SOIL CLAY MINERALS

• Size = < 2μm; many are colloidal (< 1 μm) in size
• Layered silicate minerals (most important group)
• Have high charge-density to mass ratio
• Are reactive; adsorb charged substances; colloid behavior and transport
 • Basic building blocks:
 • Silica tetrahedron
 • Aluminum octahedron
• Bond sharing is key to structural properties
• Most bond sharing is within layers
SILICA TETRAHEDRON

Two tetrahedral units - sharing of Si and most O

ALUMINUM OCTAHEDRON

Two octahedral units - sharing of Al and most OH
TETRAHEDRON PLUS OCTAHEDRON

OH
Al
Si
O

(structure of kaolinite)

KAOLINITE CLAY STRUCTURE

Si sheet
Al sheet
Si sheet
Al sheet

I:I type clay - kaolinite
HYDROGEN BONDING IN KAOLINITE

Octahedron ——— Tetrahedron

H-bonding
(No shrink-swell)

Octahedron ——— Tetrahedron

MONTMORILLONITE CLAY STRUCTURE

Si sheet
Al sheet
Si sheet
Si sheet
Al sheet
Si sheet

2:1 type clay - montmorillonite
MONTMORILLONITE CLAY STRUCTURE

- Swelling capacity: interlayer distance doubles (9.6 to 21.4 Å)
- From dry to wet: 5 X volume increase

ILLLITE CLAY STRUCTURE

K⁺ between layers held tightly; Holds layers together
THREE-LAYER PHYLLOSILICATES

- Cation substitution in octahedral layer
 - Dioctahedral: (gibbsite-type layers) two cations of M^{3+} per half-unit cell
 - Kaolinite; smectite group - montmorillonite, beidellite, nontronite; muscovite; illite
 - Trioctahedral: (brucite-type layers) three cations of M^{2+} per half-unit cell
 - serpentine group; vermiculite group; smectite group - saponite, hectorite; biotite

WEATHERING PRODUCTS OF PRIMARY MINERALS & FORMATION OF CLAYS

(Fig. 9.4)
OCCURRENCE OF COMMON CLAY MINERALS

Note from previous diagram (Fig. 9.4)

• Silicate clays are formed in soils by two processes:
 • Alteration:
 - minerals such as muscovite are altered by weathering processes
 - resulting colloid is a 2:1 type clay
 • Recrystallization:
 - minerals are completely broken down and new minerals are formed by recrystallization of the weathering products
• Mixed-layer and interstratified clays are very common due to nature of alteration processes

OCCURRENCE OF COMMON CLAY MINERALS

Effect of rainfall on soil pH.

Degree of weathering intensity increases with decrease in soil pH
CLAY MINERAL FORMATION FROM QUARTZ- & FELDSPAR-RICH ROCKS

![Graph showing clay mineral formation from quartz- & feldspar-rich rocks.](image)

CLAY MINERAL FORMATION FROM FE- & MG-RICH IGNEOUS ROCKS

![Graph showing clay mineral formation from Fe- & Mg-rich igneous rocks.](image)
CLAY MINERAL FORMATION FROM TWO DIFFERENT GROUPS OF ROCK TYPES

Quartz- & feldspar-rich rocks (Fig. 9.7a)

Fe- & Mg-rich igneous rocks (Fig 9.7b)

CLAY MINERAL EQUILIBRIA & PHASE DIAGRAMS

Assumptions when using phase diagrams

1. Mineral/aqueous-solution phase diagrams assume chemical equilibrium can be obtained among all phases shown

2. The phases plotted are assumed to be pure & fixed in composition, and to correspond to the phases being considered in the natural system of interest

3. Accurate & meaningful thermodynamic data are available for all the solids and aqueous species being considered

4. In many such diagrams, Al is assumed insoluble and conserved within reactant & product solid phases
STABILITYFIELDS
OF SELECTED
CLAY MINERALS

A common, simple
phase diagram of soil
minerals

Remember previous
assumptions

(Fig. 9.8)

STABILITYFIELDS
OF SELECTED
CLAY MINERALS

Previous stability
diagram including
compositions of
some natural waters

What is the utility of
plots such as this?
STABILITY FIELDS OF SELECTED CLAY MINERALS

Points are from analysis of groundwaters from various rock types.

Most water analyses fall within the kaolinite field.

STABILITY FIELDS OF SELECTED CLAY MINERALS

Points are from analyses of waters in contact with clays.

Data suggests equilibrium between the different pairs of clays.
RELATIVE ABUNDANCE OF PRIMARY AND SECONDARY MINERALS

- Primary minerals: quartz, feldspars, micas, resistant minerals, etc.
- Secondary minerals: phyllosilicate clays, Al, Fe, Mn oxides, non-crystalline aluminosilicates

Particle Size (mm):
- Sand
- Silt
- Clay

Time

Relative Amount