
BIOL 695

FERTILIZER APPLICATION

CHAPTER 6 MENGEL et al, 5th Ed

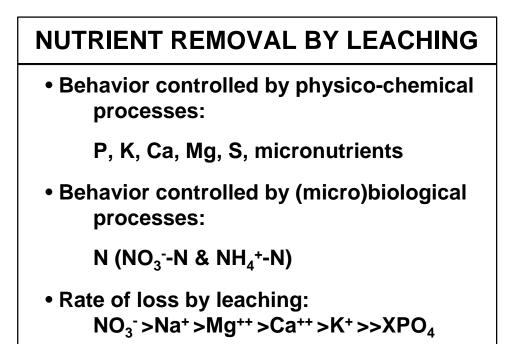
DIRECT REASONS FOR NUTRIENT LOSS

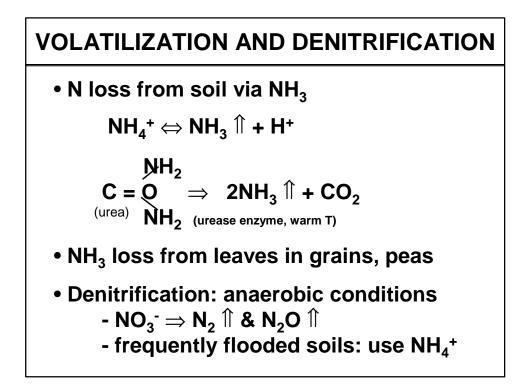
- Excessive application
- Wrong time
- Wrong place
- Wrong material

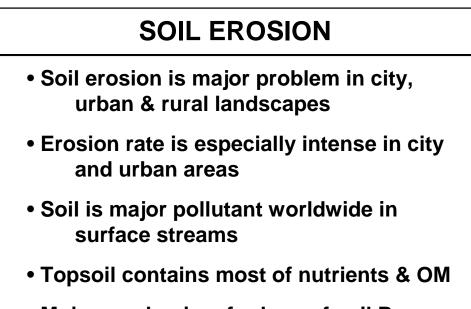
INDIRECT REASONS FOR NUTRIENT LOSS

- Leaching
- Erosion
- Volatilization
- Denitrification
- Fixation by soil (lesser extent)

NUTRIENT REMOVAL BY CROPS


- Varies with crop type, species, portions
 harvested
- Grain: 70% N, 70% P, 25% K of total aerial portion in cereal crops
- "Improved species" gen increased uptake
- One ton dry matter, leaves & stems:
 - 20 kg N
 - 20 kg K
 - 2 kg P


NITROGEN REMOVAL EXAMPLE


- Data from San Joaquin Valley
 - Vegetables: 43%
 - Low density tree fruits & nuts: 19%
 - Grapes: 37%
 - N removal related to production
 - P & K recovered for several years, N recovery confined to year of application

NUTRIENT REMOVAL BY LEACHING

- Depends upon nutrient & soil type (What do we mean by soil type?)
- High leaching potential with high leaching rate
- Sand > silt loam, loam > clay
- N lost during one year
- P,K lost over several years P - becomes unavailable
- Ca, Mg generally lime each 4-5 years

Major mechanism for loss of soil P

HISTORICAL FOLIAR ABSORPTION

- Fe and S absorbed from smelting
- SO₂ from air pollution
- Occult precipitation from fog – S, N, Mg, Fe, Cu
- NH₃ from atmosphere

NUTRIENT SUPPLY BY PRECIPITATION AND FROM ATMOSPHERE

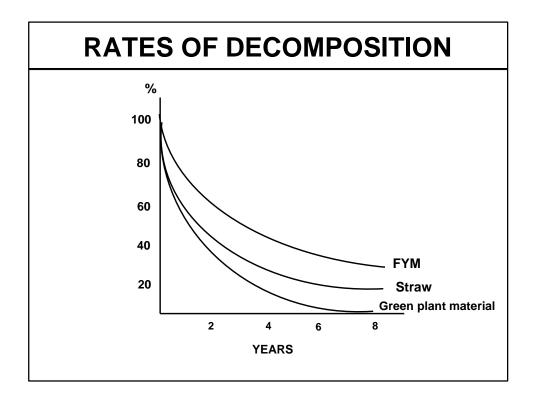
- Near oceans: Na⁺ and Cl⁻
- Widespread areas: S and N
 - S may provide sufficient amounts for crops in many areas
 - Forms: H₂SO₄ & HNO₃
 - Soil acidification & plant effects

MINERAL FERTILIZERS

- Most rapidly available forms of nutrients
- Simple salts or treated forms of salts KCI, Ca(NO₃), KNO₃ superphosphate (rock phos + H₂SO₄)
- Analysis: N K₂O P₂O₅ i.e., 10-10-10
- Generally wish to decrease solubility of N
 and increase solubility of P forms

PREVENT LOSS OF NITROGEN

- Treated fertilizer to reduce potential loss (SLOW RELEASE FERTILIZER)
- Control of biol popul responsible for nitrification. Nitrapyrin treatment
 - Nitrosomonas
 - Nitrobacter
- Multiple applications throughout growing season

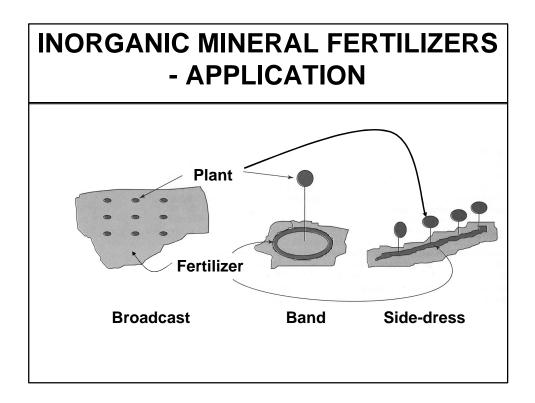

SLOW RELEASE ACCOMPLISHED

- Low soluble material
 - $-Mg(NH_4)_2PO_4$
 - -Isobutylidene diurea
- Coating such as
 - -Plastic polymers
 - -Sulphur

ADVANTAGES OF CONTROLLED RELEASE

- Efficient released over long time
- Decreased leaching because availability attuned to plant need.
- Toxicity risk less. Lack of burning from large application.
- Long lasting constant supply

"organic"	%N-P-K	Availability
cow manure	2-3-3	rapid
chicken manure	2-2-2	rapid (can burn)
compost	1-1-1	slow
bone meal	1-15-1	slow
biosolids	3-2-2	moderate
Many of these are a highly variable		lurries which have nutrient) content

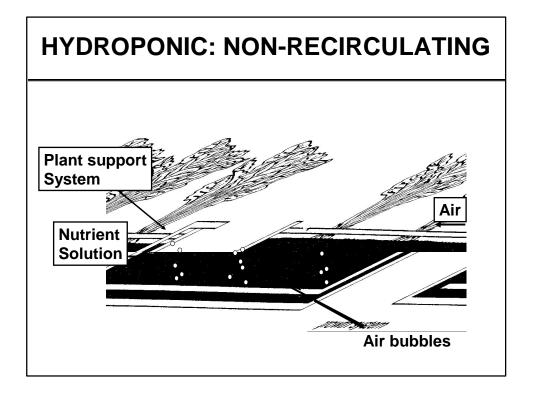


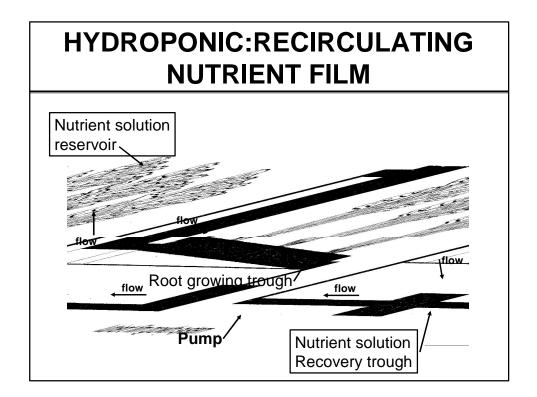
LIQUID FERTILIZERS

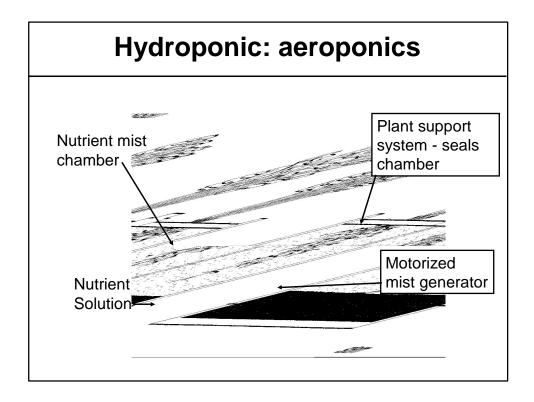
- Aqueous NH₃ (NH₄OH) ~y25% N
- Anhydrous NH₃ not really a liquid
- Liquid urea, NH₄NO₃ solutions
- Urea+ NH₃+ NH₄NO₃ 30% N
- N-P solutions
 - superphosphoric acid + NH_4OH
 - 8-24-0
- N-P-K solutions only low analysis
- Other Soluble mixtures low analysis

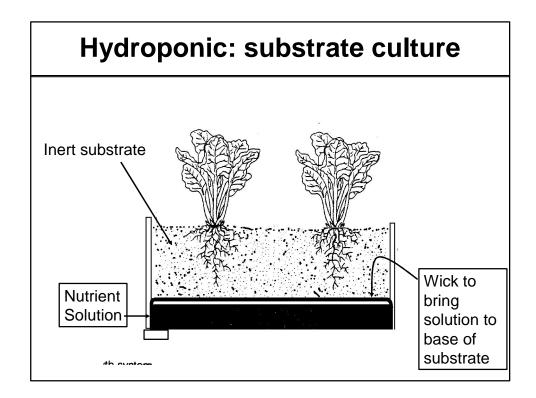
INORGANIC MINERAL FERTILIZERS - APPLICATION

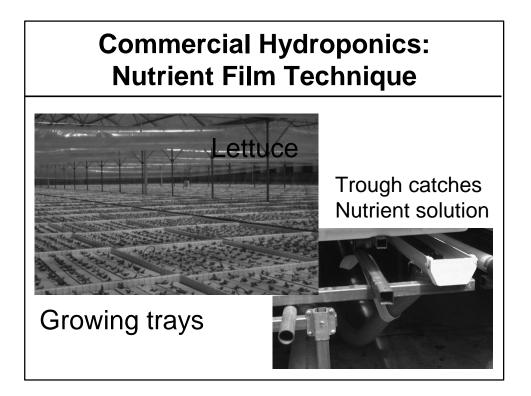
- Dry
 - Broadcast
 - Banding
 - Side-dressing
- Liquid
 - Via irrigation lines
 - Fertigation, Chemigation
 - Foliar spray concentrations more critical

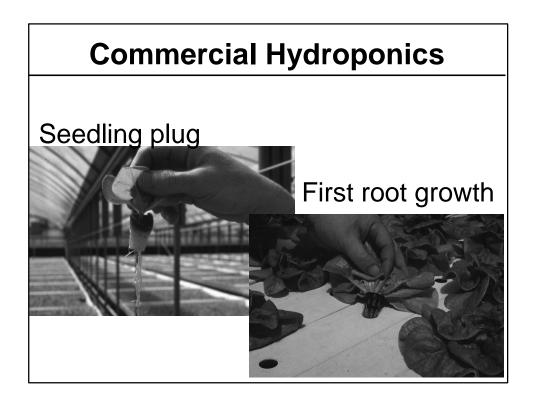


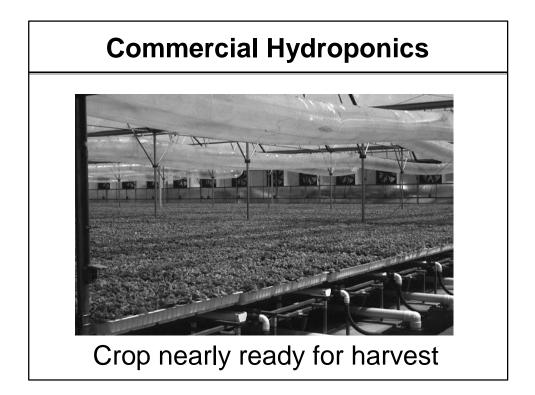

HYDROPONIC SOILESS CULTIVATION

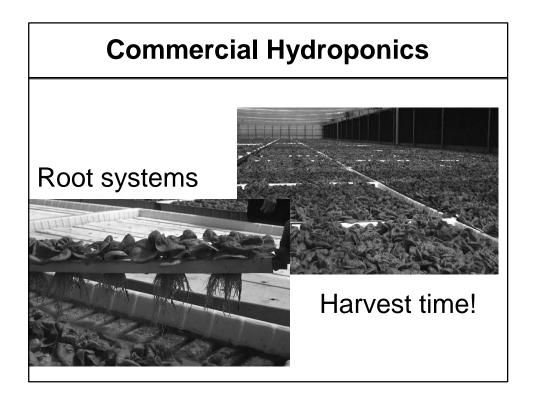

- Demonstrated in early 19 th century
- Best known nutrient solution is Hoagland's (Hoagland & Arnon, 1950)
- No buffering in solutions, need higher conc's of nutrients
- nutrient concentrations change rapidly
- pH fluctuations can be especially rapid & significant


HYDROPONICS SOILESS CULTIVATION


- need to change solutions often or have large volume per plant
- generally need to provide aeration
- used for high value fruits, vegetables & ornamentals
- substrates such as gravel, rockwool & sand may be used
- technique has greatest use in Europe







RECOMMENDED N FORMS FOR FERTIGATION

- NH₄NO₃
- (NH₄)₂SO₄
- UAN
- Urea
- Not recommended
 - $-NH_3$ and Aqua Ammonia
 - -Ammonium Phosphate

P FORMS FOR FERTIGATION

- Inorganic P
 - H₃PO₄ but soil application is less expensive
- Organic P

K FORMS FOR FERTIGATION

- KCI (Muriate of potash)
- KNO₃
- K₂SO₄

MICRONUTRIENTS-FERTIGATION

- pH 5 6 – EDTA
- pH 7.5 8.5 – EDDHA
- Sulfate salts

CHEMICAL INJECTOR SYSTEMS

- Differential pressure systems – Venturi
- Positive Pressure pump
- Vacuum type injector
- Gravity feed injector

FOLIAR APPLICATION

- Absorption BIG PROBLEM
- 1/3 of Plant Kingdom
- Two phase environment
 - Roots absorb nutrients
 - Leaves fix CO₂
- Evolution Roots ability to fix CO₂
 - Leaves retained solute absorb. ability
 - Basis of foliar fertilization

FOLIAR APPLICATION - 2

LEAF STRUCTURE & COMPONENTS:

- Cuticle
- · Covers entire surface of leaf
 - -Noncellular
 - Outer most layer
 - -Long chain fatty acids & wax
 - Second layer
 - -Cellulose + cutin & wax

FOLIAR APPLICATION - 3

INNER STOMATAL CAVITY:

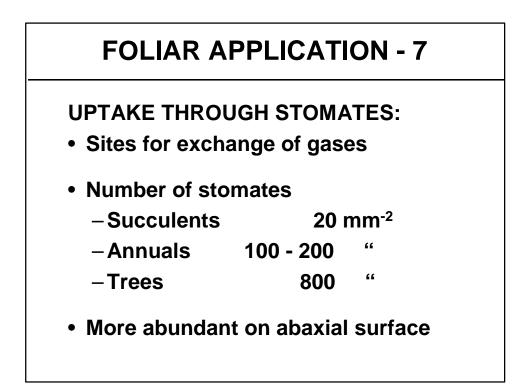
- Cuticular membrane is thinner than outer surfaces
 - -Gas exchange rapid thru stomates

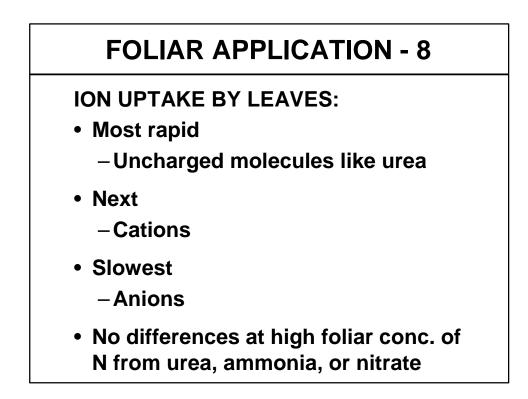
FOLIAR APPLICATION - 4

CUTICLE DEVELOPMENT:

- Continuous deposition epi-cut wax
 - -During growth of leaves
 - -Stops with cessation of growth
- Thus cuticle
 - -Hydrophilic in early growth stage
 - -Hydrophobic with maturity

FOLIAR APPLICATION - 5


CUTIN LAYER:


- Below epicuticular wax
 - -More hydrophilic
 - Thus pathways for minerals
 - Water goes through
 - -Foliar absorption
 - -Foliar transpiration

PORES THROUGH CUTICLE:

- Diameter < 1 nm
- Density 10¹⁰ pores cm⁻²
- Permeable to urea
 But not FeEDTA WHY?

Positive Correlation Between Number of Stomata & Uptake

- Larger # of pores around stomates and trichomes
 - -Also pores have diff permeability
 - -Maybe chelate uptake

Unlikely That Solutes Enter Through Open Stomates

- Internal cuticle covers surface of internal cavity
- Ion uptake higher at night when stomates are closed.

UPTAKE BY LEAF CELLS

- Analogous to root cells: Leaf disc studies
 - K, Na, Rb, Fe, Mn, PO₄, Cl uptake
 - -Inhibited by metabolic inhib.
 - -Increased by light »ACTIVE or PASSIVE?
- Root & leaf cell protoplasts = same

SURFACTANTS

- Reduce surface tension -
 - more contact = more absorption
 - Except in arid areas
- Stein adjuvants – Glycerol & propylene glycol
- pH also important optimal pH varies with species and with chemical

RECOMMENDED NUTRIENT RATIOS

See Handout from U Mass - PLSOIL 120

FERTILIZER APPLICATION & ENERGY CONSUMPTION

Table 6.22 Energy output/input ratio ofcrop and animal products (edible outputs)

FERTILIZER APPLICATION & ENERGY CONSUMPTION

- In USA, 1 person produces food for 50 others
- In UK, agriculture uses 4% of total energy consumption
- Crop production is one of few production processes with pos. energy balance
- Some plant species are suitable for "energy harvesting" - eucalyptus trees, hybiscus shrubs, Napier grass, sugar cane, cassava
- Euphorbiaceae spp contain latex

DRINKING WATER & FERTILIZERS

- Major problem is from nitrate methaemoglobinemia (Ch 5 notes)
- Limits in drinking water: WHO - 50 - 100 ppm EEC - 50 ppm US Publ Health Serv. - 45 ppm
- Leaching losses about 5-10% of applied

EUTROPHICATION & FERTILIZERS

- Eutrophication is natural process, esp in closed water bodies
- Eutrophic lake "good food" rel shallow, rich in OM & nutrients, very productive, little O₂
- Oligotrophic lake "few food" gen. deeper, steeper sided, narrow littoral zone, poor in nutrients, esp. P, Ca, N

EUTROPHICATION & FERTILIZERS

- Deep anaerobic zones little circulation or mixing, high prod'n of algae, etc. at surface provides much OM to anaerobic zone (upper Ches. Bay)
- Productivity limiting factor very often P
 - P reaches surface waters via erosion
 - P from detergents, urban waste has decreased
- N leaching of NO₃ can be sig source
- POTWs are sig. source of N & P (improving)

EUTROPHICATION & FERTILIZERS

Some farms, nurseries and golf courses:

- Have surface impoundments to retain surface runoff
- Utilize water hyacinths to reduce nutrient content of water prior to discharge (VA Tech Hort Station Research Project - Laurie Fox)

INORGANIC & ORGANIC FERTILIZERS

- Plants take up inorganic forms of N, P, K, S, etc. regardless of initial form
- Major difference in organic & inorganic sources is availability rate
- Organic fertilizer availability depends upon metabolic activities of soil organisms, this depends upon soil conditions, T etc
- Some organic sources may release most N late in season (rem Ch 5)

INORGANIC & ORGANIC FERTILIZERS

- OM influence on soil properties is important
- Plant growth is most important source of soil OM
- Need high rates of fertilization for opt. prod'n
 - organic sources rarely provide enough
 - application rate of some organics limited by N content (biosolids, manures)
- Need wise management of all fertilizer use

SUPPLEMENTING NUTRIENTS

- In most soils, only N, P, K are added
- In greenhouse mixes (completely artificial media without any soil) complex mixtures of many nutrients are added
- In hydroponics (water culture) all essential elements must be provided

CHANGING NUTRIENT AVAILABILITY

- How much nutrient is in the soil ?
 How change? add fertilizer
- Soil pH (acidity vs. alkalinity)
 - How change? add lime (Ca & Mg) or sulfur
- How much organic matter is in soil ?
 - How change? add O. M.