

Covalent Bonding: Orbitals

The Localized Electron Model

- Draw the Lewis structure(s)
- Determine the arrangement of electron pairs (VSEPR model).
- Specify the necessary hybrid orbitals.

Valence Bond Theory

• Valence bond theory or hybrid orbital theory is an approximate theory to explain the covalent bond from a quantum mechanical view.

- According to this theory, a bond forms between two atoms when the following conditions are met. (see Figures 10.21 and 10.22)
 - 1. Two atomic orbitals "overlap"
 - 2. The total number of electrons in both orbitals is no more than two.

Hybridization

- The mixing of atomic orbitals to form special orbitals for bonding.
- The atoms are responding as needed to give the minimum energy for the molecule.

Figure 9.1: (a) The Lewis structure of the methane molecule. (b) The tetrahedral molecular geometry of the methane molecule.

Hybrid Orbitals

- The bonding in carbon might be explained as follows:
 - Four unpaired electrons are formed as an electron from the 2s orbital is **promoted** (excited) to the vacant 2p orbital.
 - The following slide illustrates this excitation. (Recall that in the excited state for an element, a ground state electron is promoted to a higher orbital)
 - More than enough energy is supplied for this promotion from the formation of two additional covalent bonds.

Hybrid Orbitals

- One bond on carbon would form using the 2s orbital while the other three bonds would use the 2p orbitals.
 - This does not explain the fact that the four bonds in CH₄ appear to be identical.
 - Valence bond theory assumes that the four available atomic orbitals in carbon combine to make **four equivalent "hybrid" orbitals**.

Hybrid Orbitals

- **Hybrid orbitals** are orbitals used to describe bonding that are obtained by taking combinations of atomic orbitals of an isolated atom.
 - In this case, a set of hybrids are constructed from one "s" orbital and three "p" orbitals, so they are called **sp**³ hybrid orbitals.
 - The four sp³ hybrid orbitals take the shape of a **tetrahedron** (see Figure 10.23).

Orbitals in C in

the CH4 molecule

Orbitals in a

free C atom

using the VSEPR model.

A Problem to Consider

- Describe the bonding in H₂O according to valence bond theory. Assume that the molecular geometry is the same as given by the VSEPR model.
 - The Lewis formula for H₂O is

A Problem to Consider

- Describe the bonding in H₂O according to valence bond theory. Assume that the molecular geometry is the same as given by the VSEPR model.
 - From this geometry, **determine the hybrid orbitals on this atom**, assigning its valence electrons to these orbitals one at a time.

A Problem to Consider

- Describe the bonding in H₂O according to valence bond theory. Assume that the molecular geometry is the same as given by the VSEPR model.
 - Note that there are four pairs of electrons about the oxygen atom.
 - According to the VSEPR model, these are directed **tetrahedrally**, and from the previous table you see that you should use **sp³ hybrid orbitals**.

A Problem to Consider

- Describe the bonding in H₂O according to valence bond theory. Assume that the molecular geometry is the same as given by the VSEPR model.
 - Each O-H bond is formed by the overlap of a 1s orbital of a hydrogen atom with one of the singly occupied sp³ hybrid orbitals of the oxygen atom.

Figure 9.9: An orbital energy-level diagram for sp^2 hybridization. Note that one *p* orbital remains unchanged.

Figure 9.14: When one *s* orbital and one *p* orbital are hybridized, a set of two *sp* orbitals oriented at 180 degrees results.

Figure 9.22: (a) The structure of the PCI5 molecule. (b) The orbitals used to form the bonds in PCI5. The phosphorus uses a set of five dsp3 orbitals to share electron pairs with sp3 orbitals on the five chlorine atoms. The other sp3 orbitals on each chlorine atom hold lone pairs.

Hybrid Orbitals

- Note that there is a relationship between the type of hybrid orbitals and the geometric arrangement of those orbitals.
 - Thus, if you know the geometric arrangement, you know what hybrid orbitals to use in the bonding description.
 - Figure 9.24 summarizes the types of hybridization and their spatial arrangements.

Figure 9.24: The relationship of the number of effective pairs, their spatial arrangement, and the hybrid orbital set required.

Hybrid Orbitals			
Hybrid Orbitals	Geometric Arrangements	Number of Orbitals	Example
sp	Linear	2	Be in BeF ₂
sp ²	Trigonal planar	3	B in BF ₃
sp ³	Tetrahedral	4	C in CH ₄
dsp ³	Trigonal bipyramidal	5	P in PCl ₅
d ² sp ³	Octahedral	6	S in SF ₆

Hybrid Orbitals

- To obtain the bonding description of any atom in a molecule, you proceed as follows:
 - 1. Write the Lewis electron-dot formula for the molecule.
 - 2. From the Lewis formula, use the VSEPR theory to **determine the arrangement of electron pairs** around the atom.

Hybrid Orbitals

- To obtain the bonding description of any atom in a molecule, you proceed as follows:
 - 3. From the geometric arrangement of the electron pairs, **obtain the hybridization type.**
 - 4. Assign valence electrons to the hybrid orbitals of this atom one at a time, pairing only when necessary.

Hybrid Orbitals

- To obtain the bonding description of any atom in a molecule, you proceed as follows:
 - 5. Form bonds to this atom by overlapping singly occupied orbitals of other atoms with the singly occupied hybrid orbitals of this atom.

A Problem to Consider

- Describe the bonding in XeF₄ using hybrid orbitals.
 - From this geometry, **determine the hybrid orbitals** on this atom, assigning its valence electrons to these orbitals one at a time.

A Problem to Consider

- Describe the bonding in XeF₄ using hybrid orbitals.
 - From the Lewis formula for a molecule, determine its geometry about the central atom using the VSEPR model.

A Problem to Consider

- Describe the bonding in XeF₄ using hybrid orbitals.
 - The Lewis formula of XeF_4 is

A Problem to Consider

- Describe the bonding in XeF₄ using hybrid orbitals.
 - The xenon atom has four single bonds and two lone pairs. It will require **six orbitals** to describe the bonding.
 - This suggests that you use d²sp³ hybrid orbitals on xenon.

A Problem to Consider Describe the bonding in XeF₄ using hybrid orbitals. Each Xe-F bond is formed by the overlap of a xenon d²sp³ hybrid orbital with a singly occupied fluorine 2p orbital. You can summarize this as follows: Xe atom (ground state)

Multiple Bonding According to valence bond theory, one hybrid orbital is needed for each bond (whether a single or multiple) and for each lone pair. For example, consider the molecule ethene.

Multiple Bonding

- To describe the multiple bonding in ethene, we must first distinguish between two kinds of bonds.
 - A σ (sigma) bond is a "head-to-head" overlap of orbitals with a cylindrical shape about the bond axis. This occurs when two "s" orbitals overlap or "p" orbitals overlap along their axis.
 - A π (**pi**) **bond** is a "side-to-side" overlap of parallel "p" orbitals, creating an electron distribution above and below the bond axis.

Multiple Bonding

- Each carbon atom is bonded to three other atoms and no lone pairs, which indicates the need for three hybrid orbitals.
 - This implies **sp² hybridization**.
 - The third 2p orbital is left **unhybridized** and lies perpendicular to the plane of the trigonal sp² hybrids.
 - The following slide represents the sp² hybridization of the carbon atoms.

• A pi (π) bond occupies the space above and below the internuclear axis.

 $\begin{array}{c}
\mathbf{H} \\
\mathbf{H} \\
\mathbf{C} \\
\mathbf{G} \\
\mathbf{C} \\
\mathbf{G} \\
\mathbf{H} \\
\mathbf$

Multiple Bonding

• The remaining "unhybridized" 2p orbitals on each of the carbon atoms overlap side-to-side forming a π bond.

• You therefore describe the carbon-carbon double bond as one σ bond and one π bond.

Figure 9.13: (a) The orbitals used to form the bonds in ethylene. (b) The Lewis structure for ethylene.

Figure 9.16: The orbital energylevel diagram for the formation of *sp* hybrid orbitals on carbon.

Figure 9.19: (a) The orbitals used to form the bonds in carbon dioxide. Note that the carbon-oxygen double bonds each consist of one s bond and one p bond. (b) The Lewis structure for carbon dioxide.

Molecular Orbitals (MO)

Analagous to atomic orbitals for atoms, MOs are the quantum mechanical solutions to the organization of valence electrons in molecules.

Molecular Orbital Theory

- **Molecular orbital theory** is a theory of the electronic structure of molecules in terms of **molecular orbitals**, which may spread over several atoms or the entire molecule.
 - As atoms approach each other and their atomic orbitals overlap, molecular orbitals are formed.
 - In the quantum mechanical view, both a **bonding** and an **antibonding** molecular orbital are formed.

