Recapitulate:

- We discussed how nuclei are composed from their constituents – protons and neutrons – including how we can understand their observed masses (< than sum of parts!)
- We have some initial feeling for the force between protons and neutrons
- We have gained some understanding about which nuclides are unstable and why, and how they can decay
- => We have a basic understanding about the masses and charges of nuclei.
- Next question: How can we study their shapes, sizes and internal structures?

How Do We Study Nuclear Structure?

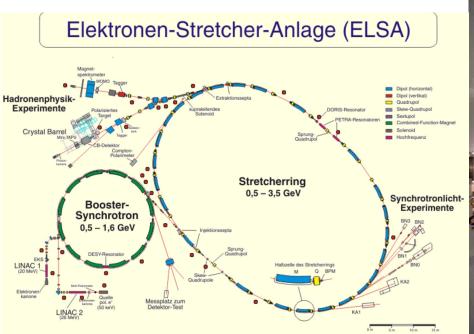
- Energy levels: Nuclear masses, excitation spectra, excited state decays -> Spectroscopy (What states exist?)
- Decays, Elastic and Inelastic Scattering, Particle Production, Reactions (How do they interact?)
- [Probing the internal structure directly Imaging, "Tomography" and "Holography" (Shape and Content?)]

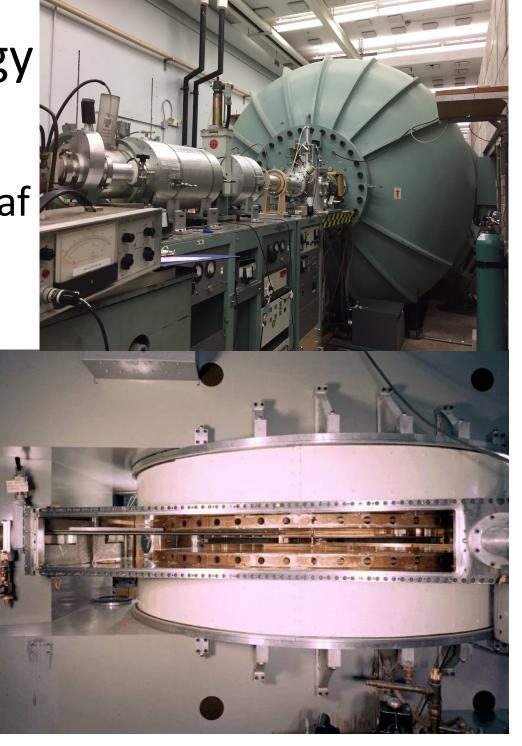
Basic Approach: Scattering

- Direct a beam of particles towards a target made of a huge number of (identical) nuclei
- Record what happens to the beam particles (scattered, absorbed, lost energy,...)
- Record what other things emerge from the interaction (nuclear fragments, other particles...)
- Understand what we see via the underlying nuclear structure
- Huge variety of probes (electrons, photons, nucleons, other nuclei,...) at a huge variety of energies (keV to TeV)
- Huge variety of nuclear targets and detectors

Low-Medium Energy Accelerators

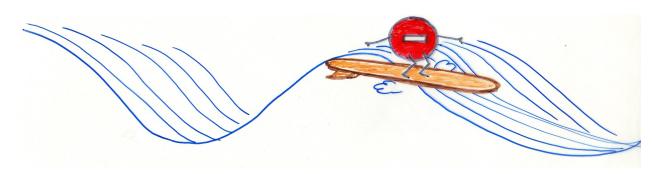
- (Tandem) Van de Graaf
- Cyclotron
- Synchrotron





Example: Jefferson Lab

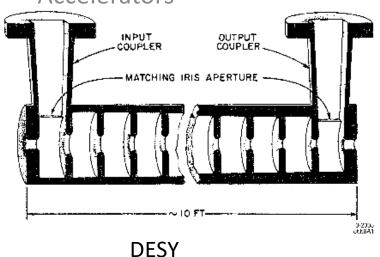
Electrons get accelerated to 99.999999% of the speed of light (12 GeV)...

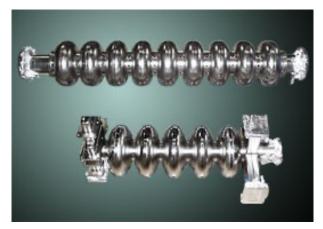


Surf the microwaves!

Accelerating cavity: disk loaded cylindrical wave guide use TM₀₁ mode to get a longitudinal electric field match phase and velocity

Accelerators





Jefferson Lab

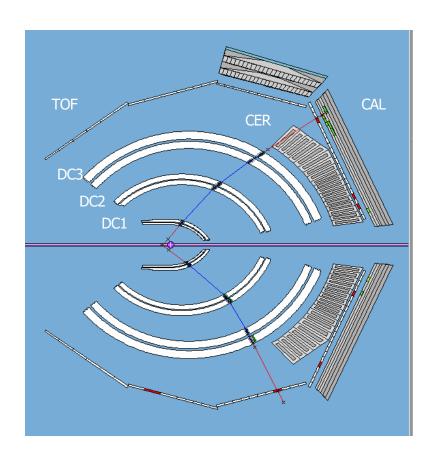
new

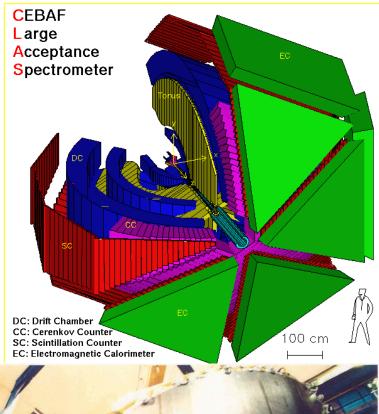
old

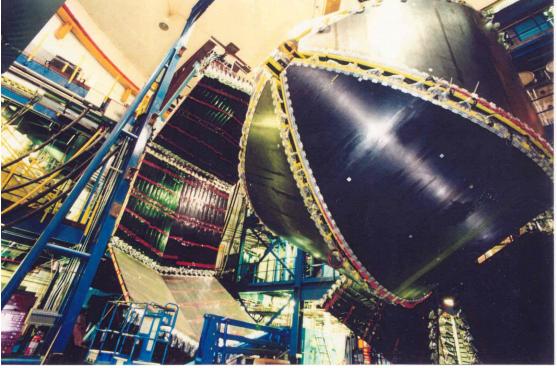
Example: Jefferson Lab

...and smashed into a "target".

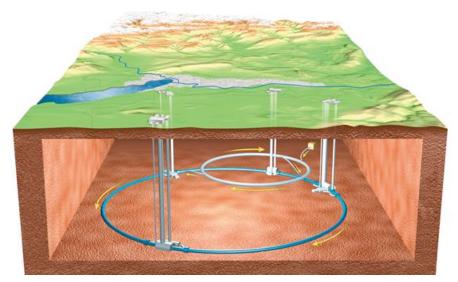
The debris is detected and measured.



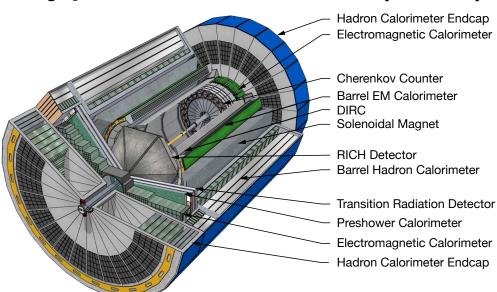




"Typical" accelerator (CERN)



Typical detector (EIC)

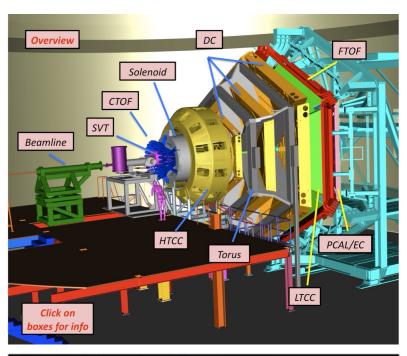


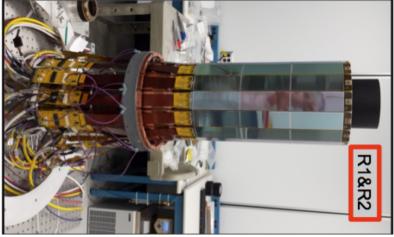
More detectors

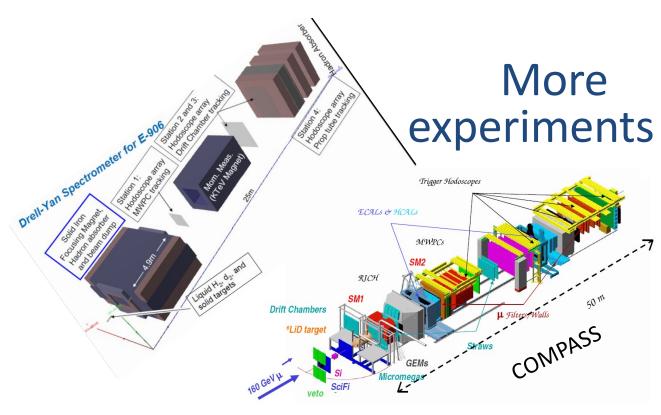
We build particle detectors big...

...and small:



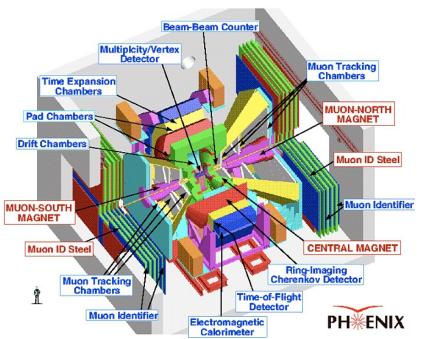


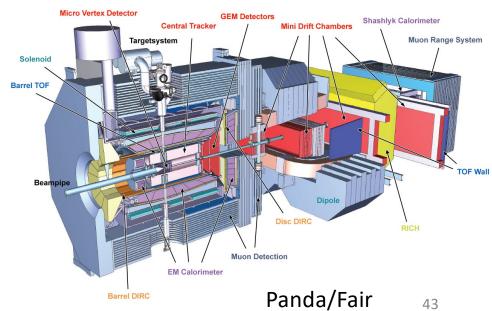






STAR



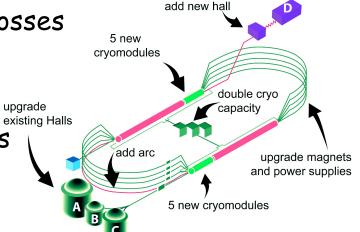


High Energy Accelerators – 2 Examples

Superconducting Linear Accelerators (CEBAF at JLab)

- 2K niobium cavities, very low resistive losses

- Recirculate few times, 100's of μA
- High gradient (5-50 MeV/m \Rightarrow 4-12 GeV)
- CW extracted beam on external targets
- Thick targets ⇒ high luminosity



- Storage rings (HERA at DESY, RHIC at BNL, LHC at CERN)
 - Large circulating currents (mA)
 - Recirculate millions of times
 - Require only modest (re)acceleration
 - CW internal beam on thin gas targets or counterrotating beams (typically lower Luminosity)

The future landscape of Nuclear Physics

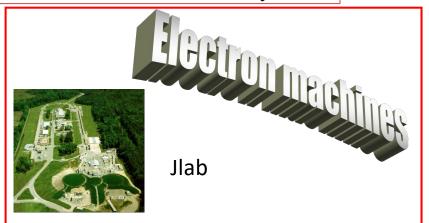
- 1. Study how nucleons are made up from quarks ("flavor", \mathbf{p} , \mathbf{L} , $\mathbf{S} \rightarrow 3D$ tomography)
- 2. Study how hadronic quark structure is influenced by the nuclear environment
- 3. Understand nuclear structure and dynamics in terms of quark degrees of freedom
- 4. Study extreme forms of nuclear matter: high energy (Quark-Gluon plasma), high density (short range correlations, n stars, "color glass condensates",...), non-zero strangeness (hypernuclei, strangelets, ...), large n/p imbalance (radioactive beams)...
- 5. Study fundamental symmetries, neutrinos, nuclei in the universe
- 6. Develop new applications in medicine, energy, materials, homeland security, ...

Hadron Machines

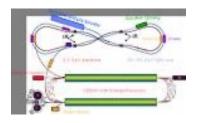
J-PARC

FAIR

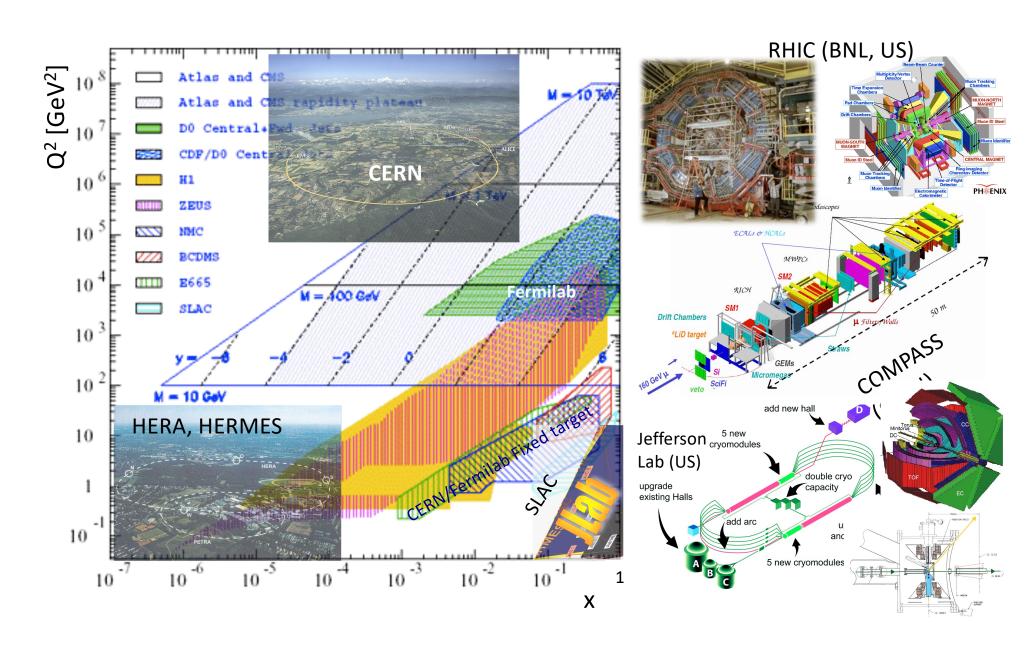
LHC



Electronlon-Collider (2025?)



Experimental Facilities



What do we measure in scattering?

Cross Sections! (What is that?)

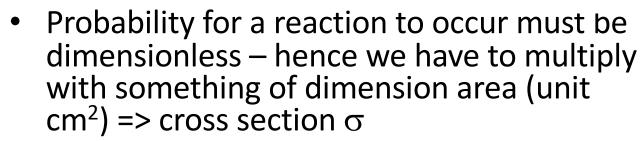
- Probability to crash is proportional to
 - $-n_T$ = Density of asteroids
 - Distance L to traverse entire field
 - Size σ of asteroids (actually: cross sectional area)

Prob. =

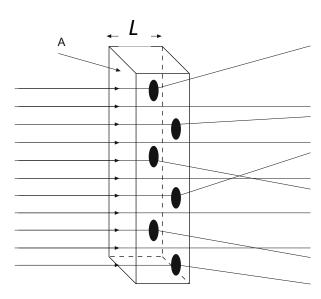
 $n_T L \sigma$

Cross Section cont'd

- Take a box filled with nuclei
 - $-n_T$ = # of nuclei/volume = #/L-A
 - -L = length of box in beam direction
 - Project all nuclei onto the front face of the box (surface area A)
 - "Areal Density" $n_T L$ = number of nuclei per unit surface area
 - Unit: 1/cm²



• $n_T L \sigma =$ "fraction of surface area covered"



What if we have a beam of "spaceships" (= incoming beam particles)?

- Incoming "current": \dot{n}_b (beam particles/s)
- Target areal density: $n_T L$ = number of nuclei per unit surface area
- Cross section $\Delta \sigma$ for a specific reaction to happen
- => number of times this reaction happens per second (event rate): $\dot{N} = \dot{n}_b n_T L \Delta \sigma$
- Call $1 = \dot{n}_b n_T L$ the luminosity of the experiment

$$N = \int \Delta \sigma \, dt$$

Example: Luminosity and cross sections

- On white board
- Remember: If atomic mass is A, then 1 g of the material contains 1/A mol
- 1 mol = $6.022 \cdot 10^{23}$ atoms (and hence nuclei)
- 1µA of electrons contain $10^{-6} \, ^{\text{C}}/_{\text{s}} / 1.6 \cdot 10^{-19} \, \text{C} = 6.25 \cdot 10^{12} \, \text{e/s}$
- 1 "barn" 1 b = 10^{-24} cm²
 - mb(arn), μb, nb, pb,...

Example partial cross section: scattering into a detector

Look only at events where the beam particle is

 $\Delta\Omega = A_D/r^2$

Target plane

scattered into a specific detector area = a specific angular range in θ and ϕ => Solid angle $\Delta\Omega$

 $\Delta \sigma$ proportional to $\Delta \Omega$

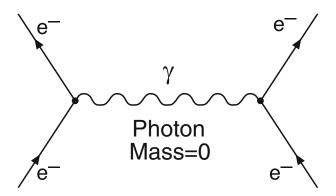
=> Use ratio $\Delta \sigma / \Delta \Omega$ to express the "intrinsic" scattering strength (independent of detector used)

$$\dot{N}(E, \theta, \Delta\Omega) = \mathcal{L} \cdot \frac{\mathrm{d}\sigma(E, \theta)}{\mathrm{d}\Omega} \Delta\Omega$$

How do we calculate cross sections? Feynman diagrams

- Theoretical ansatz: Look at single scattering centers, incoming beam = current density j_b . Event rate $\dot{N} = \Delta \sigma^{.} j_b$.
- "Infinitesimal" cross section: $d\sigma/d\Omega(\theta,\phi)$.
- Differential cross section depends only on physics of interaction (potential...) and available final state "phase space".
- Interaction often depicted with Feynman diagrams.

$$\sigma = \frac{2\pi}{\hbar \cdot v_a} \left| \mathcal{M}_{fi} \right|^2 \cdot \varrho \left(E' \right)$$



Recap: Relativistic Kinematics

- Often in high energy nuclear/particle physics, particles move with close to the speed of light, c, hence we have to use special relativity
- Recall: $\gamma = (1-v^2/c^2)^{-1/2}$, $\beta = v/c$, $E = \gamma Mc^2$, $p = \gamma Mv$. (Note: we'll simplify our lives by often ignoring factors of c.)
- 4-vectors: $v^{\mu} = (v^0, v^1, v^2, v^3)$. $x^{\mu} = (ct, x, y, z)$. $P^{\mu} = (E/c, \vec{p})$ ($\vec{p} =$ "3-vector part" of P^{μ}).
- General transformation: Lorentz Matrix
- Very useful in relativistic kinematics: Invariants (same in all coordinate systems). *E.g.*: Scalar product $P^{\mu} P_{\mu} = (P^0)^2 \vec{p}^2 = M^2 c^2$.