BIOL 695 Nutrition of Horticultural Plants

Credits: 3 Hours Lecture Tu: 6:30 - 9:30 PM Lab- Tu: 6:30 - As Arranged

BIOL 695

Plant Nutrients

Chapter 1 Mengel et al., 5th Ed.

Plant Nutrients

- 1. Definition and classification
 - a. Plant ash and lime
 - b. Liebig plant nutrition science
 - assumptions and observations
 - c. Nutrient content plants in soil
 - Could be misleading
 - Hydroponics as research tool

Plant Nutrients, continued

- d. Analytical chemistry necessary in plant nutrition research
- e. Essential elements
 - Life cycle completion
 - Not replaceable
 - Directly involved in metabolism
- f. Sixteen essential elements

THE 16 ESSENTIAL ELEMENTS

- These three come from carbon dioxide (CO₂) and water (H₂O), and are not considered mineral nutrients.
 - -Carbon
 - -Hydrogen
 - -Oxygen

THE 13 ESSENTIAL MINERALS

- These are absorbed by plant roots
- Those required in large quantities:
 - -Macronutrients
 - Primary
 - Secondary
- Those required in limited quantities:
 - -Micronutrients

				-													
Н	H Essential and Beneficial Elements in Higher Plants												He				
Li	Be	Essential Mineral Element Beneficial Mineral Element								В	C	Ν	0	F	Ne		
Na	Mg			Ess	ential	Nonr	miner	al Ele	ment			Al	Si	Ρ	S	CI	Ar
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Υ	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
Cs	Ba	Lu	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt									
		La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb		
		Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No		

Carbon, Hydr	ogen, Oxygen [*]	>90%
Nitrogen	amino acids, nucleic acids, chlor	2.5 - 3.5%**
Phosphorus	ATP, storage bodies, lipids	0.15 - 0.25%
Potassium	ion balance, stomata, cofactor	2 - 3%
Calcium	cell walls, cofactor, stimuli	0.5 - 1.0%
Magnesium	chlor, cofactor, enzyme function	0.3 - 0.5%
Sulfur	amino acids, enzymes	0.3 - 0.5%
*Water alone m	av be from 70 - 95% of the plant fresh weight	

CLASSIFICATION OF PLANT NUTRIENTS

Nutrient Element	Biochemical Functions
1st Group: C, H, O, N, S	Major constituents of OM Involved in enzymatic processes
2nd Group: P, B, Si	Esterfication reactions
3rd Group: K, Na, Ca, Mg, Mn,Cl	Non-specific functions - osmotic potentials Anion balance; membrane permeability
4th Group: Fe, Cu, Zn, Mo	Catalytic enzyme rx'ns e ⁻ transport

		Pounds / Acre							
removed									
Crop	Yield/A	Ν	Ρ	Κ	Ca	S			
Apple	600 bu	34	3	32	3	12			
Cabbage	20 T	120	14	133	16	32			
Tomato	20 T	80	9	117	16	5			
Onion	1000 bu	154	26	121	18	8			

SUPPLEMENTING NUTRIENTS

- In most soils, only N, P, K are added
- In greenhouse mixes (completely artificial media without any soil) complex mixtures of many nutrients are added
- In hydroponics (water culture) all essential elements must be provided

MINERAL CONTENT OF PLANT TISSUE

- Major elements
 - Organic comp constituents
 - Osmoregulation
- Micronutrients
 - Enzyme molecule constituents
- Sufficiency tables
 - -Reuter & Robison

MINERAL CONTENT, continued

- Nutrient content influenced by – Nutrient availability
- Basis of plant analysis is relationship between nutrient in
 - growth medium
 - plant
- Leaves best index –Why?
- Growth rate nutrient comparison

SUMMARY (Continued)

- Mn Oxidative-reduction
- B mobile in sp rich in sorbitol
- Cu photosynthetic electron transp
- Zn auxin synthesis for cell elong.
- Mo nitrate reductase
- CI PS oxygen evolution