

AERATION OXIDIZES Fe

- Fe²⁺ + $3H_2O \rightarrow Fe(OH)_3 + e^- + 3H^+$ – Oxidation of Fe²⁺ to Fe³⁺
 - –Fall in pH
- Higher levels of Fe²⁺ (of the soluble Fe) in deeper, less well aerated soil layers

UPTAKE AND TRANSLOCATION

- Fe²⁺ and Fe chelates – available to plants
- Fe³⁺ not available (Fig. 13.1 M&K)
- Thus absorption of Fe by roots depends on
 - Ability of roots to reduce Fe³⁺ to Fe²⁺ in rhizosphere

PHYTOSIDEROPHORES

- Strategy I
 - Dicots & non-graminaceous monocots
 - Characterized by 2 components of Fe deficient plants:
 - Increased reducing capacity
 - Enhanced net excretion of protons

STRATEGY I

- May be characterized by Reducing compounds
 - -Chelating compds like phenolics
- Root responses related changes in
 - root anatomy in formation of transfer structures in root cells.
- Increase of plasma membrane bound reductase in rhizodermal cells (R)

STRONG EXCRETION OF PROTONS

- Occurs under Fe deficiency
 - -Caused by higher activity of
 - Plasma membrane proton efflux
 pump
 - -NOT the reductase (R)

STRATEGY II (GRAMINACEOUS)

- Release of Phytosiderophores
 - Fe deficieny-induced enhanced release of non-proteinogenic AA
 - -Release follows diurnal rhythm
 - -Suppressed by resupply of Fe

PHYTOSIDERPHORES

- Such as mugineic acid
 - -Forms stable complexes with Fe³⁺
- Second component
 - Highly specific transport system (Tr) present in plasma membrane
 - Tr transf Fe³⁺ Phytosiderophores into cytoplasm

Fe³⁺ REDUCTION

- At outer plasmalema mediated by – Electrons from within cell via
 - Cytochrome, or
 - Flavin compound
- Fe chelates supplied at low levels
 - -Fe separates from chelates
 - Fe in, chelate out

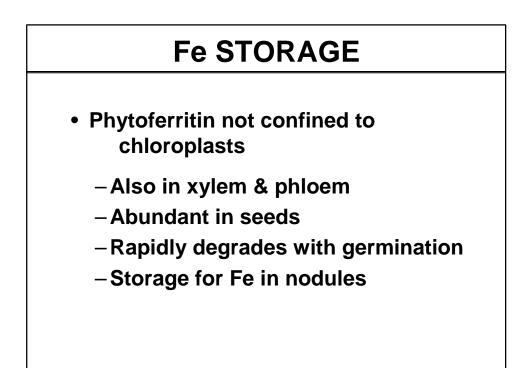
Fe UPTAKE IS ACTIVE

- Fe in stem 30x > Fe in ambient sol'n.
- Uptake influenced by other cations

 Heavy metals that induce Fe defic
 Mn²⁺, Cu²⁺, Ca²⁺, Mg²⁺, K⁺, Zn²⁺
- Fe efficient species are able to lower pH of nutrient medium. Is this imp?

NO₃⁻ DEPRESSES; NH₄⁺ INCREASES Fe UPTAKE

- WHY? (H⁺ in soil & efflux from root)
- Major form of Fe translocation in xylem is ferric citrate


BIOCHEMICAL FUNCTIONS

- Forms chelates
- Valence changes

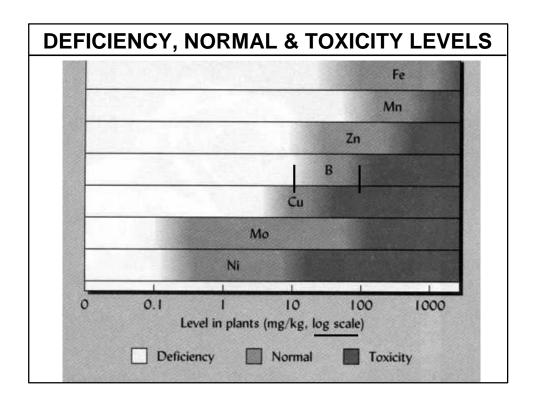
 Fe²⁺ ⇔ Fe³⁺ + e⁻
- Fe is part of cytochrome system
 - -Only 0.1% in cytochrome
 - Remainder in Ferric phosphoprotein, PHYTOFERRITIN

PHYTOFERRITIN

- Protein shell
 Interior ~ 5000 Fe³⁺ atoms
- High in dark-grown leaves (~50%)
 - Rapidly disappears when de-greens
 - -Remains low in green leaves
- When Fe applied to Fe-deficient plants – Fe in phytoferritin increases rapidly

80% Fe IN CHLOROPLASTS

- Fe associated with chlorophyll synthesis
- ⁵⁹Fe corresponds to green part of tomato plant (Plate 13.1 M&K)


DEFICIENCY

- Both Fe & Mg deficiency characterized by failure of chlorophyll production
- Does deficiency appear in same part of plant? Why or why not?
- Chlorosis is interveinal fine pattern.
 - -Dark green veins on yellow backgr
 - -Later white

- In root tips due to enlargement of cortex

 Intensifies develop'mt of root hairs
- Cu & Zn may replace chelated complexes of Fe
- High PO₄⁻ and Ca²⁺ depresses Fe uptake
- High pH + aeration $Fe^{2+} \rightarrow Fe^{3+}$

Fe AVAILABILITY

- P/Fe Ratio higher in deficient tissue - Shift to Fe³⁺
 - Not available even high in nutrition analysis.
- 100 ppm Fe normal in green tissue
 Much higher in most soils
- Plants require ~ 0.5 ppm Fe in soil

Fe AVAILABILITY

- Total in soil commonly 2% (20,000 ppm).
 - Thus problem is availability
- At normal pH, inorganic Fe levels below plant requirement
 - Soluble Fe-organic complexes are necessary

Fe AVAILABILITY

- Alpha keto glutaric acid excreted from root tip, solubilizes Fe
- Chelate conc of 10⁻⁶ to 10⁻⁷ adeq
- Only root tips can absorb Fe
- Fe deficiency more common in calcifuge plants Azalea, rhododendron, *Vaccinum*

LIME INDUCED CHLOROSIS

- Deficiency in high pH-calcareous soils
- Conditions aggravated by:
 - -High HCO₃⁻ causing increased pH
 - Immobilizes Fe
 - $-NO_3$ -N rather than NH₄-N
 - Poor aeration $CO_2 \Rightarrow HCO_3^-$

MORE ON CHLOROSIS

- Ca & Fe compete for same binding site on chelating compound
- Fe-phosphates may ppt external to root. Excess P interferes with mobility of active Fe.
- High Mn may compete for enzymes.
- What other factors induce Fe-chlor?

Fe FERTILIZERS

- Fe salts not effective in soil because of conversion to oxides.
- Foliar FeSO₄ superior to chelates.
- Fe chelates more effective in soil than foliar.
- NH₄ fertilizer may increase Fe abs.