BIOL 695

CALCIUM

Chapter 11 MENGEL et al, 5th Ed

Ca BEARING MINERALS

- Earth's crust ~ 3.64 % Ca
 - See Table 11.1 Elemental comp of crust
 - Calcite CaCO₃
 - Dolomite CaMg(CO₃)₂
 - Dolomitic limestone CaCO₃ + MgCO₃
 - Apatite (most forms of calcium phosphate)
 - Dicalciumphosphate CaHPO₄
 - Tricalciumphosphate Ca₃(PO₄)₂

WEATHERING

- Soil from unweathered limestone 10 - 20% Ca
- Old highly weathered soils Low Ca
 - Rate of weathering depends on formation of H⁺ in soil
- Rate of Ca leaching can reach 200 -300 kg/ha with rain fall

WEATHERING

- Higher with CO_2 present CaCO₃ (insoluble) + CO_2 + H₂O \Rightarrow Ca(HCO₃)₂ (soluble); thus leached
- Carbonic acid from:
 - Root respiration
 - Rain water
 - OM respiration
 - Causes leaching

NO₃ FORMATION LEACHES Ca

- $2NH_4^+ + 4O_2 \Rightarrow 2NO_3^- + 4H^+ + 2H_2O$ - The H⁺ used to release Ca from clay minerals
- Under conditions where nitrification can occur the appl of NH₄ fertilizers causes soil acidification & Ca²⁺ leaching
- NH₄NO₃ leaches Ca

ACID SOILS

- Often
 - Poor in structure
 - Low in Ca and Mg
 - High in Al and Mn
- Liming is way to maintain optimum pH

Ca ADSORPTION

- Ca²⁺ promotes flocculation of soil colloids & thus improves soil structure & stability of soil particles.
- Aggregates are formed – Have 40-50% soil volume = pore space
- Such soil stores water & air – Can be penetrated by roots

MONTMORILLONITE

- Exchangeable Ca is important for soil structure.
- 2:1 clay minerals like montmorillonitic clay should have 80% of soil exch capacity saturated with Ca²⁺

KAOLINITE

- For kaolinite ~ 20% Ca²⁺ saturation is adequate because soils with this clay contains hydrous oxides which are even more effective than Ca²⁺ in flocculation.
- Adsorption sites of inorganic soil colloids not specific for Ca²⁺

DIVALENCY

- Ca relatively strongly adsorbed to clay minerals because of electrostatic charge of Ca²⁺
 - High due to divalency
 - Thin hydration shell (rel small)
- Adsorption bond of Ca²⁺ to organic colloids (humic acid) more specific

RELATIONSHIP/SOIL:SOLUTION

- Linear relationship between
 - Exchangeable Ca2+ in soil, and
 - Ca²⁺ in soil solution
 - Under equilibrium conditions

ECOLOGICAL ASPECTS

- <u>Calcicoles</u> typical in calcareous soils – High levels of intracellular Ca
 - High conc of malate
- <u>Calcifuges</u> typical in acid soils - Low in Ca
- What other characteristics of Ca-rich soils?

Ca UPTAKE AT LOW SOIL LEVELS

- Ca²⁺ can be effective even if low in soil solution
 - Provided that K⁺ & NH₄⁺ are low.
- Ca²⁺ will detoxify heavy metal cations
- Ca²⁺ uptake by diocots > than monocots because of greater CEC sites (free carboxylic groups)

Ca UPTAKE PASSIVE

- Dependent on transpiration steam.
 - Ca²⁺ transport controlled by humidity.
 - BER causes
 - Drought
 - Water logged soil
 - NH₄+ application
 - High salt concentration
 - Low temperature

Ca UPTAKE PASSIVE

- Growing points receive preferential amounts of Ca compared to older leaves even with less transpiration.
 - IAA stimulated proton efflux pump in elongation zones of shoot apex
 - Inc new cation exchange sites
 - -Grow pt center for Ca²⁺ accum.

Ca IS IMMOBILE

- Once Ca²⁺ in older leaves cannot be mobilized to growing tips.
- Why doesn't Ca²⁺ move out?
 - No Ca²⁺ movement in phloem
 - Tissue supplied by phloem sap (fruit) has less Ca²⁺ than leaves.

BIOCHEMICAL FUNCTION OF Ca

- Ca²⁺ req in cell elongation & division
- EDTA removal of Ca²⁺ from tissue causes leakage.
 - Leak their contents \Rightarrow necrosis
 - Ca deficiency
 - Ca²⁺ ordinarily forms chelates with phenols - with deficiency, phenols cause oxidation in cells

Ca FORMS

- Ca²⁺
- Ca oxalates, carbonates, phosphates
- Adsorbed to carboxylic compounds
- Adsorbed to phenolic compounds
- Ca pectate / Phytic acid seeds
- Why do plants fed with NO₃⁻ contain more Ca²⁺ than those fed with NH₄⁺?

Plant Nutrient Recovery Reduced by Soil Acidity

Soliph	N	Р	ĸ
% N	utrient Re	ecovery	
7.0	70	30	60
6.0	63	15	60
5.5	52	15	45
5.0	38	10	30
4.5	21	8	21

PARTICLE SIZE IMPORTANT

- An excellent analysis for lime is:
 - 30 mesh 99.5%
 - 50 mesh 99.3%
 - 70 mesh 96.8%
 - 100 mesh 91.4%
 - 140 mesh 84.8%
 - 200 mesh 72.2%
- CaCO₃ reacts slowly, however, more rapidly in very acid soil:

 $CaCO_3 + 2H^+ \Rightarrow Ca^{2+} + H_2O + CO_2$

EFFECTIVE CALCIUM CARBONATE EQUIVALENT

- Effective Calcium Carbonate Equivalents (ECCE) - affected by the mesh size of limestone.
- Two sources (examples)
 - A = 95.52% ECCE
 - B = 69% ECCE

ECCE CALCULATION

If 3 tons of 100% ECCE recommended: 100 x 3 = 300
Source A 95.52 x A = 300 A = 300/ 95.52 = 3.14 Tons
Source B 69 x B = 300 B = 300/69 = 4.35 Tons