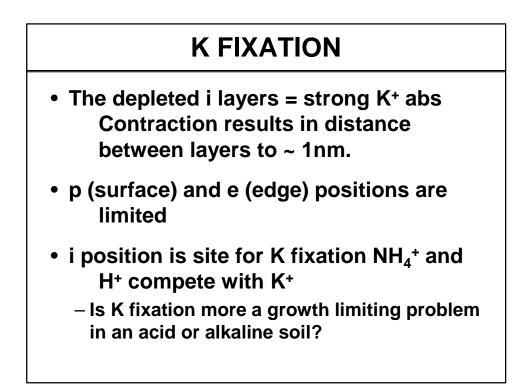
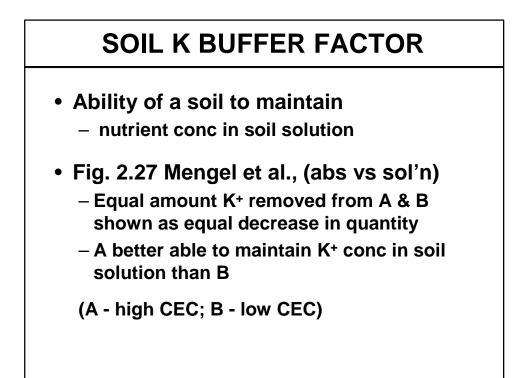


SOIL POTASSIUM

• K minerals and K release

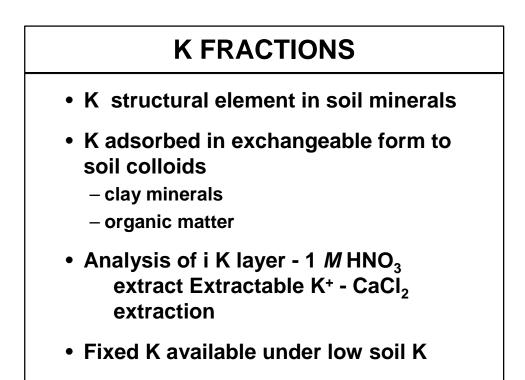

- ~2 3% of earth's crust is K
- K tied to clay particles (< 2 μ m size)
- Frequently soils high in clay are high in K
 Up to 4%
- Mature well-weathered soils usually low in K but may have high clay content.

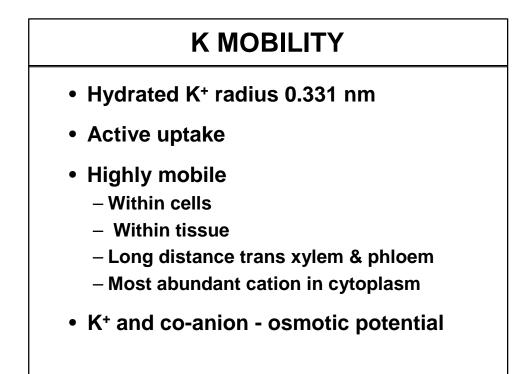

WEATHERING

- Young soils of volcanic origin may have high K
 - -Range downward from there
 - Micas 10% K
 - Hydromicas 6 8% K
 - Illite 4 6% K
 - Montmorillinite < 2% K

K REPLACED IN MINERALS

- As weathering continues - Na⁺, Mg²⁺, Ca²⁺ replace K⁺
- Larger ions drive wedge between silicate layers
 - More K⁺ is released.
 - The longer this process lasts,
 - the rate becomes slower



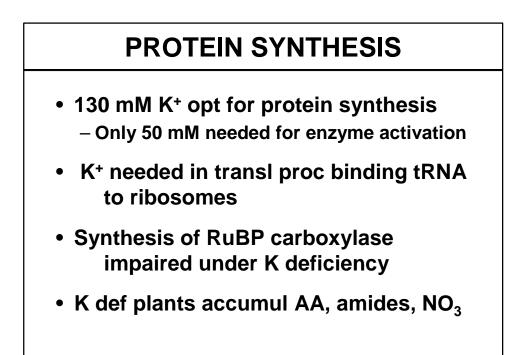


Refer to Fig. 2.27:

- Soil A is better buffered than Soil B B_k = Δ Q / Δ I
- The higher the ratio of
 \(\Delta\) Q /
 \(\Delta\) I, the more the soil is buffered

K MOBILITY

- Hydration "water boy of plant"
- K⁺ not metabolized
 - weak complexes, highly exchange
- Does not compete for divalent sites
- K⁺ neutralizes organic acid & inorganic anions in cytoplasm
- Stabilizes pH from 7 to 8, opt for enzy
- A pH decr. from 7.7 to 6.5 inhibits NO₃⁻ Reductase

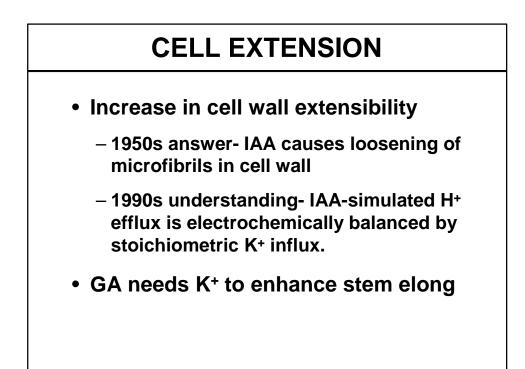

- Cytoplasmic K⁺ concentrations
 - Maintained at 100-200 mM
 - Not replaced by Na or any other cations
 - Vascular K⁺ conc 10 200 mM
 - Guard cell K⁺ may reach 500 mM
 - K⁺ turgor-driven processes in vacuole (e.g.cell extension)

K⁺ CHANNELS IN MEMBRANES

- Required for rapid transport between – Cell compartments & cells in tissue
- 3 orders faster than catalyzed by
 - Pumps and carriers
 - K⁺ acts directly as solutes, changing osmotic potential thereby controlling turgor

ENZYME ACTIVATION

- Why does soluble CHO, soluble N increase & starch dec in K defic plants?
 - Fig. 10.11 (K & other ion \Rightarrow ADP prod'n)
 - Regulatory enzymes
 - Starch synthase
 - K⁺ necessary for activation of ATPase.
 Why is that important?


- K⁺ counterion to light induced H⁺ flux across thylakoid membranes.
- Establishment of transmembrane pH gradient necessary for ATP synthesis.
- K⁺ necessary for CO₂ fixation (Tab. 10.5)
- K⁺ influx from cytosol mediates
 - H+/K+ counterflow; K+ needed to keep pH neutral to alkaline

OVERCOMING DROUGHTS

- K⁺ loss from chloroplasts during drought can be counteracted with K⁺
 - PS increased with inc K⁺ supply
- PS decrease of *in vivo* plants less severe at high K⁺

CELL GROWTH

- Formation of large central vacuole (80-90%) of cell volume
 - -consequence of accum of K⁺ in the cells necessary for:
 - stabilizing pH in cytoplasm
 - inc osmotic potential in vacuoles

- Creation of internal osmotic potential increases growth
- K⁺ and reducing sugars act together

 Produce potential required for cell
 extension

STOMATAL MOVEMENT

- K⁺ assoc with an anion responsible:
 - For turgor changes in guard cells
 - Increase in K⁺ conc in guard cells increases their osmotic potential
 - Water uptake from adjacent cells
 - Increase in turgor in guard cells
 - Results in stomata open, Fig. 10.8 text

STOMATAL CLOSURE

- In dark correlated with K⁺ efflux. – Dec in osmotic guard cell pressure
- Light induced accum of K⁺ in grd cell driven by proton pumping ATPase
- Closure of stomata induc by ABA or darkness assoc rapid efflux of K⁺ & accompanying anion from guard cells

K+ MOVES TO APOPLASM

- Stomatal closure assoc steep inc in K⁺ and Cl⁻ in apoplasm of guard cells
 - Open stomata = 3 mM K⁺ & 4.8 mM Cl⁻
 - Closed stomata = 100 mM K⁺ & 33 mM Cl⁻

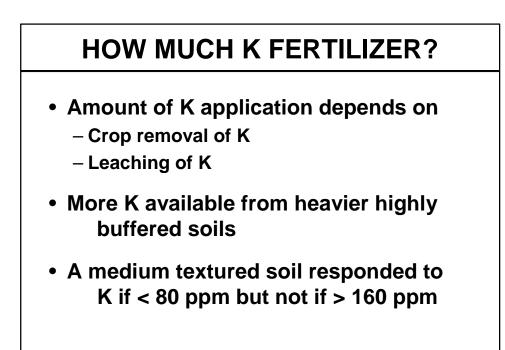
NO PHLOEM - NO K⁺ EFFLUX

- Stomates remain perm open in parasites such as *Striga* & *Loranthus*
- Do not resp to darkness, ABA, drought
- Lack of phloem in leaves so:
 - Lack of capability to dispose of K⁺ from guard cells
 - So guard cells remain open

UPTAKE & TRANSLOCATION

- K mobile in plant. Moves toward meristem from older plant leaves
 - Because needed in protein synthesis and growth
- Bulk of K taken up during veg growth phase up to flowering
- Citrus during March, June, Sept flushes

K IN ROOTS AND FRUIT


- K in root cells not often translocated out as in older leaves.
- 80% of cations in phloem sap are K⁺
- Bananas, apples, & grapes are high in K because fed by phloem sap.

K DEFICIENCY

- Growth rate reduction
- Older leaves necrotic margins
- Leaf scorch in pecans
- Peach leaves appear silver gray film
- Decrease in turgor, subject to drought, frost, salinity

• Crop requirements & response

- Soil K is being depleted
- Removal by crops Kg K/Ha/Yr
 - Bananas 224
 - Stone Fruits 65
 - Oranges 120
 - Celery 350
 - Most Vegetables ~125

HOW MUCH K FERTILIZER?

- Higher N application increases need for K
- Response to K more noticeable 2nd Yr
- Tomato production increased with K
 application up to 1600 Kg/Ha
- Panama disease (Fusarium oxysporium) of bananas more serious when K is limited.

DEFICIENT SOILS & FIXATION

- Sandy & organic soils have few Kbearing minerals
 - Depend mostly on fertilizer sources
 - Become deficient easily w/o fertilization
 - Little fixation capacity
- Soils with K-bearing minerals – After K depletion, have fixation capacity
- The more K is depleted – The more it is fixed

FERTILIZERS & APPLICATION

- KCI most common K fertilizer - 50% K and 60% K₂O
- Lower grade KCI contains
 - -41% K and 58% K_2O or
 - $-\,33\%$ K and 40% $\rm K_2O$
 - Also contains NaCl
- Use K₂SO₄ for CI sensitive crops

KMag

- Potassium magnesium sulfate – K₂SO₄,MgSO₄
 - -18% K, 22% K₂O
 - 11% Mg, 18% MgO

TIME OF APPLICATION

- If soils fix high amounts of K the application should be at planting time

 May use banded application
- Even side dressing may be necessary
- Leaching only in sand