STATUS OF HAUSTRORIUM

Our banner still refers to the International Parasitic Seed Plant Research Group, but since the meeting in Nantes and creation of the new International Parasitic Plant Society (IPPS) we expect this newsletter in due course to become an organ of that new society.

We are pleased to acknowledge that Old Dominion University is continuing to support the printing and mailing of Haustrorium.

Many readers are already receiving Haustrorium by Email. If any more of you wish to do so, please let Chris Parker know (Email address on the last page). Bear in mind that having an electronic version of the newsletter enables you to ‘search’. If you cannot receive Email, or for any reason wish to go on receiving hard copy, you will continue to receive by airmail. The web-site version of this issue and past numbers of Haustrorium are now available on http://web.odu.edu/haustorium, and on the IPPS site – http://www.ppws.vt.edu/IPPS/.

COST ACTION 849 – PARASITIC PLANT MANAGEMENT IN SUSTAINABLE AGRICULTURE

The European Union-funded COST Action 849 ‘Parasitic Plant Management in Sustainable Agriculture’ held a successful meeting at Bari, Italy from 18-20 October, 2001. There were separate meetings for each of the Working Groups 1, 2, 3 and 4 and finally a Management Committee Meeting under the Chairmanship of Diego Rubiales and Danny Joel. About 50 papers were presented for discussion and a set of abstracts is to be published shortly. It is hoped to list these in the next issue, together with brief reports from the Working Groups.

Further meetings are planned for Working Groups 1 and 3 (Biology and Ecology, and Resistance) in Sofia, Bulgaria in March 2002 and for WGs 2 and 4 (Biological Control and Integrated Control) and the Management Committee in Germany in September.

GR24 AND OTHER SYNTHETIC STIMULANTS

GR24 is a synthetic germination stimulant that is widely used in research on the parasitic weeds Striga and Orobanche. Binne Zwanenburg at the University of Nijmegen in The Netherlands prepares this stimulant, but production costs are substantial. He advises us that GR24 is available for purchase - minimum quantity 100 mg, standard quantity 200 mg - for a price of Euro 75 per 100 mg or Euro 150 per 200 mg. The payments will be to a non-profit foundation and are not therefore subject to VAT. If you are interested in obtaining GR24, please contact Binne Zwanenburg by e-mail Zwanenburg@sci.kun.nl.

Binne Zwanenburg also reports that there have been encouraging field tests with the related compound Nijmegen-1 and that other
Nijmegen products are also under development. We congratulate Binne on these practical products of his fundamental work on germination stimulants and look forward to further detail of these developments in future issues of Haustorium.

Striga in Nusa Tenggara Province, Indonesia

Striga is known to occur in Indonesia and is included in the Indonesian Quarantine Service list of prohibited weeds. On the more developed islands of Java and Sumatra *Striga asiatica/lutea* is mentioned more as a curiosity than as a weed of economic importance.

When conducting an evaluation of the Nusa Tenggara Upland Farming Systems Project *Striga* was seen to be a major weed of both maize and sorghum crops in the Belun and Kefa districts of West Timor (Laycock and Bambang Murolenono, 1999). Unconfirmed reports indicate *Striga* also occurs near Kupang and Soe, also on the island of Timor. Photographs taken by agricultural staff strongly indicate *Striga* is a weed of sorghum on the island of Sumba between the towns of Waingapu and Melok.

Striga plants were 25 to 50 cm when flowering. Flowers were 1 to 1.5 cm long and usually a pale purple to pink colour. However a few plants associated with sorghum had white flowers and others varied from creamy and pink off whites to pale purple in both sorghum and maize. Plants were erect and well branched. The calyx had five ribs, eliminating *S. asiatica*. Preliminary identification by Mr Chris Parker indicates the species to be *S. curviflora* (see note below) but other species may also be present.

At a government rice seed multiplication farm smaller, (15-30 cm), erect, sparsely branched *Striga* plants with deep magenta flowers were found growing on wild grasses, *Dactyloctenium* and/or *Paspalum conjugatum*. Conditions are favourable for *Striga*. Soils are generally well drained and of low fertility, with a pH near neutral. They are often shallow in valleys and become rocky as one goes up slopes to the hills: farmers often plant on slopes to reduce weed growth. Both soils and rainfall vary considerably within short distances. Rainfall is irregular within and between seasons, ranging from less than 700 mm to more than 2,000 mm per annum. The number of wet days and length of rainy season also vary considerably. One to two crops a year are "normal", with occasionally three on the best land in good years.

One to three crops are grown in a year. Main season crops are maize, sorghum, greenbeans and groundnuts, planted in December and January. *Striga* grows every year in this season. Maize and greenbeans are grown in the second season and planted in March to April. When rains are good *Striga* is a problem, but when rains are poor there is little or no *Striga*. A third cropping season is sometimes possible in a few areas. Here maize, the sole crop, is planted in July to August. This season is hot and dry with little rain. There is no *Striga*.

A variation in host preference was indicated. Local maize was more heavily parasitised than newly introduced maize and in general few *Striga* plants were observed in sorghum. However individual sorghum fields did have heavy *Striga* infestations. Flowering *Striga* shoots were concentrated at, or within 10 cm of the planting station. *Striga* regrowth was apparent between rows in areas weeded with a local variation of the Dutch hoe.

Striga was present in virtually all maize fields near to the road north from Besikama to Halilulik (about half way towards Atambua). Plants were weakened, sometimes dead or with almost no grain. The maize was still in the grain filling stage.

Cereal crops are infected with *Striga* in the first, and to a lesser extent in the second wet
season. There were no reports of Striga in the third season, where the cereal grown is maize, rather than the more drought tolerant sorghum. There is no report of Striga in a wet dormant condition or that soil temperatures are sub-optimal for the germination and or attachment development stages. The cropped area is greatest in the first, and least in the third, season.

The majority of local farmers, (25 out of 29), interviewed along the roadside were aware of Striga and associate it with weak plants and reduced yields. However four farmers were unaware of any relationship between Striga and poor crop growth. They further associated Striga with critical land, that is land which has been "intensively cropped for a long time" and which is low in fertility. Rested land had little or no Striga.

Ministry of Agriculture Staff are generally unaware of the presence of Striga and its associated reductions of crop yield in this district. Farmers recognise the weed and have associated it with poor crop vigour and low yields. Interestingly, interviewed farmers attributed crop ill health and death to insects rather than to Striga. This was despite the association of flowering Striga with weak plants.

Striga is not a recent introduction to the area. Farmers identifying Striga said it had been around for as long as they could remember. Using historical events, Striga was present before the fall of Sukarno and the abortive communist coupe in 1965. This raises a number of questions for future strategies in cereal production and Striga management in this area: - why is the Striga problem largely unknown to, and unreported by government officials who make monthly returns of farmer problems to Jakarta? - how widespread is Striga? - is the area of Striga increasing? - is the Striga problem increasing in severity? - is Striga being spread in seed from the government seed farm?

Follow-up is required to first identify Striga infested areas and associated crops and second to positively identify the Striga species present. Establishing whether or not the area of Striga infestation has increased in the recent past is also necessary, particularly given the increase in land use pressure. The farming systems programme from the Agricultural Institute for Adaptive Technology at Naibonat is ideally placed to look at cultural ways to minimise the impact of Striga given it has a sub-station in the area. There is also the question of whether or not Striga is present in the newly independent country of Timor. March and early April are appropriate times for field inspection of Striga.

Reference:

Derek Laycock, Jl. Pahlawan Revoulusi A-11, Pondok Bambu, Jakarta 13430, Indonesia. laycock@attglobal.net

IDENTIFICATION OF SOME SOUTH-EAST ASIAN STRIGA SPP.

In the course of helping to determine the Striga specimens collected in West Timor (see note above) it became apparent that the brief information on ‘Additional species occurring in Australia and Southeast Asia’ in Parker and Riches (1993) was misleading. Reference to the original descriptions by Bentham (1869) in Flora Australiensis Volume IV Stylideae to Pedalineae confirms that each of the three species, S. multiflora Benth., S. curviflora Benth. and S. parviflora Benth. has a 5-ribbed calyx. However, in no case is the upper lip of the corolla longer than the lower. Flower colour is not clearly indicated and does not appear to be a reliable character.
Some workers believe that the distinctions made by Bentham are not sound and that further work could show that a single polymorphic species is involved, but on the basis of Bentham (1869), the following is a revised summary of these three species to replace that on p. 18 of Parker and Riches (1993):

Striga curviflora Benth. Robust, often over 30 cm high. Calyx 5-ribbed, 6 mm long; corolla 8-10 mm long with lower lobes 6-8 mm, upper much shorter, 2-3 mm, slightly notched and often recurved. Flower colour variable.

Striga multiflora Benth. Robust, often over 30 cm high. Calyx 5-ribbed, 4-5 mm long; corolla 6-8 mm long, upper lip more than half as long as the lower, broadly lobed. Flower colour variable.

Striga parviflora Benth. Smaller than the above, up to 20 cm high. Calyx 5-ribbed, 2-3 mm long; corolla 6 mm with lobes very short. Flower colour variable.

Other corrections we would like to point out include:

- p. 4 – authority of *S. hermonthica* should be (Del.) Benth.
- pp. 21, 167-8 – ‘Ramphicarpa’ should be **Rhamphicarpa**.
- p. 23 – in Figure 1.5. formula b) should have O added top right and in c) the ring should be a benzene ring.

We regret any confusion these errors may have caused. We also regret that ‘Parasitic Weeds of the World’ is now out of print. If any readers have spare copies for disposal, they are likely to find a quick sale through the pages of Haustorium.

Chris Parker and Charlie Riches.

PROCEEDINGS OF THE 7TH INTERNATIONAL SYMPOSIUM, NANTES

Proceedings of the 7th International Symposium are no longer available as hard copy but a version on CDRom is now available at a cost of 40 Euros or 40 US$. Please Email your request to ipws@svt.univ-nantes.fr together with postal address, credit card number and expiry date. Those without CDRom facilities, or with serious difficulty over remitting payment should request further advice.

OBITUARY – EDWARD TERYOKHIN

22 May 1932 – 1 December 2001

Readers of Haustorium will be saddened to learn of the death of Professor Teryokhin of the Komorov Botanical Institute in St Petersburg, Russia. Edward was a frequent participant in symposia and workshops where his enthusiasm, quick smile, and love of dancing charmed us. His contributions to parasitic plant biology are many, most notably in the field of plant morphology. One of the last classical plant morphologists, he developed a phylogenetic scheme of haustorial evolution based on extensive observations of species of *Orobanche*. He published one book in English is “Weed Broomrapes” (1997, Ausfsteif Verlag). Professor Teryokhin is survived by his wife and one son. His warmth and friendship will be sorely missed.

Lytton John Musselman and Klaus Wegmann

NOW AVAILABLE ON CDROM

Breeding for Striga Resistance in Cereals

Application of Molecular Markers in Plant Breeding

For a free copy of the CD, please contact:
Dr. V. Mahalakshmi, ICRISAT, Patancheru 502 324, Andhra Pradesh, India; e-mail: v.mahalakshmi@cgiar.org
or
Dr. B.I.G. Haussmann, University of Hohenheim, Inst. 350b, 70593 Stuttgart, Germany, e-mail: haussb@uni-hohenheim.de

WEBSITES

For past and current issues of Haustorium see:
http://web.odu.edu/haustorium

For information on the new International Parasitic Plant Society see: http://www.ppws.vt.edu/IPPS/

For Lytton Musselman’s Plant site see:
http://web.odu.edu/plant

For Dan Nickrent’s 'The Parasitic Plant Connection' see:
http://www.science.siu.edu/parasitic-plants/index.html

For The Mistletoe Center (including a comprehensive Annotated Bibliography on mistletoes) see:
http://www.rms.nau.edu/mistletoe/welcome.html

For on-line access to USDA Forest Service Agriculture Handbook 709 'Dwarf Mistletoe: Biology, Pathology and Systematics' (now out of print), see:
http://www.rmrs.nau.edu/publications/ah_709/

LITERATURE

Adler, L.S. and Wink, M. 2000. Transfer of quinolizidine alkaloids from hosts to hemiparasites in two Castilleja-Lupinus associations: analysis of floral and vegetative tissues. Biochemical Systematics and Ecology 29: 551-561. (Castilleja miniata and C. indivisa have reduced herbivory but no reduced pollination when absorbing alkaloids from host Lupinus spp., apparently because the alkaloids do not reach the nectar.)

Ahmed, N.E., Sugimoto, Y. and Inanaga, S. 2000. Inhibition of Striga hermonthica seed germination using Fusarium solani extracts. Proceedings Twenty-seventh Annual Meeting, Plant Growth Regulation Society of America, August, 2000, p. 246. (Mycotoxins isolated from F. solani, SUD96, found to be active v. S. hermonthica at time of germination but not later.)

Chivinge, O.A., Kasembe, E. and Mariga, I.K. 2001. The effect of different cowpea cultivars on witchweed and maize yield under dryland conditions. Proceedings The BCPC Conference - Weeds 2001: 163-168. (Six cowpea varieties inter-planted within the maize row reduced Striga asiatica numbers and significantly increased maize yield compared with sole-crop maize, while stover yields were similar or somewhat lower. There were no significant differences between cowpea varieties.)

Dor, E., Plakhine, D. and Herschenhorn, J. 2001. Phytopathogenic fungi of the parasitic plant Egyptian broomrape (Orobanche aegyptiaca). (abstract) Phytoparasitica 29: 272-273. (Among species isolated from O. aegyptiaca, Fusarium solani and Macrophomina phaseolina damaged the parasite at all stages, while Rhizoctonia solani did so only at early stages.)
Dubé, M-P. and Olivier, A. 2001. Le *Striga gesnerioides* et son hôte, le niébé: interaction et méthodes de lutte. Canadian Journal of Botany 79: 1225-1240. (A thorough and generally informative review of *S. gesnerioides* in cowpea, but regrettably repeating inaccurate observations concerning inheritance of undesirable characters from resistant line B.301, refuted by B.B. Singh in Haustorium 34.)

Gworgwor, N.A., Ndahi, W.B. and Weber, H-Chr. 2001. Parasitic weeds of North-eastern Nigeria: a new potential threat to crop production. Proceedings The BCPC Conference - Weeds 2001: 181-186. (Surveys suggest that in addition to the widespread *Striga hermonthica* on cereals, *S. gesnerioides* on cowpea, *Alectra vogelii* on cowpea and groundnut, and *Tapinanthes oleifolius* on shea butter-nut, there is significant occurrence of *S. aspera*, *S. densiflora*(?), *Rhamphicarpa fistulosa* and *Buchnera hispida* on cereals. *Cuscuta campestris* is increasingly common but so far only on weeds.)

Haussmann, B.I.G., Hess, D., Omanya, G.O., Reddy, B.V.S., Welz, H.G. and Geiger, H.H. 2001. Major and minor genes for stimulants of *Striga hermonthica* seed germination in sorghum, and interaction with different *Striga* populations. Crop Science 41: 1507-1512. (Studies using *S. hermonthica* populations from Mali, Niger and Kenya suggested that the low-stimulant character in sorghum (vars Framida and IS 9830) was associated with one major recessive gene but affected also by a range of minor genes, especially in the case of the Kenya population.)

Hiei, K. and Suzuki, K. 2001. Visitation frequency of Melampyrum roseum var. japonicum (Scrophulariaceae) by three bumblebee species and its relation to pollination efficiency. Canadian Journal of Botany 79: 1167-1174. (Findings indicate that the effectiveness of pollination by the three species depended on length of proboscis and frequency of visits.)

Holzappel, S. 2001. Studies of the New Zealand root-parasite Dactylanthus taylorii (Balanophoraceae). Englera No 22: 176 pp. (Apparently a fund of detailed morphological and other information on this endangered endemic species, including its germination behaviour and also reviewing the history of previous research. The extended abstract in Weed Abstracts (Vol 50(9) abs. 3176) curiously makes no mention of its hosts.)

Javanbakht, M. and Ghadri, H. 2000. Competitive effect of redroot pigweed (Amaranthus hybridus L.) and broomrape (Orobanche aegyptiaca L.) on potato in greenhouse conditions. (in Iranian) Iranian Journal of Agricultural Sciences 31: 7-17. (Potato growth increasingly reduced by O. aegyptiaca at rates of seed from 20 to 80 mg/pot.)

Labrousse, P., Arnaud, M.C., Serieys, H., Bervillé, A. and Thalouarn, P. 2001. Several mechanisms are involved in the resistance of Helianthus to Orobanche cumana Wallr. Annals of Botany 88: 859-868. (Many valuable data are presented including e.g. resistant genotype LR1, derived from H. debilis showed cell wall deposition and vessel occlusion in the host and cellular disorganisation in the parasite. And much more.)

Lendzemo, V.W. and Kuyper, T.W. 2001. Effects of arbuscular mycorrhizal fungi on damage by Striga hermonthica in two contrasting cultivars of sorghum, Sorghum bicolor. Agricultural Ecosystems and Environment 87: 29-35. (In the absence of S. hermonthica and of other AM fungi, the AM fungi Gigaspora margarita and Glomus clarum increased growth of both sorghum vars. CK60B and S-35. In the presence of Striga the fungi prevented damage from the parasite in S-35 but not in the susceptible CK60B.)

Manschadi, A.M., Sauerborn, J. and Stützel, H. 2001. Quantitative aspects of Orobanche crenata infestation in faba beans as affected by abiotic factors and parasite seedbank. Weed Research 41: 311-324. (Reporting detailed studies of the effects of different densities of O. crenata seed in the soil on faba bean under differing moisture regimes and sowing dates, providing valuable data for modelling purposes.)

violaxanthin and lutein epoxide in the Australian mistletoe *Ameyema miquelii*. Australian Journal of Plant Physiolog 28: 793-800. (‘Results raise a question as to whether lutein and lutein epoxide cycling may provide an auxiliary means of energy dissipation.’)

Mpofu, L.T. 2000. Sorghum and millets in Zimbabwe – production, constraints, and current research. International Sorghum and Millets Newsletter 41: 3. (Noting ‘*Striga asiatica* is also of importance in sorghum and finger millet.’)

Pate, J.S. 2001. Haustoria in action: case studies of nitrogen acquisition by woody xylem-tapping hemiparasites from their hosts. Protoplasma 215: 204-217. (Reviewing studies on *Amyema*, *Lysiana*, *Olayx philanthi*, *Nuytsia floribunda* and *Santalum acuminatum* in Australia, their haustorial anatomy, nitrogen metabolism and transfer from hosts, and more.)

Competition between *Rhinanthus serotinus* and *Heterodera trifolii* on *Trifolium pratense* resulted in much reduced growth of the plant parasite but little effect on the nematode.

Robinson, D.E. and Punter, D. 2001. The influence of jack pine tree and tissue age on the establishment of infection by the jack pine dwarf mistletoe, *Arceuthobium americanum*. Canadian Journal of Botany 79: 521-527. (No confirmation of the previous assumption that infection of *Pinus banksiana* by *A. americanum* increased with tree age or decreased with age of host tissue. Infection primarily related to seed movement and deposition.)

Román, B., Rubiales, D., Torres, A.M., Cubero, J.I. and Satovic, Z. 2001. Genetic diversity in *Orobanche crenata* populations from southern Spain. Theoretical and Applied Genetics 103: 1108-1114. (On the basis of RAPD studies, over 90% of variability was within populations but some small differences were apparent between populations across S. Spain.)

SAA. 2001. Ethiopia. Feeding the Future. Newsletter of the Sasakawa Africa Association, Issue 16, p. 11. (‘SG 2000 has been promoting the use of improved sorghum varieties with genetic resistance to the parasitic weed *Striga* in lower elevation areas with less moisture. Results from the work have been promising.’)

Salonen, V., Vestberg, M. and Vauhkonen, M. 2001. The effect of host mycorrhizal status on host plant-parasitic plant interactions. Mycorrhiza 11: 95-100. (Mycorrhizal infection of *Trifolium pratense* improved growth of the host and of attached *Rhinanthus serotinus*, but mycorrhizal infection of *Poa annua* favoured neither host nor the parasite *Odontites vulgaris*.)

Santos, F. de A. R. dos and Melhem, T.S. 2000. (Ornamentation of the *Croton*-pattern type on pollen grains of Brazilian Scrophulariaceae.) (in Portuguese) Acta Botanica Malacitana 25: 81-92. (Some species of *Agalinis*, and 3 non-parasitic genera, shown to have *Croton*-type retipilate reticulum.)

Shea, G., R. Pratt, S. Lloyd. 2001. Small-seeded dodder (Cuscuta planiflora Ten., syn C. approximata Bab. Also known as red dodder or alfalfa dodder. Weed threat to Western Australia. Fact Sheet. Department of Agriculture Western Australia. (Describes the serious damage to canola crops during the 2001 season in Western Australia. This is the first time that this dodder has caused problems on this crop in Australia. Cuscuta planiflora and C. approximata are not usually considered as synonymous.)

Strong, G.L., Bannister, D.J. and Burritt, D.J. 2001. New Zealand mistletoes have equal or lower capacities for electron transport than their hosts. New Zealand Journal of Botany 39: 171-174. (Studies involved Ileostylus micranthus, Tupiea antarctica, Alepis flavida, Peraxilla colensoi, P. tetrapetala, Korthalsaella linsayi and K. salicornioides.)

Sukno, S., Fernández-Martínez, J.M. and Melero-Vara, J. 2001. Temperature effects on the disease reactions of sunflower to infection by Orobanche cumana. Plant Disease 85: 553-556. (Studies with three populations of O. cumana and 4 sunflower lines suggested that interactions with temperature were complex.)

van Rijn, P.J. 2000. Weed Management in the Humid and Sub-humid Tropics. Royal Tropical Institute, Amsterdam. 234 pp. (Including some very brief mention of parasitic weeds and their control.)

Wrobel, R.L. and Yoder, J.I. 2001. Differential RNA expression of α-expansin gene family members in the parasitic angiosperm Tryphysaria versicolor (Scrophulariaceae). Gene 266: 85-93. (Results suggest that the expansins examined fulfil functions distinct from haustorial development.)

Yoon TaekJoon, Yoo YungChoon, Kang TaeBong, Her Ere, Kim SungHoon, Kim KarSu, Azuma I. and Kim JongBae. 2001 Cellular and humoral adjuvant activity of lectins isolated from Korean mistletoe (Viscum album coloratum. International Immunopharmacology 1: 881-889. (Results suggest that the Korean mistletoe lectin KML-C is a potent immunoadjuvant to enhance cellular and humoral immune responses.

HAUSTORIUM 40 has been edited by Chris Parker, 5 Royal York Crescent, Bristol BS8 4JZ, UK (Email chrisparker5@compuserve.com) and Lytton John Musselman, Parasitic Plant Laboratory, Department of Biological Sciences, Old Dominion University, Norfolk Virginia 23529-0266, USA (fax 757 683 5283; Email lmusselm@odu.edu). Send material for publication to either editor.