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Scattering Cross-Sections 
•  Describe the interaction (rate    ) of particles 
•  Consider a beam of cross-sectional area A and particle 

density nA with particles having an average velocity va	



•  The particle flux describes the number of particles hitting 
the target per unit area and unit time  

•  Consider a target of thickness d and particle density nb	



•  The geometric cross-section is defined as  

           with 
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Luminosity 
•  This geometric scattering cross-section can be re-written 

•  Here the luminosity is defined by 
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Luminosity 
•  Luminosity for colliding beams with N bunches is given 

by 

 with  
–  beam velocities v	


–  collider ring circumference C	


–  beam cross-section at collision point  4π  σx σy   	
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Interaction Rate 
•  The interaction rate depends on the interaction potential 

described by an operator H	


•  The operator H transforms the initial wave function ψi 

into the final wave function ψf 
•  The transition matrix element (transition probability 

amplitude) is given by  

            

M  = ⟨ ψf ∣ H ∣ψi ⟩ 



Interaction Rate 
•  Consider a particle scattered into a volume V and 

momentum interval p’ and p’ + dp’	


•  The interaction rate also depends on the number of final 

states available 
•  Ignoring spin, the number of final states is given by 

 with                the volume of phase space occupied by 
 each particle 

•  Energy and momentum are connected by 

d n (p’) =                       d p’  	
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Interaction Rate 
•  The density of final states in the energy interval d E’  is 

given by 

•  Fermi’s Golden Rule connects the interaction rate per 
target particle and per beam particle with the transition 
matrix element and the density of final states  
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Feynman Diagrams 
•  Describe particle scattering through interacting currents 
•  A pictorial way of describing fermion and boson 

interactions 
•  Example electron-electron scattering 



Transition Amplitudes 
•  Initial and final state particles have wave functions 
•  Vertices have dimensionless coupling constants 

–  Electromagnetic interactions ⇒ √α ∝ e 	


–  Strong interactions ⇒ √α ∝ √αs	



•  Virtual particles have propagators  
–  Virtual photon has propagator ∝ 1/q 2 	


–  Virtual boson of mass m has propagator ∝ 1/(q 2 − m 2)	



•  Transition amplitudes for electron-electron or electron-
nucleon scattering have a virtual photon as propagator 
and two vertices, resulting in  

	

with q 2 the 4-momentum transfer squared 

M  ∝ e 2 / q 2 	





Electron-Nucleon Scattering 
Kinematics 

•  Electron with incident 4-momentum k = (E, 0, 0, E) and 
scattered 4-momentum k’ = (E’, E’ sin θ, 0, E’ cos θ)	



•  Nucleon with incident 4-momentum P = (M, 0, 0, 0)  and 
scattered 4-momentum P’ = (M + ν, −E’ sin θ, 0, E−E’ cos θ) 	



•  Exchanged virtual photon with 4-momentum q = k − k’	


•  Invariant virtual photon mass squared is given by 

	

with θ the scattering angle in the lab frame 
  E the incident electron energy 
  E’ the scattered electron energy 
  ν = E – E’ the energy transfer 
  M the nucleon rest mass 

q 2  =  − Q 2  =  − 4 E E’ ∙  sin 2 ( θ/2 ) 	





Electron-Nucleon Scattering 
Kinematics 

•  Invariant mass squared of the final state nucleon is 
given by 

•  In elastic scattering W = M , which yields Q 2 = 2 M ν	



	

 

W 2  =  M 2 + 2 M ν  − Q 2	





Scattering Cross-Sections 
•  Rutherford cross-section for scattering of point-like 

particles (no recoil) 

•  Mott cross-section accounting for spin s of electron 

•  Helicity                         is conserved for relativistic particles 
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Nuclear Form Factors 
•  Experimental data only agree with Mott cross-section for 

very low q	


•  The spatial extension of nuclei can be accounted for by 

form factors F (q 2)	



•  The form factors are the Fourier transform of the charge 
distribution f (x)	



         (Born approximation and no recoil) 
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Nuclear Form Factors 
•  For spherical symmetric cases the charge distribution 

only depends on the radius r	



F (q 2) =  4π ∫                         f (r) r 2 dr	

sin  ∣q∣ r / ħ 	
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Nuclear Form Factors 



Nuclear Form Factors 



Nucleon Form Factors 
•  Scattering of nucleons with mass of about 938 MeV 

requires recoil effects to be accounted for  
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Nucleon Form Factors 
•  Electron interaction with the magnetic moment μ of the 

nucleon needs to be included also 
•  The magnetic moment of a charged, point-like spin-1/2 

particle is given by 

•  We obtain for the scattering cross section 

μ  =  g  	
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Nucleon Form Factors 
•  The magnetic moments of nucleon deviates from 2 

because of the composite structure 
•  Measured values are 

μp  =           μN   = +2.79 ∙ μN            for the proton 
gp	
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μn  =           μN   = −1.91 ∙ μN             for the neutron	
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Nucleon Form Factors 
•  Charge and current distribution can be described by form 

factors as for nuclei 
•  Two form factors are needed to describe the charge and 

magnetic distributions 
•  The cross-section is given by the Rosenbluth formula 

•  As  Q2 → 0  also  τ → 0  and only GE
2 (0) remains above 

=               ∙  (                                  + 2 τ  GM
2 (Q2) tan 2 ( θ/2 ))  	
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Nucleon Form Factors 
•  For the form factors we expect in the limit Q2 → 0 

GE 
p (0)  =  1	
  

GM 
p (0)  =  +2.79 	
  

GE 
n (0)  =  0	
  

GM 
n (0)  =  −1.91 	
  



Measuring Nucleon Form 
Factors 

•  To determine the two form factors independently, we 
need to measure the cross section at fixed values of Q2 
and vary the beam energy (scattering angle) 
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Measuring Nucleon Form 
Factors 

•  Result of measurements revealed dipole structure 

GE 
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Nucleon Charge Distribution 
•  Spatial extend of nucleon charge can be found from 

measured form factors 
•  Fourier transform only applicable at low Q2  
•  Dipole form factor corresponds to a diffuse and  

exponentially falling charge distribution 

•  The yields for the proton charge radius  

ρ (r)  =  ρ (0) e 	

 with   a  =  4.27 fm−1   	

− a r	



√ ⟨ r 2⟩p  =  0.86 fm   	




