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The theory and design of linear adaptive filters based on FIR filter structures is well developed and widely
applied in practice. However, the same is not true for more general classes of adaptive systems such as lin-
ear infinite impulse response adaptive filters (IIR) and nonlinear adaptive systems. This situation results
because both linear IIR structures and nonlinear structures tend to produce multi-modal error surfaces for
which stochastic gradient optimization strategies may fail to reach the global minimum. After briefly dis-
cussing the state of the art in linear adaptive filtering, the attention of this paper is turned to IIR and non-
linear adaptive systems for potential use in echo cancellation, channel equalization, acoustic channel
modeling, nonlinear prediction, and nonlinear system identification . Structured stochastic optimization algo-
rithms that are effective on multimodal error surfaces are then introduced, with particular attention to the
Particle Swarm Optimization (PSO) technique. The PSO algorithm is demonstrated on some representative
IIR and nonlinear filter structures, and both performance and computational complexity are analyzed for
these types of nonlinear systems. 
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Introduction

daptive digital signal processing is a subject that has
attracted increasing attention in recent years due
to demands for improved performance in high

data rate digital communication systems and in wideband
image/video processing systems. Adaptive system identi-
fication, adaptive noise cancellation, adaptive linear pre-
diction, and adaptive channel equalization are just a few
of the important applications areas that have been signif-
icantly advanced with adaptive signal processing tech-
niques. Much of the recent success in adaptive signal
processing has been facilitated by improvements in VLSI
digital signal processor (DSP) integrated circuit technolo-
gy, which currently provides large amounts of digital sig-
nal processing power in a convenient and reliable form.
Since improvements in integrated circuit technology con-
tinue to emerge it is likely that adaptive techniques will
assume an even more important role in high performance
electronic systems of the future.

While theory and design of linear adaptive filters
based on FIR filter structures is a well developed subject,
the same is not true for linear infinite impulse response
adaptive filters (IIR) or nonlinear adaptive systems. Both
linear IIR structures and nonlinear structures tend to pro-
duce multi-modal error surfaces for which stochastic gra-
dient optimization strategies may fail to reach the global
minimum. Also, with stochastic gradient algorithms, IIR
adaptive filters must be carefully monitored for stability
in case their poles move outside the unit circle during
adaptation.

Linear FIR Adaptive Filters

An adaptive finite impulse response (FIR) filter consists
of a digital tapped delay line with variable multiplier
coefficients that are adjusted by an adaptive algorithm
[1]. The adaptive algorithm attempts to minimize a cost
function that is designed to provide an instantaneous
on-line estimate of how closely the adaptive filter
achieves a prescribed optimum condition. The cost
function most frequently used is an approximation to
the expected value of the squared error, E{|e|2(n)},
where e(n) = d(n) − y(n) is the difference between a
training signal d(n) (sometimes called the desired
response) and the filter output y(n), and E{•} denotes
the statistical expected value. The training signal d(n) is
obtained by different means in different applications,
and the acquisition of an appropriate training signal is
often a limiting factor in performance. 

The input vector and the coefficient weight vec-
tor of the adaptive filter at the nth iteration are
defined as X(n) = [x(n), x(n−1), . . . , x(n − N+1)]t and
W(n) = [w0(n),w1(n), . . . , wN−1(n)]t , respectively, where

the superscript t denotes vector transpose. The nth output is
then given by

y(n) =
N−1∑

k=0

wk x(n − k) = Wt(n)X(n). (1)

In the following discussion, the training signal d(n) and
the input signal x(n) are assumed to be stationary and
ergodic. An adaptive filter uses an iterative method by
which the tap weights W(n) are made to converge to the
optimal solution W∗ that minimizes the cost function. It is
well known that W∗, known in the literature as the Wiener
solution, is given by

W∗ = R−1
xx pxd, (2)

where Rxx = E{X(n)Xt(n)} is the autocorrelation matrix of
the input and pxd = E{X(n)d(n)} is the cross-correlation
vector between the input and the desired response. The
most common iterative approach is to update each tap
weight according to a steepest descent strategy; i.e., the
tap weight vector is incremented in proportion to the
gradient ∇w according to

W(n + 1) = W(n) − µ∇w, (3)

where µ is the step size, ∇w = [∇w0(n), . . . ,∇wN−1(n)]t ,
and ∇wk(n) = δE{e2(n)}/δwk is the partial derivative of the
cost function with respect to wk(n), for k = 0, . . . , N − 1.
However, the precise value of the cost function is not
known, nor is the gradient known explicitly, so it is neces-
sary to make some simplifying assumptions that allow gra-
dient estimates to be computed on-line. Different
approaches to estimating the cost function and/or the gra-
dient lead to different adaptive algorithms, such as the well
known Least Mean Squares (LMS) and the Recursive Least
Squares (RLS) algorithms. In particular, including the Hess-
ian matrix in equation (3) to accelerate the steepest descent
optimization strategy leads to the family of quasi-Newton
algorithms that are characterized by rapid convergence at
the expense of greater computational complexities. 

The LMS algorithm [1] makes the simplifying
assumption that the expected value of the squared error
is approximated by the squared error itself, i.e.,
E{|e(n)|2} ∼ |e(n)|2. In deriving the algorithm, the error
squared is differentiated with respect to W to approxi-
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mate the true gradient. In vector notation the LMS update
relation becomes

W(n + 1) = W(n) + 2µe(n)X(n). (4)

The value of µ, usually determined experimentally,
greatly affects both the convergence rate of the adaptive
process and the minimum mean squared error after
convergence. To ensure stability and guarantee
convergence of both the coefficients and the mean
squared error estimate, µ must satisfy the condition
0 < µ < 1/N E{x2(n)}, where E{x2(n)} = (1/N)tr[Rxx] is
the average input signal power which can be calculated
from Rxx if the input autocorrelation matrix is known.
When µ is properly chosen, the weight vector converges
to an estimate of the Wiener solution. 

Linear IIR Adaptive Filters

The mean squared error (MSE) approximation that led to
the conventional LMS algorithm for FIR filters has also
been applied to infinite impulse response (IIR) filters [2].

Recall that a direct form IIR digital filter is characterized
by a difference equation 

y(n) =
Nb−1∑
k=0

bkx(n − k) +
Na−1∑
j=0

ajy(n − j), (5)

where the bk’s are the coefficients that define the zeros of
the filter and the ak’s define the poles. The LMS adaptive
algorithm for IIR filters is derived in a similar manner as
in the FIR case, although the recursive relation (equation
(5)) is used instead of the convolution sum (equation (1))
to characterize the input-output relationship of the filter.
The IIR derivation is more complicated because the recur-
sive terms on the right side of equation (5) depend on
past values of the filter coefficients. 

If derivatives of the squared error function are 
calculated using the chain rule, so that first order
dependencies are taken into account and higher order
dependencies are ignored, the result is

∇E[|e|2] =
⌊
−2e(n)

∂(y(n))

∂a
,−2e(n)

∂(y(n))

∂b

⌋
,

where 

∂y(n)

∂bk
= x(n − k) +

Na∑
j=1

aj(n)
∂y(n − j)

∂bk
k = 0, . . . , Nb − 1

(6a)

and 

∂y(n)

∂ak
= y(n − k) +

Na∑
j=1

aj(n)
∂y(n − j)

∂ak
k = 0, . . . , Na − 1.

(6b)

This procedure does not result in a closed form expression
for the gradient but it does produce a recursive relation by
which the gradients can be generated using equation (6). 

It is well known that the use of the output error in the
formulation of the cost function prevents bias in the solu-
tion due to noise in the desired signal. However, the effect
of this recursion is to make the problem nonlinear in
terms of the coefficient parameters. Also, the current fil-
ter parameters now depend directly upon previous filter
coefficients, which are time-varying. This often leads to
MSE surfaces that are not quadratic in nature. There are
many examples in the literature for which IIR MSE sur-
faces contain local minima, in addition to the global min-
imum. In these cases gradient search techniques may
become entrapped in local minimum, resulting in poor
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performance due to improper convergence of the adap-
tive filter [3]–[6]. 

Nonlinear Adaptive Systems

There are many the applications where voice signals,
audio signals, images, or video signals are subjected to
nonlinear processing, and which require nonlinear adap-
tive compensation to achieve the proper system identi-
fication and parameter extraction. For example, a
generic nonlinear communication system is shown in
Figure 1. The overall communication channel between
the transmitter and the receiver is often nonlinear, since
the amplifiers located in the (satellite) repeaters usually
operate at/or near saturation in order to conserve
power. The saturation nonlinearities of the amplifiers
introduce nonlinear distortions in the signal they
process. The path from the transmitter to the repeater
as well as from the repeater to the receiver may each be
modeled as a linear system. The amplifier characteris-
tics are usually modeled using memoryless nonlineari-
ties. In general, the static nonlinearity is comprised of a
linear term and higher order polynomial terms; hence
the output of such a system can be represented as the
sum of a linear part and a nonlinear part. Such systems
can be modeled by connecting nonlinear and linear filter
modules into a series cascade configuration. In particu-
lar, many nonlinear systems can be represented by the
LNL model shown in Figure 2 [7]. It is well known that a
similar nonlinear model can be used for magnetic
recording channels, where the
interaction between the electronic
bit stream and the magnetic record-
ing medium via the read/write
heads exhibits nonlinear behavior.
As in the case of IIR adaptive struc-
tures, nonlinear adaptive filters can
also produce multi-modal error sur-
faces on which stochastic gradient
optimization strategies may fail to
reach the global minimum due to
premature entrapment. Neural net-
works and Volterra nonlinear adap-
tive filters are well known for their
tendency to generate troublesome
multimodal error surfaces [8]–[12].

Structured Stochastic

Optimization Algorithms

Stochastic optimization algorithms
aim at increasing the probability of
encountering the global minimum,
without performing an exhaustive
search of the entire parameter

space. Unlike gradient based techniques, the perform-
ance of stochastic optimization techniques in general is
not dependent upon the filter structure. Therefore, these
types of algorithms are capable of globally optimizing any
class of adaptive filter structures or objective functions
by assigning the parameter estimates to represent filter
tap weights, neural network weights, or any other possi-
ble parameter of the unknown system model (even the
exponents of polynomial terms) [13]. 

A brute-force, purely stochastic search would consist
of continuously evaluating random, independent parame-
ter estimates relative to a suitable objective/cost/fitness
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function until some minimal error condition is satisfied. A
slightly more sophisticated stochastic search would be to
evaluate a set of parameter estimates generated by an
appropriate random distribution with respect to the
parameter space. Although these types of stochastic
searches can potentially find the global optimum in some
simple cases, they lack any real structure and fail to uti-
lize other information available from the combined
search that would enable them to be more efficient.

The foundation of a structured stochastic search is to
intelligently generate and modify the randomized esti-
mates in a manner that efficiently searches the error
space, based on some previous or collective information
generated by the search [14]. Several different structured
stochastic optimization techniques can be found in adap-
tive filtering literature, most notably simulated annealing
[15]–[19], evolutionary algorithms such as the genetic
algorithm [20], [18] [21]–[24], and swarm intelligence

algorithms such as particle swarm optimization [25]–[37].
One interesting item to note is that all of the prominent
structured stochastic techniques are inspired by a natural
or biological process. This can be attributed to the obser-
vance that such natural processes exhibit a sense of struc-
ture and stability achieved through some sort of
randomness or chaos. This section reviews the two
prominent population based structured stochastic opti-
mization strategies, evolutionary algorithms and particle
swarm optimization, due to their superior convergence
properties for adaptive filtering applications. Special
emphasis is placed on PSO due to its relative novelty.

Evolutionary Algorithms

Evolutionary algorithms (EA) [38] begin with a random
set of candidate solutions (the unknown parameters to be
optimized), termed the population. Each candidate solu-
tion in the population is termed an individual. Each indi-
vidual’s set of parameters is termed a chromosome or
genome, and each parameter is termed a gene. Depending
on the nature of the problem, the chromosomes may rep-
resent real numbers or can be encoded as binary strings.

At every generation, the fitness of each individual is
evaluated by a predetermined fitness function that is
assumed to have an extremum at the desired optimal
solution. An individual with a fitness value closer to that
of the optimal solution is considered better fit than an
individual with a fitness value farther from that of the
optimal solution. The population is then evolved based
on a set of principles rooted in evolutionary theory such
as natural selection, survival of the fittest, and mutation.
Natural selection is the mating of the fittest individuals
(parents) within the population to produce a new indi-
vidual (offspring). This equates to randomly swapping
corresponding parameters (crossover) between the par-
ents to produce a new, potentially better fit individual.
The new offspring then replace the least fit individuals
in the population, which is the survival of the fittest
facet of the evolution. A portion of the population is
then randomly mutated in order to add new parameters
to the search. The expectation is that only the offspring
that inherit the best parameters from the parents will
survive and the population will continually converge to
the best possible fitness that represents the optimal or
suitable solution. Several EA paradigms exist such as
the genetic algorithm, evolutionary programming, and
evolutionary strategies; each emphasizing only specific
evolutionary constructs, encoding, and operators.

Previous work on EAs for adaptive filtering, specifi-
cally the GA, shows that the GA is capable of globally
optimizing both IIR [20], [18] [22]–[24] [39] and nonlin-
ear [23], [24] filter structures. A hybrid genetic-LMS
approach is used in [39], which utilizes the GA to find
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suitable initial IIR filter coefficients
for the LMS algorithm, resulting in
an improved performance over
implementing a standard GA or
LMS. The performance of the GA is
examined for general nonlinear
recursive adaptive filters in [24],
along with a proof of convergence
for the estimation error.

Particle Swarm Optimization

Particle swarm optimization was
first developed in 1995 by Eberhart
and Kennedy [40]–[45] rooted on
the notion of swarm intelligence of
insects, birds, etc. The algorithm
attempts to mimic the natural
process of group communication of
individual knowledge that occurs
when such swarms flock, migrate,
forage, etc. in order to achieve some
optimum property such as configu-
ration or location. 

Similar to EAs, conventional
PSO begins with a random population of individuals;
here termed a swarm of particles. As with EAs, each par-
ticle in the swarm is a different possible set of the
unknown parameters to be optimized. The parameters
that characterize each particle can be real-valued or
encoded depending on the particular circumstances.
The premise is to efficiently search the solution space
by swarming the particles toward the best fit solution
encountered in previous epochs with the intent of
encountering better solutions through the course of the
process and eventually converging on a single minimum
error solution. 

The conventional PSO algorithm begins by initializing
a random swarm of M particles, each having R unknown
parameters to be optimized. At each epoch, the fitness of
each particle is evaluated according to the selected fit-
ness function. The algorithm stores and progressively
replaces the most fit parameters of each particle (pbesti,
i = 1, 2, . . . , M) as well as a single most fit particle (gbest)
as better fit parameters are encountered. The parameters
of each particle (pi) in the swarm are updated at each
epoch (n) according to the following equations:

veli(n) = w ∗veli(n − 1) + acc1
∗diag [e1, e2, . . . , eR]i1

× ∗(gbest − pi(n − 1))

+ acc2
∗diag [e1, e2, . . . , eR]i2

∗(pbesti − pi(n − 1))

(7)

pi(n) = pi(n − 1) + veli(n), (8)

where veli(n) is the velocity vector of particle i, er is a
vector of random values ∈ (0, 1), acc1, acc2 are the 
acceleration coefficients toward gbest, pbesti respectively,
and w is the inertia weight.

It can be gathered from the update equations that the
trajectory of each particle is influenced in a direction
determined by the previous velocity and the location of
gbest and pbesti. Each particle’s previous position
(pbesti) and the swarm’s overall best position (gbest) are
meant to represent the notion of individual experience
memory and group knowledge of a “leader or queen,”
respectively, that emerges during the natural swarming
process. The acceleration constants are typically cho-
sen in the range ∈ (0, 2) and serve dual purposes in the
algorithm. For one, they control the relative influence
toward gbest and pbesti respectively, by scaling each
resulting distance vector, as illustrated for a 2-dimen-
sional case in Figure 3. Secondly, the two acceleration
coefficients combined form what is analogous to the
step size of an adaptive algorithm. Acceleration coeffi-
cients closer to 0 will produce fine searches of a region,
while coefficients closer to 1 will result in lesser explo-
ration and faster convergence. Setting the acceleration
greater than 1 allows the particle to possibly overstep
gbest or pbest, resulting in a broader search. The random
ei vectors have R different components, which are ran-
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domly chosen from a uniform distribution in the range
∈ (0, 1). This allows the particle to take constrained ran-
domly directed steps in a bounded region between gbest
and pbesti, as shown in Figure 3.

A single particle update is graphically illustrated in
two dimensions in Figure 4. The new particle coordinates
can lie anywhere within the bounded region, depending
upon the weights and random components associated
with each vector. The particle update bounds in Figure 4
are basically composed of all of the bounded regions for
each vector as shown in Figure 3, with the addition of the
previous velocity component. 

When a new gbest is encountered during the
update process, all other particles begin to swarm
toward the new gbest, continuing the directed glob-
al search along the way. The search regions contin-
ue to decrease as new pbestis are found within the
search regions. When all of the particles in the
swarm have converged to gbest, the gbest parame-
ters characterize the minimum error solution
obtained by the algorithm.

One of the key advantages of PSO is the ease of
implementation in both the context of coding and
parameter selection. This is much simpler and intu-
itive to implement than complex, probability based
selection and mutation operators required for evolu-
tionary algorithms. Guidelines for selecting and opti-
mizing the PSO parameters are detailed in [46]–[50].

The Particle Swarm—

Least Mean Square

(PSO-LMS) Hybrid Algorithm

One weakness of conventional PSO is
that its local search is not guaranteed
convergent; its local search capabili-
ty lies primarily in the swarm size
and search parameters. On the other
hand, the problem with simply run-
ning a brute-force population of inde-
pendent LMS algorithms [4] is that
there is no collective information
exchange between population mem-
bers, which makes the algorithm inef-
ficient and prone to the local
minimum problem of standard LMS.
Therefore, it is desirable to combine
the convergent local search capabili-
ties of the LMS algorithm [51] with
the global search of PSO. 

When initialized in the global opti-
mum valley, the LMS algorithm can
be tuned to provide an optimal rate of
convergence without apprehension
of encountering a local minimum.

Therefore, by using a structured stochastic search, such as
PSO, to quickly focus the population on regions of interest,
an optimally tuned LMS algorithm can take over and pro-
vide better results than standard LMS. A generalized form
of this PSO-LMS Hybrid algorithm is presented here, which
can be extended for IIR updates and back-propagation
updates for nonlinear structures. 

For a general adaptive filter structure, the LMS update
takes the form:

w(n) = w(n − 1) + µe(n − 1)∇y(n − 1), (9)

where e(n) is the instantaneous error between the desired
signal and filter output, ∇y(n) is the gradient of the out-
put with respect to the filter parameters, and µ is the step
size. This update can be considered a directional vector,
similar to those used to generate the particle updates of
PSO. To form the PSO-LMS hybrid, the LMS update from
equation (1) is combined with to the PSO particle update
from equation (5) to create the hybrid update:

pi(n) = pi(n − 1) + c1veli(n) + c2µe(n − 1)∇y(n − 1), (10)

where c1(n) and c2(n) are scaling factors that control
the relative influence of the PSO and LMS directions,
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respectively. These scaling factors should be chosen
such that c1(n) + c2(n) = 1 in order to control the sta-
bility of the algorithm. The principle is to decrease the
influence of the more global PSO component as the algo-
rithm progresses, which will act to
increase the influence of the LMS
component in order to provide the
desired convergence properties. In
addition to the locally convergent
properties, another advantage of
this algorithm is that the LMS com-
ponent enables tracking of a dynam-
ic system.

Modified Particle Swarm

Optimization

Although PSO-LMS has several desir-
able traits, the LMS component of
the update can grow complex and
tend to slow the convergence of cer-
tain IIR and nonlinear structures.
Therefore, several simple enhance-
ments can be added to conventional
PSO that significantly boost the per-
formance without much added com-
plexity. The following enhancements
address the two main weaknesses of
conventional PSO: outlying particles
and stagnation.

If the new gbest particle is an out-
lying particle with respect to the
swarm, the rest of the swarm can
tend to move toward the new gbest
from the same general direction.
This may potentially leave some crit-
ical region around the new minimum
excluded from the search. To com-
bat this problem, when a new gbest is
encountered, a small percentage of
randomly selected particles can be
re-randomized about the new gbest.
This does not affect the global
search properties, and can actually
improve the convergence rate. 

Particles closer to gbest will tend
to quickly converge on it and become
stagnant (no longer update) while
the other more distant particles con-
tinue to search. A stagnant particle is
essentially useless because its fitness
continues to be evaluated but it no
longer contributes to the search.
Stagnancy of particles can be elimi-

nated by slightly varying the random parameters of each
particle at every epoch, similar to mutation in EAs. This
has little effect on particles distant from gbest because this
random influence is relatively small compared to the
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random update of equation (2). However, this eliminates
any stagnant particles by forcing a finer search about gbest.

Because the mutation operator tends to slow the
optimal convergence rate of PSO in general, the following
adaptive inertia operator is included to compensate:

wi(n) = 1(
1 + e

−� Ji(n)

S

)

where wi(n) is the inertia weight of the
ith particle, � Ji(n) is the change in parti-
cle fitness between the current and last
generation, and S is a constant used to
adjust the transition slope based on the
expected fitness range. The adaptive
inertia automatically adjusts to favor
directions that result in large increases in
the fitness value, while suppressing
directions that decrease the fitness
value. This modification does not pre-
vent the hill-climbing capabilities of PSO,
it merely increases the influence of
potentially fruitful inertial directions,
while decreasing the influence of poten-
tially unfavorable inertial directions. 

The relative effects of the suggested
enhancements are illustrated for a simple
IIR system identification example in Figure

5. A flow chart for such an algorithm,
referred to here as MPSO, is given in
Figure 6. This algorithm is capable of
providing desirable performance and
convergence properties in most any
context. In addition to eliminating
the concerns of conventional PSO,
the algorithm is designed to balance
the convergence speed and search
quality tradeoffs of a stochastic
search. At a minimum, a more com-
pact form of MPSO, using only the
additional mutation operator, will
provide a significant increase in per-
formance of conventional PSO. When
computational complexity is an
issue, another major advantage of
these algorithms is that they are able
to achieve robust results with small-
er populations; since the computa-
tional complexity is directly related
to the population size for population
based algorithms.

Experimental Examples

In the following examples, the properties of the afore-
mentioned algorithms several IIR and nonlinear system
identification problems, using a windowed mean
squared error between the desired training signal and
the adaptive filter output as the fitness function. All
algorithms were initialized with the same population of
real-valued parameters and allowed to evolve. The
population sizes were selected to provide reasonable
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Table 1. 

Algorithm Description

PSO The conventional PSO algorithm.

MPSO The modified PSO algorithm, with matching PSO parameters.

PSO-LMS The PSO-LMS algorithm, with matching PSO parameters. A smooth 
transition between algorithms was selected to occur at the point 
that conventional PSO stagnates.

CON-LMS The congregational LMS algorithm [52] is implemented where a 
population of independent LMS estimates is updated at each 
epoch.

GA The genetic algorithm uses a ranked elitist strategy suggested in 
[20], where the 6 fittest members of the population are used to 
generate offspring, which replace the remaining least fit 
members of the population. For each offspring, two of the 6 
parents are selected randomly and the crossover is performed 
by a random weighted average of each parent's coefficients. 
This scheme was chosen due to its accelerated convergence 
properties.
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performance, while revealing the performance charac-
teristics of each algorithm. The fitness is defined as the
MSE error of the candidate solutions evaluated over a
causal window of 100 input samples. Unless specified
otherwise, the input signals are zero-mean Gaussian
white noise with unit variance. For each simulation, the
MSE is averaged over 50 independent Monte Carlo tri-
als. The specifics of each algorithm are given in Table 1.

Matched high-order IIR Filter, White noise input

For this example the plant, given below is a fifth-order
low-pass Butterworth filter example taken from [20]: 

HPL ANT (z−1) =
0.1084 + 0.5419z−1 + 1.0837z−2 + 1.0837z−3 + 0.5419z−4 + 0.1084z−5

1 + 0.9853z−1 + 0.9738z−2 + 0.3864z−3 + 0.1112z−4 + 0.0113z−5

(11)

HAF (z−1) =
p1

i + p2
i z−1 + p3

i z−2 + p4
i z−3 + p5

i z−4 + p6
i z−5

1 + p7
i z−1 + p8

i z−2 + p9
i z−3 + p10

i z−4 + p11
i z−5

. (12)

The learning curves for this example are given in
Figures 7 and 8. The simulations having the larger pop-
ulation illustrate the case where the population size is
sufficient and all of the algorithms rarely become
trapped in a local minimum. 

Table 2 lists the local minima statistics after swarm con-
vergence for the
decreased popula-
tion IIR examples.
One interesting ob-
servance is that
population based
searches are inher-
ently less likely to
produce unstable
IIR filters due to
the number of esti-
mates available at any given epoch, which is not the case
for sequential searches such as LMS. 

Reduced order IIR Filter, Colored noise input

For this example, the plant given below is an example
taken from [20] and [53]: 

HPLANT (z−1) = 1
(1 − 0.6z−1)3

(13)

HAF (z−1) = p1
i

1 + p2
i z−1 + p3

i z−2
(14)

HC OLOR(z−1) = (1 − 0.6z−1)2(1 + 0.6z−1)2. (15)

The adaptive filters use a colored input generated by fil-
tering white noise by the FIR filter given in equation
(15). This, in combination with the reduced order, cre-
ates a bimodal error surface. Again, the colored noise
leads to smaller stable step sizes and slowed conver-
gence rates. The learning curves for this example are
given in Figures 9 and 10.

Matched Structure Volterra Identification

In this example, a matched structure truncated Volterra
adaptive filter is used to identify the truncated Volterra
plant taken from [54]: 

y[n] = −0.64x[n] + x[n − 2] + 0.9x2[n] + x2[n − 1]

(16)

ŷ[n] = p1
i x[n] + p2

i x[n − 1] + p3
i x[n − 2]

+ p4
i x2[n] + p5

i x2[n − 1] + p6
i x2[n − 2]

+ p7
i x[n]x[n − 1] + p8

i x[n]x[n − 2]

+ p9
i x[n − 1]x[n − 2]. (17)

The learning curves for this example are given in Figure 11. 

Nonlinear LNL Cascade Identification

In this example, the identification of an LNL cascade
taken from [54] is performed using a unmatched LNL
adaptive filter. The LNL plant consists of a 4th order But-
terworth lowpass filter (equation 2), followed by a 4th
power memoryless nonlinear operator, followed by a 4th
order Chebyshev lowpass filter (equation 3), as shown in
Figure 12.

This system is a common model for satellite communi-
cation systems in which the linear filters model the disper-
sive transmission paths to and from the satellite, and the
nonlinearity models the traveling wave tube (TWT) trans-
mission amplifiers operating near the saturation region. 

ĤB(z−1) =
(0.2851 + 0.5704z−1 + 0.2851z−2)(0.2851 + 0.5701z−1 + 0.2851z−2)

(1 − 0.1024z−1 + 0.4475z−2)(1 − 0.0736z−1 + 0.0408z−2)

(18)

ĤC (z−1) =
(0.2025 + 0.288z−1 + 0.2025z−2)(0.2025 + 0.0034z−1 + 0.2025z−2)

(1 − 1.01z−1 + 0.5861z−2)(1 − 0.6591z−1 + 0.1498z−2)

(19)
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Table 2. 

% Trials in Local 
Algorithm Minimum 

MPSO 2 

GA 6

PSO-LMS 6 

CON-LMS 15

PSO 20



The LNL adaptive filter structure is given as follows:

ĤB(z−1) = p1
i + p2

i z−1 + p3
i z−2 + p4

i z−3

1 + p5
i z−1 + p6

i z−2 + p7
i z−3

(20)

nonlinearity = p8
i

[
ĤB(z−1)

]4
(21)

ĤC (z−1) = p9
i + p10

i z−1 + p11
i z−2 + p12

i z−3

1 + p13
i z−1 + p14

i z−2 + p15
i z−3

. (22)

The learning curves for this example are given in Figure 13.

Summary and Conclusions

The results presented demonstrate that the structured sto-
chastic algorithms are capable of quickly and effectively
adapting the coefficients of a wide variety of IIR and nonlin-
ear structures. From the simulation results, it is observed
that, with a sufficient population size, all of the structured
stochastic algorithms are capable of converging rapidly to
below −20 dB in most instances, which is an order of mag-

nitude faster than most existing gradi-
ent based techniques.

In all cases, the congregational
LMS algorithm exhibits the slowest
convergence rate due to the fact that
there is no information transfer
between the estimates. It is observed
from the learning curves that conven-
tional PSO stagnates and PSO-LMS
continues to improve from the stag-
nation point of conventional PSO at a
rate similar to CON-LMS. Both of the
LMS based algorithms are capable of
eventually attaining the noise floor
when the number of generations is
increased, assuming that they are not
trapped in a local minimum.

Since the GA does not have an
explicit step size, the convergence
rate can only be controlled to a limit-
ed extent through the crossover and
mutation operations, and the algo-
rithm must evolve at its own intrinsic
rate. Due to the nature of the algo-
rithm, these GA operators become
increasingly taxed as the population
decreases, resulting in depreciating
performance. On the other hand, as
the population size increases, the

performance gap between the GA and MPSO begins to
diminish for large parameter spaces.

Though conventional PSO exhibits a fast convergence
initially, it fails to improve further because the swarm
quickly becomes stagnant, converging to a suboptimal
solution in all instances. However, with the same set of
algorithm parameters, the MPSO particles do not stag-
nate, allowing it to reach the noise floor. Smaller acceler-
ation coefficients can be used with conventional PSO to
allow it to approach the noise floor, forsaking the rapid
convergence rate. With the introduction of a simple
mutation type operator, adaptive inertia weights, and re-
randomization, MPSO can retain the favorable conver-
gence rate with a smaller population, while still
achieving the noise floor and avoiding local minima. This
can offer considerable savings in cases where computa-
tional complexity is an issue.

A topic that warrants further investigation is an
assessment of the performance of these algorithms on
modified error surfaces. It is evident that structured sto-
chastic search algorithms perform better on surfaces
exhibiting relatively few local minima, because the local
attractors offer little interference to the search. By incor-
porating alternate formulations of the adaptive filter
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structures or performing data preprocessing, such as
input orthognalization and power normalization, the
error surface can be smoothed dramatically. These addi-
tions will likely result in improved performance of sto-
chastic search algorithms.

Related to this notion is the assertion that struc-
tured stochastic algorithms, particularly versions of
PSO, have a tendency to excel on lower order parame-
ter spaces. This is due partly to the fact that lower
dimensional parameter spaces tend to exhibit fewer
local minima in general, and because the volume of the
hyperspace increases exponentially with each addition-
al parameter to be estimated. Therefore it is hypothe-
sized that dimensionality reduction techniques, such as
implementing alternate formulations of adaptive filter
structures that are able to accurately model unknown
systems with minimum number of parameters, could
benefit the overall performance.  
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