Analysis of the wave equations (15.3) requires a good knowledge of partial differential equation. In 

this chapter we are going to bring an important result following from (15.3) without proof. 

Assume that at initial time 𝑡 = 0 the shape of the pulse can be represented as 𝑦 = 𝑓(𝑥). Then 

measured in a stationary reference frame the wave function (that is the solution of the wave equation) 

is 

𝑦 = 𝑓(𝑥 − 𝑣𝑡) 

for the pulse travelling to the right. 

If the wave pulse travels to the left, the string displacement is 

𝑦 = 𝑓(𝑥 + 𝑣𝑡) 

For any given time 𝑡, the wave function 𝑦 as a function of 𝑥 defines a curve representing the shape of 

the pulse at this time. 

 

Hence, the wave speed is 𝑣 = 𝑑𝑥 𝑑𝑡⁄ . 

Attention: The wave equation (15.3) describes propagation of a wave in space and time. Note that for 

finding a unique solution for the wave we need both initial conditions (shape of the pulse or wave at 

𝑡 = 0) and boundary conditions (real strings are finite in lengths and have ends). 

15.3 Sinusoidal waves 

An important special case of the solution (15.3) is the case that the function 𝑓 is sinusoidal. The 

sinusoidal wave is the simplest example of a periodic continuous wave and can be used to build more 

complex waves. 

Assume that at time 𝑡 = 0 the wave function can be written as 
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𝑦(𝑥, 𝑡 = 0) = 𝐴 sin (
2𝜋

𝜆
𝑥) (15.4) 

where the constant 𝐴 represents the wave amplitude and the constant 𝜆 is the wavelength. If the wave 

moves to the right with a speed 𝑣, then the wave function at some later time 𝑡 is 

𝑦(𝑥, 𝑡) = 𝐴 sin [
2𝜋

𝜆
(𝑥 − 𝑣𝑡)]. (15.5) 

By definition, the wave travels a distance of one wavelength in one period 𝑇. Therefore, the wave 

speed, wavelength, and period are related by the expression 

𝑣 =
𝜆

𝑇
 

Substituting this into (15.5) gives  

𝑦(𝑥, 𝑡) = 𝐴 sin [2𝜋 (
𝑥

𝜆
 −

𝑡

𝑇
)] 

(15.6) 

This form of the wave function shows the periodic nature of 𝑦. At any given time 𝑡 (a snapshot of the 

wave), 𝑦 has the same value at the positions 𝑥, 𝑥 + 𝜆, 𝑥 + 2𝜆, and so on. Furthermore, at any given 

position 𝑥, the value of 𝑦 is the same at times 𝑡, 𝑡 + 𝑇, 𝑡 + 2𝑇, and so on. 

We can express the wave function in a convenient form by defining the angular wave number 𝑘  

𝑘 =
2𝜋

𝜆
 (15.7) 

and the angular frequency 

𝜔 =
2π

𝑇
 (15.8) 

Then we can write equation (15.6) in a standard form 

𝑦(𝑥, 𝑡) = 𝐴 sin(𝑘𝑥 − 𝜔𝑡) (15.9) 

If the wave were traveling to the left, we replace 𝑥 − 𝑣𝑡 by 𝑥 + 𝑣𝑡 in (15.5) or 𝑘𝑥 − 𝜔𝑡 by 𝑘𝑥 + 𝜔𝑡 in 

equation (15.9).  

If the vertical displacement 𝑦 is not equal to zero at 𝑡 = 0, then we can express the wave function with 

a phase shift  

𝑦(𝑥, 𝑡) = 𝐴 sin(𝑘𝑥 − 𝜔𝑡 + 𝜑) 

where 𝜑 is the phase constant. This constant can be determined from the initial conditions. 

Using the definitions for 𝑘, 𝜔 and frequency 𝑓 = 1 𝑇⁄  we can write 𝑣 in two more forms 

𝑣 = 𝜆𝑓 =
𝜔

𝑘
. 

We can show that the sinusoidal wave function (15.9) is a solution of the wave equation (15.3). The 

appropriate derivatives are 
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𝜕2𝑦

𝜕𝑡2
= −𝜔2𝐴 sin(𝑘𝑥 − 𝜔𝑡) 

𝜕2𝑦

𝜕𝑥2
= −𝑘2𝐴 sin(𝑘𝑥 − 𝜔𝑡) 

Substituting these expressions into (15.3) gives 

−𝜔2 = −𝑣2𝑘2 

And since 𝑣 = 𝜔 𝑘⁄  we have an identity.  

 

15.4 Power transferred by a wave 

While a wave does not transfer matter, it does transfer energy. We will proceed with a model of a 

wave on a string. Power is defined as  

𝑃 = �⃗� ⋅ �⃗� 

In the case of the string we can write 

𝑃 = 𝐹𝑦𝑣𝑦 = −𝑇 sin 𝜙 
𝜕𝑦

𝜕𝑡
 

where 𝑇 is the tension in the string. Since we work with small angles  

sin 𝜙 ≈ tan 𝜙 =
𝜕𝑦

𝜕𝑥
 

Then 

𝑝 = −𝑇
𝜕𝑦

𝜕𝑥

𝜕𝑦

𝜕𝑡
 

Calculating derivatives of the sinusoidal wave (15.9) gives 

𝑃 = −𝑇[𝑘𝐴 cos(𝑘𝑥 − 𝜔𝑡)][−𝜔𝐴 cos(𝑘𝑥 − 𝜔𝑡)] = 𝑇𝜔𝑘𝐴2 cos2(𝑘𝑥 − 𝜔𝑡) 

Earlier we got that 𝑣 = √𝑇 𝜇⁄  or 𝑇 = 𝑣2𝜇. Using also 𝑘 = 𝜔 𝑣⁄  we get  

𝑃 = 𝑣2𝜇𝜔
𝜔

𝑣
𝐴2 cos2(𝑘𝑥 − 𝜔𝑡) = 𝜇𝑣𝜔2𝐴2 cos2(𝑘𝑥 − 𝜔𝑡). 

The average power at any location 𝑥 is then 

𝑃𝑎𝑣 =
1

2
𝜇𝑣𝜔2𝐴2 (15.10) 

because the average value of cos2(𝑘𝑥 − 𝜔𝑡) is 1 2⁄ . This average is taken over an entire period of the 

motion with 𝑥 held constant. This shows that the rate of energy transfer by a sinusoidal wave on a 

string is proportional to the wave speed, the square of the frequency, and the square of the amplitude. 
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15.4.1 Wave intensity 

We live in a three-dimensional world. Most types of waves (sound waves, seismic waves) carry energy 

across all three dimensions. For such waves the intensity is a common characteristic that describes 

energy transported by the wave in unit time, per unit area, across a surface perpendicular to the 

direction of propagation. That is, intensity 𝐼 is average power per unit area. If a point source emits 

waves uniformly in all directions, then the energy at a distance from the source is distributed 

uniformly on a spherical surface of radius 𝑟 and area 𝐴 = 4𝜋𝑟2 and the intensity is 

𝐼 =
𝑃𝑎𝑣

4𝜋𝑟2
 (15.11) 

The intensity of a three-dimensional wave varies inversely with the square of the distance from a 

point source. It is usually measured in watts per square meter.  

15.5 Interference and reflection of waves 

15.5.1 Superposition and interference 

More often we encounter situations whet many waves are travelling through a medium.  To analyze 

such wave combinations, we use of the superposition principle. The principle states that if two or 

more traveling waves are moving through a medium, the resultant wave function at any point is the 

algebraic sum of the wave functions of the individual waves. Waves that obey this principle are called 

linear waves and are generally characterized by small amplitudes. Waves that violate the 

superposition principle are called nonlinear waves and are often characterized by large amplitudes. 

Attention: One consequence of the superposition principle is that two traveling waves can pass 

through each other without being destroyed or even altered. 

The combination of separate waves in the same region of space to produce a resultant wave is called 

interference. For two waves on a string we can then write 

𝑦(𝑥, 𝑡) = 𝑦1(𝑥, 𝑡) + 𝑦2(𝑥, 𝑡) (15.12) 

Mathematically, this additive property of wave functions follows from the form of the wave equation 

(15.3). Specifically, the wave equation is linear; that is, it contains the function only to the first power. 

As a result, if any two functions and satisfy the wave equation separately, their sum also satisfies it 

and is therefore a physically possible motion. Because this principle depends on the linearity of the 

wave equation and the corresponding linear-combination property of its solutions, it is also called the 

principle of linear superposition.  

When two waves cause increase in a resulting displacement then such superposition is called as 

constructive interference. When the displacements caused by the two waves are in opposite 

directions, we call such superposition as destructive interference. 

There are very many interesting effects and applications of wave interference.  
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15.5.2 Reflection of waves 

Let us consider a traveling wave when it encounters a change in the medium. For example a string 

attached to a rigid support at one end. When the wave reaches the support, the wave undergoes 

reflection that is, the wave moves back along the string in the opposite direction. And the reflected 

wave is inverted.  

If a wave reaches a boundary between two mediums then part of the incident wave is reflected and 

part undergoes transmission, or some of the wave passes through the boundary. For example, 

suppose a light string is attached to a heavier string. When a wave traveling on the light string reaches 

the boundary between the two, part of the wave is reflected and inverted and part is transmitted to 

the heavier string. The reflected pulse is inverted as in the case of the string rigidly attached to a 

support. The following general rules apply to reflected waves: When a wave travels from medium 𝐴 

to medium 𝐵 and 𝑣𝐴 > 𝑣𝐵 (that is, when 𝐵 is denser than 𝐴), the wave is inverted upon reflection. 

When a wave travels from medium 𝐴 to medium 𝐵 and 𝑣𝐴 < 𝑣𝐵 (that is, when 𝐴 is denser than 𝐵), the 

wave is not inverted upon reflection. 

zzz: work more with this part (using the wave equation?) 

15.5.3 Standing waves in a string 

Let us look at a sinusoidal wave reflected by a fixed end of a string. If we continue shaking one end of 

a string, a travelling wave will be reflected from the other end. Both the travelling and reflected waves 

will interfere with each other. Usually it will be quite a noise of oscillations. However, if we vibrate 

the string at one of right frequencies the two waves will interfere in such a way that a standing wave 

will be formed. If the length of the string is 𝐿 then the condition for standing waves is 

𝜆𝑛 =
2𝐿

𝑛
,   𝑛 = 1,2,3 … 

where 𝜆 is the wavelength. In order to find the frequency 𝑓 of such vibrations we use 𝑓 = 𝑣 𝜆⁄ . Then 

𝑓𝑛 =
𝑣

𝜆𝑛
= 𝑛

𝑣

2𝐿
= 𝑛𝑓1 

where 𝑓1 is the fundamental frequency.  

zzz: add a figure + talk about nodes (and energy does not pass beyond nodes) +math representation  

15.6 Sound waves 

Sound waves are likely the most important of longitudinal waves in our lives. Sound waves may be 

described as variations of pressure at various points. We still can employ the wave equation (15.3) 

but in this case the speed of sound waves depends on the compressibility and inertia of the medium. 

If the medium has a bulk modulus 𝐵 (bulk modulus measures the resistance of medium to changes in 

their volume) and density 𝜌, then the speed of sound waves in fluids can be written as 

𝑣 = √𝐵 𝜌⁄  (15.13) 
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Note that the speed of sound also depends on the temperature of the medium. It is good to know that 

the speed of sound in air is approximately 343 m/s at temperature 200C. 

The speed of sound in a solid material can be found from 

𝑣 = √𝑌 𝜌⁄  (15.14) 

where 𝑌 is Young’s modulus, 

Mathematically a sinusoidal sound wave can be represented as the pressure variation 

Δ𝑃 = 𝛥𝑃0 sin(𝑘𝑥 − 𝜔𝑡) 

where 𝛥𝑃0 is the pressure amplitude, which is the maximum change in pressure from the equilibrium 

value. 

15.6.1 Intensity of sound; Decibels 

The intensity of a wave, or the power per unit area, to be the rate at which the energy being 

transported by the wave flows through a unit area A perpendicular to the direction of travel of the 

wave. The human ear can detect a very wide range of intensities. For this reason it is convenient to 

use a logarithmic scale, where the sound level 𝛽 is defined by the equation 

𝛽 (in dB) = 10 log
𝐼

𝐼0
 (15.15) 

where 𝐼0 is the intensity of some reference level taken to be at the “threshold of hearing” which is 𝐼0 =

1.0 × 10−12 𝑊 𝑚2⁄ . Thus, for example, the sound level of a sound intensity 𝐼 = 1.0 × 10−5 𝑊 𝑚2⁄  will 

be 

𝛽 = 10 log
1.0 × 10−5 𝑊 𝑚2⁄

1.0 × 10−12 𝑊 𝑚2⁄
= 10 log 107 = 70 𝑑𝐵 

that corresponds to a sound level of a busy street.  

Note that the threshold of hearing corresponds to 0 𝑑𝐵. 

15.6.2 Doppler Effect 

When a source of sound is moving the frequency of the sound we hear is different than when the 

source is at rest. This phenomenon is called the Doppler effect and occurs for all types of waves (not 

only sound waves).  

Case 1: Moving observer 
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Consider a source of sound with the frequency 𝑓, the wavelength 𝜆, and the speed of sound to be 

𝑣 = 𝜆𝑓. If the observer were also stationary, the observer would detect 𝑓 wave fronts per second. 

(That is, when and the observed frequency equals the source frequency.) When the observer moves 

toward the source with the speed 𝑢, the speed of the waves relative to the observer is 𝑣 + 𝑢 but the 

wavelength 𝜆  is unchanged. Hence, the frequency heard by the observer is increased and is given by 

𝑓′ =
𝑣 + 𝑢

𝜆
= 𝑓

𝑣 + 𝑢

𝑣
= 𝑓 (1 +

𝑢

𝑣
) 

Thus is the observer is moving toward source the detected frequency increases 

𝑓′ = 𝑓 (1 +
𝑢

𝑣
) (15.16) 

If the observer is moving away from the source, then the speed of the wave relative to the observer is 

decreased as 𝑣 − 𝑢 and the frequency heard by the observer in this case is also decreased and is given 

by 

𝑓 = 𝑓 (1 −
𝑢

𝑣
) (15.17) 

Case 2: Moving source 

 

Now consider the case when the source is in motion and the observer is stationary. If the source 

moves directly toward observer then the wave fronts heard by the observer are closer together than 

they would be if the source were not moving. As a result, the wavelength 𝜆′ measured by observer is 

shorter than the wavelength 𝜆 of the source. During each vibration, which lasts for a time 𝑇, the source 

moves a distance 𝑢𝑇 = 𝑢 𝑓⁄  and the wavelength is 

𝜆′ = 𝜆 −
𝑢

𝑓
 

Then the frequency heard by observer is 

𝑓′ =
𝑣

𝜆′
=

𝑣

𝜆 −
𝑢
𝑓

=
𝑣

𝑣
𝑓

−
𝑢
𝑓

= 𝑓
1

(1 −
𝑢
𝑣)

 

For the source moving away from observer we get 

𝑓′ = 𝑓
1

(1 +
𝑢
𝑣)

 

If both source and observer are in motion, we find the following general equation for the observed 

frequency: 
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𝑓′ = (
𝑣 ± 𝑢𝑂

𝑣 ∓ 𝑢𝑆
) 𝑓 (15.18) 

where the upper signs apply to motion of one toward the other, and the lower signs apply to motion 

of one away from the other. 

 

zzz More subjects: Musical instruments, interference of sound waves, beats, shock waves 
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