BIOL 695

PLANT GROWTH and CROP PRODUCTION

CHAPTER 5 Mengel et al., 5th Ed

ES	SENTIAL GROWTH STAGES
• Ge	ermination Initiated by $H_2O \& O_2 \& Phytohormones$ Utilizes CHO and amino acids from seed
• Ve	getative Stage Older leaves supply younger Major addition of biomass
• Re	productive Stage Flower initiation then pollination
• Ma	aturity Photosynthates mostly to storage tissue

ROOT CROP NUTRITION MANAGEMENT

- Tuber initiation produced by hormones - ABA promotes; GA inhibits
 - ABA/GA ratio controls tuber setting
- Continuous supply of N ⇒ Iow ABA/GA
 regrowth of tubers (text, Plate 5.7)
- Decline in N supply ⇒ increases ABA
 normal tuber production
- Tuber filling also related to CHO supply
- N management:
 - vegetative stage high N
 - tuber stage declining N; maintain P, K

- Prior to fruit setting, need rich vegetative growth to build up food reserves
- Fruit setting related to phytohormones (ABA/IAA) and probably nutrition
- Fruit ripening \Rightarrow food, nutrition (Ca)
- Temperature & light effects less control
- Alternance perennial fruit crops that tend to bear fruit only every 2nd season; especially noted in apples

GROWTH REGULATORS

• Synthetic plant hormones ("bioregulators")

TIBA - 2, 3, 5-triiodobenzoic acid - inhibits auxins

- CCC chlorocholine chloride - inhibits gibberellins
- Objectives:

decrease stem elongation (why?) increase (extend) reproductive growth decrease senescence & abscission

NET ASSIMILATION RATE (NAR)

• Net assimilation =

(Photosynthetic Prod'n - Respiration)

- Difference between C3 & C4 plants:
 - no photorespiration in C4 plants
 - C4 plants show positive NAR at very

low CO_2 levels around leaf (5x < C3)

NET ASSIMILATION RATE (NAR)

- High plant density:
 - more mutual competition for H₂O, nutrients, light
 - increased fungal diseases, lodging, shading (<NAR)
- Light may often be limiting factor
 - decreased photosynthesis
 - increased respiration

CO₂ ASSIMILATION & CONCENTRATION AND LIGHT INTENSITY

- Atmospheric CO₂ is increasing
- Most plants increase production with increased CO₂
- Could do for greenhouse prod'n but ??
- Interaction of CO₂ & light with respect to assimilation (see Text, Fig 5.23)
- Increased CO₂ would not increase yield if light is limiting

CO₂ ASSIMILATION & CONCENTRATION AND LIGHT INTENSITY

- Degree of utilization of radiation energy by plants is low (~15%); less for annual crops
- C3 plants utilize ~_2.7% of available E
- C4 plants utilize ~y4% of available E
- Selectively bred plants have increased efficiency

YIELD CURVES

Mitscherlich - equation

$$y = A (1 - 10^{-cx})$$

- y = yield A = max yield c = integration constant x = growth factor
- Relationship not simple
- Cannot precisely determine growth factor
- Can obtain relative information

- Universal application of M-equation depends on obtaining asymptotic growth curves (N - Fig 5.26)
- Due to complexity of factors, many yield curves are unlike Fig. 5.26
 - Fig 5.29 for N for rice;
 - Fig 5.31 for grain and currency yield

NURITION & PLANT QUALITY

- Influence on tuber
 - starch content \Rightarrow K⁺
 - starch quality \Rightarrow P
 - tuber blackening ⇒ Fe-chlorogenic acid sufficient K⁺ ⇒ citric acid production ⇒ reduced blackening (WHY?)
- P sufficient levels \Rightarrow reduced sensitivity to mechanical damage
- May be applicable to other tuber crops ??

NURITION & PLANT QUALITY

Section 5.4.3 Grain crops Section 5.4.4 Oil crops Section 5.4.5 Forage crops

Read; not on test

NURITION & PLANT QUALITY

VEGETABLES & FRUITS

- Plant nutrients such as P, K, Mg, Cl, S, trace metals are also essential for animal species
- N is exception not essential for animals
- NO₃⁻ could be problematic if high levels are consumed

NURITION & PLANT QUALITY

- NO₃⁻ ⇒ NO₂⁻ during storage & processing of fruit & vegetables
- $NO_3^- \Rightarrow NO_2^-$ in stomach
- NO₂⁻ increases risk of formation of nitrosamines (carcinogenic)
- NO₃^{-/} NO₂⁻ ingestion can cause NO₂⁻ to react with hemoglobin to form methemoglobin
- Blood cannot carry O₂ and infants will suffocate: "Blue Baby Syndrome"

NURITION & PLANT QUALITY

- NO₃⁻ content: manage by application rate, timing & amount in soil
- NO₃⁻ sources: mineral fertilizers & O.M. - use care with slow-release fertilizers
- Light intensity is factor in NO₃⁻ reduction
- Vitamins, carotene affected by N, K
- Fruit size, color, shape, flavor, taste affected by K, P, Ca

