
BIOL 695

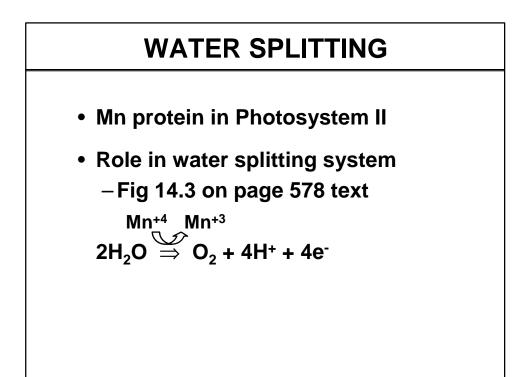
MANGANESE

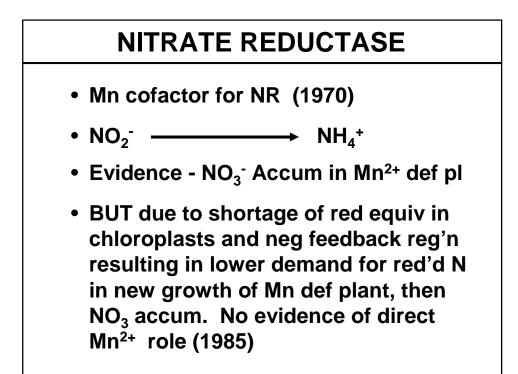
Chapter 14 MENGEL et al, 5th Ed

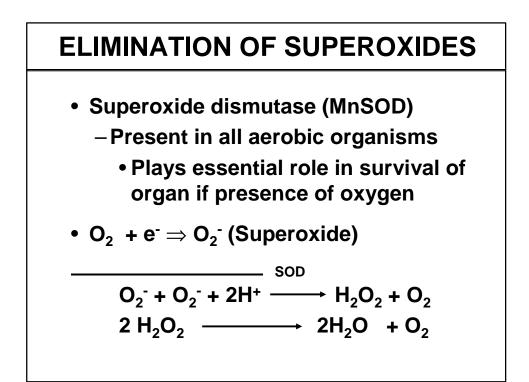
UPTAKE

- Mn²⁺ lower uptake than Ca²⁺ & Mg²⁺
- Active
- Mg²⁺ depresses Mn²⁺ uptake
- Mn²⁺ depresses Fe²⁺ uptake
- Plants supplied with NH₄-N took up more Mn²⁺ than NO₃-N fed plant

Mn RELATION TO OTHER IONS


- Ionic radius of
 - -Mg²⁺ 0.065 nm
 - -Mn²⁺ 0.075 nm
 - -Ca²⁺ 0.099 nm
- Mn²⁺ can substitute or compete with these ions.


Mn CONTAINING ENZYMES


• Mn²⁺ activates IAA Oxidase

IAA Oxidase

- Reduced IAA Oxidized IAA (Active) (Inactive)
- Mn deficient plants have toxic levels
 of IAA
- "Mn toxicity may relate to IAA defic"

Mg CAN SUBSTITUTE FOR Mn

- Mg²⁺ 50 100 times > Mn²⁺ in cell
- Mn²⁺ necessary in cases where more effective than Mg²⁺
- Activation of chloroplast RNA polymerase req's 10 x greater Mg²⁺ than Mn²⁺

ABSOLUTE REQ'MT FOR Mn²⁺

- Bundle sheath chloroplasts of C4 plants where oxaloacetate acts as carbon shuttle.
 - Decarboxylation catalyzed by
 - PEP carboxykinase which has absolute requirement for Mn²⁺

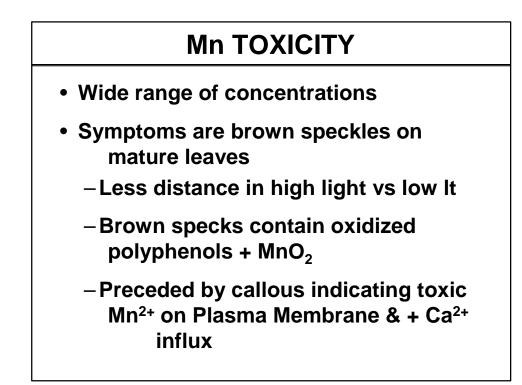
Mn²⁺ ROLE IN O₂ EVOLUTION

- Decrease in Mn²⁺ only small effect on chlorophyll or leaf dry wt.
- But O₂ evolution drops by 50%
- When Mn def becomes more severe
 - Chlorophyll content decreases & not reversible.
 - -Caused by inhib of lipid synthesis

CHO & LIPIDS

- Mn deficiency has severe effect on non structural CHO
 - -Largest effect in roots
- Depress of lipid content in chloroplasts
 Role of Mn in synthesis of lipids
 - -Coupling of C₂ units
 - -Mn increases lipids, reduces protein
 - -Shift from linoelic to oleic

CELL DIVISION & EXTENSION


- Cell elongation responds better to Mn than cell division
 - Mn def plant roots have small nonvacuolated cells
- Inhibition of root growth in Mn defic plants caused by lack of CHO
- Mn essential to root growth

Mn DEFICIENCY

- Soils derived from material low in Mn
- Highly leached tropical soils
- Common in high pH soil
- Containing free carbonates
 Soils high in OM esp prone to defic
- Corrected by soil or foliar MnSO₄ app
 - -Soil treatment is best

Mn DEFICIENCY SYMPTOMS

- Soaking seed in MnSO₄ improves growth in Mn deficient soils.
- Peaches are susceptible to low Mn
- Critical Mn conc 10 20 ppm leaves
- Interveinal chlorosis in younger leaves of dicots
- "Gray speck" on older cereal leaves

Mn TOXICITY INDUCES DEFIC

- Beans interveinal chlor & necrosis

 Combined with deformed young leaves, typical of Ca deficiency
 - -Induced deficiencies of Fe, Mg, Ca
 - Mn toxicity countered by
 - -High supply of Mg

INDUCED Ca DEFICIENCY

- Acropetal Ca transport mediated by basipetal IAA transport.
- Toxic Mn levels ⇒ IAA oxidase ⇒ Less IAA ⇒ Less Ca transport
- Aggravated by high light intensity
 - -Loss of apical Dominance
 - "Witches broom"

STEAM STERILIZATION

- Of media is opposite reaction
 - It is a reducing reaction
 - Steam kills oxidizing bacteria
 - Media under water as steam condenses & oxygen is lost
 - Decaying OM Sucks up the O₂
 - Mn analysis: 80 ppm in greenhouse media. Mn²⁺ in media highly toxic