PHYS415/515: # Particle and Nuclear Physics Sebastian Kuhn ### The Structure of Matter - What is the Universe made off? - What are the most fundamental objects in Nature? - ➤ What particles where there in the beginning (right after the big bang)? - How do they interact? How do they form larger objects? - Where does all matter in the present Universe come from? # Hydrogen Atom Wave functions Remember Modern Physics / QM? When n=1, l=0, m=0 : 1s $$\Psi_{1,0,0} = \sqrt{\frac{1}{a_0^3 \pi}} e^{-r/a_0}$$ n=2, l=0, m=0 : 2s $$\Psi_{2,0,0} = \sqrt{\frac{1}{32a_0^3 \pi}} \left(2 - \frac{r}{a_0}\right) e^{-r/2a_0}$$ l=1 m=0, ±1 : 2p $$\Psi_{2,1,0} = \sqrt{\frac{1}{32a_0^3 \pi}} \frac{r}{a_0} \cos \theta \, e^{-r/2a_0}, \Psi_{2,1,\pm 1} = \mp \sqrt{\frac{1}{64a_0^3 \pi}} \frac{r}{a_0} \sin \theta \, e^{\pm i\varphi} e^{-r/2a_0}$$ $$a_0= rac{4\piarepsilon_0oldsymbol{\hbar}^2}{e^2m_\mathrm{e}}= rac{oldsymbol{\hbar}}{m_\mathrm{e}clpha}$$ = 0.0529 nm $pprox$ 0.53Å - \hbar is the reduced Planck constant, $\approx 197.33 \frac{\text{nm eV}}{c}$ - $m_{\rm e}$ is the mass of an electron, $\approx 511~{\rm keV/c^2}$ - *e* is the elementary charge, - c is the speed of light in vacuum, and - α is the fine-structure constant. $\approx 1/137.036$ # H ground state # Periodic Table | husba ann | 1 - | | | 75.1 | | | | | | | | - | Ato | mic | 15.7 | 5.70 | | helium | | |----------------|-----------------------|--------|--------------------|-------------------------|--------------------|------------------------|-------------------|-----------------|----------------------|----------------------|------------------|--------------------|--------------------|--------------------|-------------------|--------------------|--------------------|--------------|--| | nydrogen
1 | | bo | | | | | | | | boron | | Number = Z | | | | | | | | | H
1,0079 | | | | | | Atom | nic M | ASS | | | 5 | | | | | | | He | | | lithium
3 | beryllium
4 | | | | | (units: $u = 1/12$ the | | | | - | | | boron
5 | carbon
6 | nitrogen
7 | oxygen
8 | fluorine
9 | neon
10 | | | Li | Be | | | | | • | | - | | B | | | B | C | Ń | Ó | F | Ne | | | 6.941 | 9.0122 | | | | | mass of 12C atom | | | | | | 10.811 | 12.011 | 14.007 | 15,999 | 18,998 | 20,18 | | | | sodium
11 | magnesium
12 | | | | | | | | | | 10.811 | | aluminium
13 | silicon
14 | phosphorus
15 | sulfur
16 | chlorine
17 | argor | | | Na | Mg | | | | | | | | | | | | Al | Si | Р | S | CI | Aı | | | 22.990 | 24.305 | F | | | | | | - | | | | | 26.982 | 28.086 | 30.974 | 32.065 | 35.453 | 39.94 | | | otassium
19 | calcium
20 | | scandium
21 | titanium
22 | vanadium
23 | chromium
24 | manganese
25 | 26 | cobalt
27 | nickel
28 | copper
29 | 30 | gallium
31 | germanium
32 | arsenic
33 | selenium
34 | bromine
35 | krypto
36 | | | K | Ca | | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | K | | | 39.098 | 40.078 | | 44.956 | 47.867 | 50.942 | 51,996 | 54.938 | 55.845 | 58.933 | 58,693 | 63,546 | 65.39 | 69.723 | 72.61 | 74.922 | 78.96
tellurium | 79.904 | 83.80 | | | rubidium
37 | strontium
38 | | yttrium
39 | zirconium
40 | niobium
41 | molybdenum
42 | technetium
43 | ruthenium
44 | rhodium
45 | palladium
46 | silver
47 | cadmium
48 | indium
49 | 50 | antimony
51 | 52 | iodine
53 | xenor | | | Rb | Sr | | Υ | Zr | Nb | Мо | Tc | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | - | Xe | | | 85.468 | 87.62 | | 88,906
lutetium | 91.224
hafnium | 92.906
tantalum | 95.94 | [98]
rhenium | 101.07 | 102.91
iridium | 106.42 | 107.87 | 112.41 | 114.82
thallium | 118.71 | 121.76
bismuth | 127.60
polonium | 126.90
astatine | 131.2 | | | caesium
55 | barium
56 | 57-70 | 71 | 72 | 73 | tungsten
74 | 75 | osmium
76 | 77 | platinum
78 | gold
79 | mercury
80 | 81 | lead
82 | 83 | 84 | 85 | rador
86 | | | Cs | Ba | * | Lu | Hf | Ta | W | Re | Os | lr | Pt | Au | Hg | TI | Pb | Bi | Po | At | Rr | | | 132.91 | 137.33 | | 174.97 | 178.49
rutherfordium | 180.95
dubnium | 183.84
seaborgium | 186.21
bohrlum | 190.23 | 192.22
meitnerium | 195.08
ununnilium | 196.97 | 200.59
ununbium | 204.38 | 207.2 | 208.98 | [209] | [210] | [222] | | | randum
87 | radium
88 | 89-102 | 103 | 104 | 105 | 106 | 107 | hassium
108 | 109 | 110 | unununium
111 | 112 | | ununquadium
114 | | | | | | | Fr | Ra | * * | Lr | Rf | Db | Sg | Bh | Hs | Mt | Uun | Uuu | | | Uuq | | | | | | | [223] | [226] | | [262] | [261] | [262] | [266] | [264] | [269] | [268] | [271] | 12721 | [277] | | [289] | l | | | | | *Lanthanide series * * Actinide series | | lanthanum
57 | cerium
58 | praseodymium
59 | neodymium
60 | promethium
61 | samarlum
62 | europium
63 | gadolinium
64 | terbium
65 | dysprosium
66 | holmium
67 | erbium
68 | thulium
69 | ytterbium
70 | |-----|-----------------|--------------|--------------------|-----------------|------------------|----------------|----------------|------------------|---------------|------------------|---------------|--------------|---------------|-----------------| | | La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Но | Er | Tm | Yb | | - 1 | 138.91 | 140.12 | 140.91 | 144.24 | [145] | 150.36 | 151.96 | 157.25 | 158.93 | 162.50 | 164.93 | 167.26 | 168.93 | 173.04 | | - [| actinium | thorium | protactinium. | uranium | neptunium | plutonium | americium | curium | berkelium | californium | einsteinium | fermium | mendelevium | nobelium | | - 1 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | | | Ac | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | | ı | [227] | 232.04 | 231.04 | 238.03 | [237] | [244] | [243] | [247] | [247] | [251] | [252] | [257] | [258] | [259] | ### The Structure of Matter 99.97% of the mass of an atom (and hence of all visible matter) is concentrated in the nucleus. 0.000,000,000,024% of the atomic volume is occupied by the nucleus . ### Stable nuclei A = N + Z (all integers) Isotopes: SAME Z Isobars: SAME Z Nuclear mass is ROUGHLY proportional to A (see later) ATOMIC mass can be fractional if the natural abundance of a given element has several stable isotopes ### All the nuclei in the universe #### Atomic Binding energy $B_{\text{atomic}} M_{\text{At}} c^2 - M_{\text{Nuc}} c^2 - Z \cdot m_e c^2$ $M_{\rm Nuc}$ = Mass of Nucleus $M_{\rm At}$ = Atomic mass (single isotope) Z = Element Number Typical values: few eV's ... keV's #### Nuclear Binding energy $$B_{\text{nuclear}} = M_{\text{N}}c^2 - Z \cdot m_{\text{p}}c^2 - N \cdot m_{\text{n}}c^2$$ m_p = Mass of Proton m_n = Mass of neutron A= N + Z A= Atomic Mass Number N=Neutron Number Z=Proton Number Typical values: keV's to 100's of MeV's $$E = mc^2$$ In atomic and nuclear physics, masses are typically given in atomic mass units (u) 1 u = 1.66054 * 10^{-27} kg = 931.494 MeV/c² Proton = 938.27 MeV Neutron = 939.51 Mev Mass defect = 0.002388 amu = 2.224 MeV Note: amu = u (depending on who is talking) ### **Nuclear Force** - Charge independent. - Highly dependent on distance - Saturated force - Coulomb Repulsion will overcome the Nuclear Force as atoms become larger. ## **Nuclear Density** Typical Nuclear Density Profile (Cesium?) => Due to short range nuclear force, each nucleon "sees" THIS potential # Nuclear Binding energies ### Liquid Drop Model From previous slides, we find that nuclear density is roughly constant, and hence the nuclear radius goes like A^{1/3} $$R = 1.22 \text{ fm} \cdot A^{1/3}$$ Surface = 19 fm² · $A^{2/3}$ $$M(A, Z) = NM_{\rm n} + ZM_{\rm p} + Zm_{\rm e} - a_{\rm v}A + a_{\rm s}A^{2/3}$$ $$+ a_{\rm c}\frac{Z^2}{A^{1/3}} + a_{\rm a}\frac{(N-Z)^2}{4A} + \frac{\delta}{A^{1/2}}$$ $$a_{\rm v} = 15.67 \,\mathrm{MeV}/c^2$$ $$a_{\rm s} = 17.23 \,\mathrm{MeV}/c^2$$ $$a_{\rm c} = 0.714 \,\mathrm{MeV}/c^2$$ $$a_{\rm a} = 93.15 \,\mathrm{MeV}/c^2$$ $$\delta = \begin{cases} -11.2 \,\mathrm{MeV}/c^2 & \text{for even } Z \text{ and } N \text{ (even-even nuclei)} \\ 0 \,\mathrm{MeV}/c^2 & \text{for odd } A \text{ (odd-even nuclei)} \\ +11.2 \,\mathrm{MeV}/c^2 & \text{for odd } Z \text{ and } N \text{ (odd-odd nuclei)}. \end{cases}$$ Central (saturation) density: $\varrho_0 \approx 0.17 \text{ nucleons/fm}^3 = 3 \cdot 10^{17} \text{ kg/m}^3$ Average density: $0.13 \text{ nucleons/fm}^3$ ## Nuclear Mass excess per nucleon ### Partially explains abundance of elements **Fig. 2.2** Abundance of the elements in the solar system as a function of their mass number A, normalised to the abundance of silicon (=10⁶) #### Full explanation requires: - INITIAL ("primordial") abundance (nearly all ¹H and ⁴He) - 2) Reaction path from these to heavier elements (stars and their collapse, supernovae, neutron star mergers,...)