
Recapitulate:
• We discussed how nuclei are composed from their 

constituents – protons and neutrons – including how 
we can understand their observed masses 
(< than sum of parts!)

• We have some initial feeling for the force between 
protons and neutrons

• We have gained some understanding about which 
nuclides are unstable and why, and how they can decay

• => We have a basic understanding about the masses 
and charges of nuclei.

• Next question: How can we study their shapes, sizes 
and internal structures?



How Do We Study Nuclear Structure?

• Energy levels: Nuclear masses, excitation spectra, 
excited state decays  ->   Spectroscopy 
(What states exist?)

• Decays, Elastic and Inelastic Scattering, Particle 
Production, Reactions 
(How do they interact?)

• [Probing the internal structure directly 
 Imaging, “Tomography” and “Holography”
 (Shape and Content?)]
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Basic Approach: Scattering
• Direct a beam of particles towards a target made of a 

huge number of (identical) nuclei
• Record what happens to the beam particles (scattered, 

absorbed, lost energy,…)
• Record what other things emerge from the interaction 

(nuclear fragments, other particles…)
• Understand what we see via the underlying nuclear 

structure
• Huge variety of probes (electrons, photons, nucleons, 

other nuclei,…) at a huge variety of energies (keV to 
TeV)

• Huge variety of nuclear targets and detectors



Low-Medium Energy 
Accelerators
• (Tandem) Van de Graaf
• Cyclotron
• Synchrotron



Accelerators

Surf the 
microwaves!

Accelerating cavity: disk loaded cylindrical wave guide
  use TM01 mode to get a longitudinal electric field
  match phase and velocity

Jefferson Lab

new

old

DESY

Example: Jefferson Lab

Electrons get accelerated to 99.9999999% of the speed of light (12 GeV)…
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…and smashed into a “target”. 
The debris is detected and measured.

Example: Jefferson Lab



“Typical” accelerator (CERN)

Typical detector (EIC)

“Typical” accelerator (CERN)

Typical detector (CLAS)CHAPTER 3. DETECTOR CONCEPTS 25
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Electromagnetic Calorimeter
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Figure 3.1: CAD model of a particular EIC detector concept, with the artistic rendering of
the tracking, particle identification, and calorimetry subsystems.

gas amplification modules at the endcaps is under construction for the sPHENIX
experiment and may be modified for use at the EIC. Upgrades to the read-out pads
for the EIC would be focused on micro-pattern gaseous detectors such as gas elec-
tron multipliers (GEMs), µMEGAs or µRWELL can provide electron amplification
before read-out on high granularity anode printed circuit boards. Gaseous tracking
detectors also aid in particle identification with ionization energy loss information.

Two baseline tracking detector concepts are presented. An all-silicon tracking de-
tector option with barrel and endcap silicon detector can be realized in a com-
pact form. A hybrid tracking system combines a silicon vertex detector within
a TPC and provides dE/dx measurements that can aid particle identification. In
both main options, alternative tracking options exist in the backward and forward
tracking endcaps.

3.2 Particle Identification Detector Systems

The second major detector system, particle identification, separates electrons from
pions, kaons, and protons, with significant pion/electron suppression and better
than 3s pion/kaon/proton separation in all rapidity regions. Using the specific
ionization (dE/dx) in time projection chambers with novel gas mixtures allows for
improved resolution approaching the limit of Poisson statistics. However, dedi-



More detectors
We build particle detectors big…

…and small:



More
experiments 

COMPASS

STAR

Panda/Fair 43



High Energy Accelerators – 2 Examples

Lin
ac

LHe

Arcs

• Superconducting Linear Accelerators (CEBAF at JLab)
– 2K niobium cavities, very low resistive losses
– Recirculate few times, 100’s of µA
– High gradient (5-50 MeV/m ⇒ 4-12 GeV)
– CW extracted beam on external targets
– Thick targets ⇒ high luminosity

• Storage rings (HERA at DESY, RHIC at BNL, LHC at CERN)
– Large circulating currents (mA)
– Recirculate millions of times
– Require only modest (re)acceleration
– CW internal beam on thin gas targets

or counterrotating beams 
(typically lower Luminosity) 



The future landscape of Nuclear Physics
1. Study how nucleons are made up from quarks (“flavor”, p, L, S -> 3D tomography)
2. Study how hadronic quark structure is influenced by the nuclear environment
3. Understand nuclear structure and dynamics in terms of quark degrees of freedom
4. Study extreme forms of nuclear matter: high energy (Quark-Gluon plasma), high 

density (short range correlations, n stars, “color glass condensates”,…), non-zero 
strangeness (hypernuclei, strangelets, …), large n/p imbalance (radioactive beams)…

5. Study fundamental symmetries, neutrinos, nuclei in the universe
6. Develop new applications in medicine, energy, materials, homeland security, …

Jlab

Electron-
Ion-
Collider
(2025?)LHC

FAIR

J-PARC
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What do we measure in scattering?

• Cross Sections! (What is that?)

• Probability to crash is proportional to
– nT = Density of asteroids
– Distance L to traverse entire field
– Size s of asteroids (actually: cross sectional area)

Prob. = 
nT

.L.s



Cross Section cont’d
• Take a box filled with nuclei

– nT = # of nuclei/volume = #/L.A
– L = length of box in beam direction
– Project all nuclei onto the front 

face of the box (surface area A)
– “Areal Density” nT L = number of nuclei 

per unit surface area
– Unit: 1/cm2

• Probability for a reaction to occur must be 
dimensionless – hence we have to multiply 
with something of dimension area (unit 
cm2) => cross section s

• nT L s = “fraction of surface area covered”
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Nb =nbAdεa =nava

Fig. 4.3 Measurement of the geometric reaction cross-section. The particle beam, a, coming from
the left with velocity va and density na, corresponds to a particle flux ˚a D nava. It hits a
(macroscopic) target of thickness d and cross-sectional area A. Some beam particles are scattered
by the scattering centres of the target, i.e., they are deflected from their original trajectory. The
frequency of this process is a measure of the cross-sectional area of the scattering particles

The total number of target particles within the beam area is Nb D nb ! A ! d.
Hence the reaction rate PN is given by the product of the incoming flux and the total
cross-sectional area seen by the particles:

PN D ˚a ! Nb ! !b : (4.4)

This formula is valid as long as the scattering centres do not overlap and particles
are only scattered off individual scattering centres. The area presented by a single
scattering centre to the incoming projectile a, will be called the geometric reaction
cross-section: in what follows:

!b D
PN

˚a ! Nb
(4.5)

D number of reactions per unit time

beam particles per unit time per unit area " scattering centres
:

L



What if we have a beam of “spaceships” 
(= incoming beam particles)?

• Incoming “current”: nb (beam particles/s)
• Target areal density: nT L = number of nuclei 

per unit surface area
• Cross section Ds for a specific reaction to 

happen
• => number of times this reaction happens per 

second (event rate): N = nb nT L Ds
• Call    = nb nT L the luminosity of the experiment

.

. .
.

N =            dt Ds



Example: Luminosity and cross sections

• On white board
• Remember: If atomic mass is A, then 1 g of the 

material contains 1/A mol
• 1 mol = 6.022.1023 atoms (and hence nuclei)

• 1µA of electrons contain 10-6 C/s / 1.6.10-19 C = 
6.25.1012 e/s

• 1 “barn” 1 b = 10-24 cm2

–mb(arn), µb, nb, pb,…



Example partial cross section:
scattering into a detector

Look only at events where the beam particle is 
scattered into a 
specific detector area =
a specific angular range in q and f
=> Solid angle DW
Ds proportional to DW
=> Use ratio Ds/DW to express the “intrinsic” 
scattering strength (independent of detector used)
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Fig. 4.4 Description of the
differential cross-section.
Only particles scattered into
the small solid angle !˝ are
recorded by the detector of
cross-sectional area AD
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cross-section and a 100 pb!1 integrated luminosity, for example, 105 reactions
would be expected.

Differential cross-sections In practice, only a fraction of all the reactions are
measured. A detector of area AD is placed at a distance r and at an angle " with
respect to the beam direction, covering a solid angle !˝ D AD=r2 (Fig. 4.4). The
rate of reactions seen by this detector is then proportional to the differential cross-
section d#.E; "/=d˝:

PN.E; ";!˝/ D L ! d#.E; "/
d˝

!˝ : (4.13)

If the detector can determine the energy E0 of the scattered particles then one
can measure the doubly differential cross-section d2#.E;E0; "/=d˝ dE0. The total
cross-section # is then the integral over the total solid angle and over all scattering
energies:

#tot.E/ D
Z E0

max

0

Z

4$

d2#.E;E0; "/
d˝ dE0

d˝ dE0 : (4.14)

4.3 The “Golden Rule”

The cross-section can be experimentally determined from the reaction rate PN, as we
saw above. We now outline how it may be found from theory.

First, the reaction rate is dependent upon the properties of the interaction
potential described by the Hamilton operator Hint. In a reaction, this potential
transforms the initial-state wave function  i into the final-state wave function  f .
The transition matrix element is given by

Mfi D h f jHintj ii D
Z
 "f Hint  i dV : (4.15)

This matrix element is also called the probability amplitude for the transition.
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How do we calculate cross sections? 
Feynman diagrams

• Theoretical ansatz: Look at single scattering 
centers, incoming beam = current density jb. 
Event rate N = Ds. jb.

• “Infinitesimal”  cross section: ds/dW(q,f).
• Differential cross section depends only on 

physics of interaction (potential…) and 
available final state “phase space”.

• Interaction often depicted 
with Feynman diagrams.

.

4 1 Hors d’œuvre

ε

Photon
Mass=0

g

Gluon
Mass=0

W

W-Boson
Mass ≈80 GeV/c2 

Z0

Z-Boson
Mass≈91 GeV/c2

Fig. 1.2 Diagrams for fundamental interactions between particles by the exchange of vector
bosons

colour for short. A particle is subject to an interaction if and only if it carries the
corresponding charge:

– Leptons and quarks carry weak charge.
– Quarks are electrically charged, so are some of the leptons (e.g., electrons).
– Colour charge is only carried by quarks (not by leptons).

The W and Z bosons, massesMW ! 80 GeV=c2 andMZ ! 91 GeV=c2, are very
heavy particles. According to the Heisenberg uncertainty principle, they can only
be produced as virtual, intermediate particles in scattering processes for extremely
short times. Therefore, the weak interaction is of very short range. The rest mass of
the photon is zero. Therefore, the range of the electromagnetic interaction is infinite.

The gluons, like the photons, have zero rest mass. Whereas photons, however,
have no electrical charge, gluons carry colour charge. Hence they can interact with
each other. As we will see, this causes the strong interaction to be also very short
ranged.

1.3 Symmetries and Conservation Laws

Symmetries are of great importance in physics. The conservation laws of classical
physics (energy, momentum, angular momentum) are a consequence of the fact that
the interactions are invariant with respect to their canonically conjugate quantities
(time, space, angles). In other words, physical laws are independent of the time, the
location and the orientation in space under which they take place.
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Furthermore, the reaction rate will depend upon the number of final states
available to the reaction. According to the uncertainty principle, each particle
occupies a volume h3 D .2!„/3 in phase space, the six-dimensional space of
momentum and position. Consider a particle scattered into a volume V and into
a momentum interval between p0 and p0 C dp0. In momentum space, the interval
corresponds to a spherical shell with inner radius p0 and thickness dp0 which has a
volume 4!p02dp0. Excluding processes where the spin changes, the number of final
states available is

dn.p0/ D V ! 4!p02
.2!„/3 dp0 : (4.16)

The energy and momentum of a particle are connected by

dE0 D v0dp0 : (4.17)

Hence the density of final states in the energy interval dE0 is given by

%.E0/ D dn.E0/
dE0

D V ! 4!p02
v0 ! .2!„/3 : (4.18)

The connection between the reaction rate, the transition matrix element and the
density of final states is expressed by Fermi’s second golden rule. Its derivation can
be found in quantum mechanics textbooks (e.g. [2]). It expresses the reaction rate
W per target particle and per beam particle in the form:

W D 2!

„
ˇ̌
Mfi

ˇ̌2 ! %.E0/ : (4.19)

We also know, however, from (4.3) and (4.4) that

W D
PN.E/

Nb ! Na
D " ! va

V
; (4.20)

where V D Na=na is the spatial volume occupied by the beam particles. Hence, the
cross-section is

" D 2!

„ ! va
ˇ̌
Mfi

ˇ̌2 ! % .E0/ ! V : (4.21)

If the interaction potential is known, the cross-section can be calculated from (4.21).
Otherwise, the cross-section data and Eq. (4.21) can be used to determine the
transition matrix element.



Recap: Relativistic Kinematics

• Often in high energy nuclear/particle physics, particles 
move with close to the speed of light, c, hence we have 
to use special relativity

• Recall: g = (1-v2/c2)-1/2, b = v/c, E = gMc2, p=gMv. (Note: 
we’ll simplify our lives by often ignoring factors of c.)

• 4-vectors: vµ = (v0, v1, v2, v3). xµ = (ct, x, y, z). 
Pµ = (E/c, p) (p = “3-vector part” of Pµ).

• General transformation: Lorentz Matrix
• Very useful in relativistic kinematics: Invariants (same 

in all coordinate systems). E.g.:
Scalar product Pµ Pµ= (P0)2 – p2 = M2c2.


