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Scattering Cross-Sections

Describe the interaction (rate N) of particles

Consider a beam of cross-sectional area A and particle
density n, with particles having an average velocity v,

The particle flux describes the number of particles hitting
the target per unit area and unit time

Consider a target of thickness d and particle density n,
The geometric cross-section is defined as

N N
Op = = = > with N,= n, A -d




Luminosity

» This geometric scattering cross-section can be re-written

N N
0, = . = —
D - N, L

* Here the luminosity is defined by

L =&, N,= N-n,-d=n, v, N,



Luminosity

« Luminosity for colliding beams with N bunches is given
by

_N,"N,-N-v/C

4w 0,0,

L

with

— beam velocities v

— collider ring circumference C

— beam cross-section at collision point 4w o, g,



Interaction Rate

* The interaction rate depends on the interaction potential
described by an operator #"

 The operator # transforms the initial wave function v,
into the final wave function .

« The transition matrix element (transition probability

amplitude) is given by
M =y | H )



Interaction Rate

Consider a particle scattered into a volume V and
momentum interval p’ and p’ + dp’

The interaction rate also depends on the number of final
states available

Ilgnoring spin, the number of final states is given by

" V-4mp’?
dnp)= =5 33

with (2mh )3 the volume of phase space occupied by
each particle

Energy and momentum are connected by

)

dp

dE’=v’ dp’



Interaction Rate

« The density of final states in the energy interval dE”’ is
given by

dn(E’) @ V-4mp’?

E) =
olB) = — g v (2mh)

 Fermi’s Golden Rule connects the interaction rate per
target particle and per beam particle with the transition
matrix element and the density of final states

N(E)
Na . Nb

W, =

Zh_rc | M |2 0(E)



Feynman Diagrams

» Describe particle scattering through interacting currents

« A pictorial way of describing fermion and boson
Interactions

 Example electron-electron scattering

€ €




Transition Amplitudes

Initial and final state particles have wave functions

Vertices have dimensionless coupling constants

— Electromagnetic interactions = va o< ¢

— Strong interactions = va «< va,
Virtual particles have propagators

— Virtual photon has propagator o< 1/g?2

— Virtual boson of mass m has propagator o< 1/(g? — m?)
Transition amplitudes for electron-electron or electron-
nucleon scattering have a virtual photon as propagator
and two vertices, resulting in

M o< e?/qg?

with ¢ 2 the 4-momentum transfer squared



Electron-Nucleon Scattering
Kinematics

Electron with incident 4-momentum k= (£, 0,0, E) and
scattered 4-momentum k’=(E’, E’ sin, 0, E’ cos 0)

Nucleon with incident 4-momentum P = (M, 0,0,0) and
scattered 4-momentum P’ = (M + v, —E’ sin @, 0, E—E’ cos )

Exchanged virtual photon with 4-momentum g = k — k’
Invariant virtual photon mass squared is given by

g2 =-02=-4EE -sin2(6/2)

with 8 the scattering angle in the lab frame \ p
E the incident electron energy K q
E’ the scattered electron energy
v = E — E’ the energy transfer

M the nucleon rest mass



Electron-Nucleon Scattering
Kinematics

 Invariant mass squared of the final state nucleon is

given by
W2 =M?>+2Mv —Q?

 |n elastic scattering W= M, which yields Q?=2Mv



Scattering Cross-Sections

« Rutherford cross-section for scattering of point-like
particles (no recoil)

(do\  Z?a*(ho)*  4Z%a?(hc)’E’?

\dQ )y 4E2-sin*(6/2) 04

« Mott cross-section accounting for spin s of electron

( ) ( =BTt (02) it pevic

\__/

do_ do_
Q Q

* Helicity h = Is conserved for relativistic particles

s - Ipl



Nuclear Form Factors

« Experimental data only agree with Mott cross-section for
very low g

« The spatial extension of nuclei can be accounted for by
form factors F (q ?)

(doy _f
~\d

\. 2 2
49 ) I F(g? |

do
dQ

exp

« The form factors are the Fourier transform of the charge
distribution f (x)

F(g»=Je' f(x) dx

(Born approximation and no recoil)



Nuclear Form Factors

* For spherical symmetric cases the charge distribution
only depends on the radius r

F@d)=4n [ sin g r /1 f(r)r2dr
lq| r/h



Nuclear Form Factors

p(r) IRq?) Example

' pointiike constant Electron

anw dipole Proton

gauss -{ L

homogeneous
sphere \.s/q"a»tn’l\ -

sphere with
N vl B
r



Nuclear Form Factors

Charge distribution f(r)

Form Factor F(g*)

point 6(r)/dn
exponential (a®/8%) - exp (—ar)
Gaussian (a2/27)*? - exp (—a?r?/2)
homogeneous { 3/4nR’ for r <R
sphere 0 forr>R

1 constant
(1+¢*/a®h?)? dipole
exp (—~¢*/2a*h?) Gaussian
- _
3a"" (sina —- acosa) oscillating

with a=|qlR/A




Nucleon Form Factors

« Scattering of nucleons with mass of about 938 MeV
requires recoil effects to be accounted for

- L (1-82%sin2(612))



Nucleon Form Factors

Electron interaction with the magnetic moment u of the
nucleon needs to be included also

The magnetic moment of a charged, point-like spin-1/2
particle is given by

¢’ ith ¢ = 2
= WI =
“H=2_8 M 2 8
We obtain for the scattering cross section
(d—O'\ — /d—O'\ . 1+27:tan2 9/2
(a2 ) T \aQ )y ) .
with 7 =

4 M? c?



Nucleon Form Factors

« The magnetic moments of nucleon deviates from 2
because of the composite structure

» Measured values are

u, = % Uy =+2.79 - uy for the proton
En
Un = —5— My =-191 -uy for the neutron
with u, = <"

2 M

p



Nucleon Form Factors

« Charge and current distribution can be described by form
factors as for nuclei

« Two form factors are needed to describe the charge and
magnetic distributions

« The cross-section is given by the Rosenbluth formula

( G (@) +7Gy (Q)

do do
(?) (?) ' it +27 Gy (O tan® (6/2))

« As 0?—0 also 7 — 0 and only G;* (0) remains above

Q2

4 M2 c?

with 7 =



Nucleon Form Factors

* For the form factors we expect in the limit 9> — 0

G.?(0) = 1
G,” (0) = +2.79
G, (0) = 0

G," (0) = —1.91



Measuring Nucleon Form
Factors

« To determine the two form factors independently, we
need to measure the cross section at fixed values of Q>
and vary the beam energy (scattering angle)

(do )\ /{do )
\dQ )/ \dQ )y
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Measuring Nucleon Form

Factors

* Result of measurements revealed dipole structure

GEp (Qz) =

G dipole ( QZ)
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Nucleon Charge Distribution

Spatial extend of nucleon charge can be found from
measured form factors

Fourier transform only applicable at low Q7

Dipole form factor corresponds to a diffuse and
exponentially falling charge distribution

o(r) = p0e 47 with a = 427 fm™!

The yields for the proton charge radius

V{(r?, = 0.86 fm



