

Fundamental Problem of Nuclear and Hadronic Physics

- Nearly all well-known ("visible") mass in the universe is due to hadronic matter
- Fundamental theory of hadronic matter exists since the 1960's:

Quantum Chromo Dynamics

- "Colored" quarks (u,d,c,s,t,b) and gluons; Lagrangian
- BUT: knowing the ingredients doesn't mean we know how to build hadrons and nuclei from them!
- akin to the question:
"Given bricks and mortar, how do you build a house?"
- Four related puzzles:

- What is the "quark-gluon wave function" of known hadrons?
- How are hadrons (nucleons) bound into nuclei?

Does their quark-gluon wave function change inside a nucleus?

- How do fast quarks and gluons propagate inside hadronic matter?
- How do fast quarks and gluons turn back into observable hadrons?

Hadron Structure

- Simple-most (constituent quark) model of nucleons (protons and neutrons)
- ... becomes much more complicated once we consider the full relativistic quantum field theory called QCD
- Effective theories: Quark model, χ PT, sum rules, ...
- and Lattice QCD!

Nuclear Structure

- Even more complicated!
- Effective degrees of freedom: nucleons, mesons, nucleon resonances... augmented by phenomenological NN potentials
- Effective theories: low-energy EFT, χ PT, relativistic and nonrelativistic potential models, shell model,...
- and Lattice QCD???

How Do We Study Hadron/Nuclear Structure?

- Energy levels: Nuclear and particle (baryon, meson) masses, excitation spectra, excited state decays -> Spectroscopy (What exists?)
- Elastic and inelastic scattering, particle production Reactions (Relationships?)
- Probing the internal structure directly Imaging (Shape and Content?)
- Particular way to encode this: Structure Functions
- "Parton wave function"? 5(6)-dim. Wigner distribution $\quad \rightarrow$...

Overview

- Partonic Structure of the Nucleon
- Polarized and Unpolarized Structure Functions
- Recent Results
- Spin-Averaged Structure Functions
- Spin-Dependent Structure Functions
- Nuclear Structure Functions
- Outlook
- From 1D to 3D
- Future Experiments

Parton Distribution Functions

- The 1D world of nucleon/nuclear collinear structure:

- Take a nucleon/nucleus
- Move it real fast along z \Rightarrow light cone momentum

$$
P_{+}=P_{0}+P_{\mathrm{z}}(\gg \mathrm{M})
$$

- Select a "parton" (quark, gluon) inside
- Measure its l.c. momentum

$$
p_{+}=p_{0}+p_{z}(m \approx 0)
$$

$-\Rightarrow$ Momentum Fraction $\left.\mathrm{x}=p_{+} / P_{+}{ }^{*}\right)$

- In DIS**: $p_{+} / P_{+} \approx \xi=\left(q_{z}-v\right) / M$

$$
\approx x_{B j}=Q^{2} / 2 M v
$$

- Probability: $f_{1}^{i}(x), i=u, d, s, \ldots, G$

In the following, will often write " $q_{i}(x)$ " for $f_{i}(x)$
*) Advantage: Boost-independent along z
${ }^{* *}$) DIS = "Deep Inelastic (Lepton) Scattering

Inclusive lepton scattering

Callan-Gross
WandzuraParton model: DIS can access $F_{1}(x)=\frac{1}{2} \sum e_{i}^{2} q_{i}(x)$ (and $\left.F_{2}(x) \approx 2 x F_{1}(x)\right)$ Wilczek $g_{1}(x)=\frac{1}{2} \sum_{i}^{i} e_{i}^{2} \Delta q_{i}(x)\left(\right.$ and $g_{2}(x) \approx-g_{1}(x)+\int_{x}^{1} \frac{g_{1}(y)}{y} d y$ At finite Q^{2} : pQCD evolution $\left(q\left(x, Q^{2}\right), \Delta q\left(x, Q^{2}\right) \Rightarrow\right.$ DGLAP equations), and gluon radiation

$$
g_{1}\left(x, Q^{2}\right)_{p Q C D}=\frac{1}{2} \sum_{q}^{N_{f}} e_{q}^{2}\left[(\Delta q+\Delta \bar{q}) \otimes\left(1+\frac{\alpha_{s}\left(Q^{2}\right)}{2 \pi} \delta C_{q}\right)+\frac{\alpha_{s}\left(Q^{2}\right)}{2 \pi} \Delta G \otimes \frac{\delta C_{G}}{N_{f}}\right]
$$

\Rightarrow access to gluons. $\delta C_{q}, \delta C_{G}$ - Wilson coefficient functions
SIDIS: Tag the flavor of the struck quark with the leading FS hadron \Rightarrow separate $q_{i}\left(x, Q^{2}\right), \Delta q_{i}\left(x, Q^{2}\right)$

Jefferson Lab kinematics: $Q^{2} \approx M^{2} \Rightarrow$ target mass effects, higher twist contributions and resonance excitations
Traditional "1-D" Parton Distributions (PDFs)
(integrated over many variables)

- Non-zero $R=\frac{F_{2}}{2 x F_{1}}\left(\frac{4 M^{2} x^{2}}{Q^{2}}+1\right)-1, g_{2}^{H T}(x)=g_{2}(x)-g_{2}^{W W}(x)$
- Further Q^{2}-dependence (power series in $\frac{1}{Q^{n}}$)

\Rightarrow Our 1D View of the Nucleon

(depends on x and the resolution of the virtual photon $\sim 1 / Q^{2}$)

Elastic scattering (Whole system recoils, $x=1, W=M$)
©

Low Q2: $W=$ final state invariant mass $=\sqrt{M^{2}+\left(1 / x^{-1}\right) Q^{2}}$

Resonances
$(x<1, W<2 \mathrm{GeV})$
Valence quarks ($x \geq 0.3, W>2 G e V$)

- Sea quarks, gluons " $(x<0.3)$
- "Wee Partons" ($x \rightarrow 0$, Diffraction, Pomerons)

Valence PDFs

- Behavior of PDFs still unknown for $x \rightarrow 1$
- SU(6): $d / u=1 / 2, \Delta u / u=2 / 3, \Delta d / d=-1 / 3$ for all x
- Relativistic Quark model: $\Delta \mathrm{u}, \Delta \mathrm{d}$ reduced
- Hyperfine effect (1-gluon-exchange): Spectator spin 1 suppressed, $d / u \rightarrow 0, \Delta u / u \rightarrow 1, \Delta d / d \rightarrow-1 / 3$
- Helicity conservation: $\mathrm{d} / \mathrm{u} \rightarrow 1 / 5, \Delta \mathrm{u} / \mathrm{u} \rightarrow 1, \Delta \mathrm{~d} / \mathrm{d} \rightarrow 1$
- Orbital angular momentum: can explain slower convergence to $\Delta \mathrm{d} / \mathrm{d} \rightarrow 1$
- Plenty of data on proton \rightarrow mostly constraints on u and Δu
- Knowledge on d limited by lack of free neutron target (nuclear binding effects in d, ${ }^{3} \mathrm{He}$)
- Large x requires very high luminosity and resolution; binding effects become dominant uncertainty for the neutron

Moments of Structure Functions

Related to matrix elements of local operators (OPE) - in principle accessible to lattice QCD calculations

Sum rules relate moments to the total spin carried by quarks in the nucleon (and β-decay matrix elements), sea quark asymmetries etc. At low Q2: Higher Twist, Parton-Hadron Duality, Chiral Perturbation Theory, GDH Sum Rule

Bjorken Sum Rule: $\Gamma_{1}^{p}-\Gamma_{1}^{n}=\frac{g_{A}}{6}+\mathrm{QCD}$ corr.

GDH sum rule

Unpolarized Structure Functions

