Hadronic Physics - Sebastian Kuhn

HADRON STRUCTURE: THE UNSOLVED PUZZLE

Sebastian Kuhn Old Dominion University Norfolk, Virginia

Fundamental Problem of Nuclear and Hadronic Physics

- Nearly all well-known ("visible") mass in the universe is due to hadronic matter
- Fundamental theory of hadronic matter exists since the 1960's: Quantum Chromo Dynamics
 - "Colored" quarks (u,d,c,s,t,b) and gluons; Lagrangian
- BUT: knowing the ingredients doesn't mean we know how to build hadrons and nuclei from them!
 - akin to the question:
 "Given bricks and mortar, how do you build a house?"
- Four related puzzles:
 - What is the "quark-gluon wave function" of known hadrons?
 - How are hadrons (nucleons) bound into nuclei?
 Does their quark-gluon wave function change inside a nucleus?
 - How do fast quarks and gluons propagate inside hadronic matter?
 - How do fast quarks and gluons turn back into observable hadrons?

Hadron Structure

- Simple-most (constituent quark) model of nucleons (protons and neutrons)
- ... becomes much more complicated once we consider the full relativistic quantum field theory called QCD
- Effective theories: Quark model, χPT, sum rules, ...
- and Lattice QCD!

Nuclear Structure

- Even more complicated!
- Effective degrees of freedom: nucleons, mesons, nucleon resonances... augmented by phenomenological NN potentials
- Effective theories: low-energy EFT, χPT, relativistic and nonrelativistic potential models, shell model,...
- and Lattice QCD???

How Do We Study Hadron/Nuclear Structure?

- Energy levels: Nuclear and particle (baryon, meson) masses, excitation spectra, excited state decays -> Spectroscopy (What exists?)
- Elastic and inelastic scattering, particle production Reactions (*Relationships?*)
- Probing the internal structure directly Imaging (Shape and Content?)
- Particular way to encode this: Structure Functions
 - "Parton wave function"?
 5(6)-dim. Wigner distribution

Overview

- Partonic Structure of the Nucleon
- Polarized and Unpolarized Structure Functions
- Recent Results
 - Spin-Averaged Structure Functions
 - Spin-Dependent Structure Functions
 - Nuclear Structure Functions
- Outlook
 - From 1D to 3D

Parton Distribution Functions

- The 1D world of nucleon/nuclear collinear structure:
 - Take a nucleon/nucleus
 - Move it real fast along z \Rightarrow light cone momentum $P_+ = P_0 + P_z (>>M)$
 - Select a "parton" (quark, gluon) inside
 - Measure **its** I.c. momentum $p_+ = p_0 + p_z$ (m≈0)

 $- \Rightarrow$ Momentum Fraction x = p_+/P_+^{*}

- In DIS^{**)}:
$$p_+/P_+ \approx \xi = (q_z - v)/M$$

 $\approx x_{Bj} = Q^2/2Mv$

- Probability:
$$f_1^i(x), i = u, d, s, ..., G$$

In the following, will often write " $q_i(x)$ " for $f_1^i(x)$

^{*)} Advantage: Boost-independent along z

**) DIS = "Deep Inelastic (Lepton) Scattering

Ζ

Inclusive lepton scattering

Callan-Gross Wandzura-Parton model: DIS can access

 $q(x;Q^2), \langle h \cdot H \rangle q(x;Q^2)$

Traditional "1-D" Parton **Distributions (PDFs)** (integrated over many variables)

$$F_{1}(x) = \frac{1}{2} \sum_{i}^{i} e_{i}^{2} q_{i}(x) \text{ (and } F_{2}(x) \approx 2xF_{1}(x) \text{) Wilczek}$$
$$g_{1}(x) = \frac{1}{2} \sum_{i}^{i} e_{i}^{2} \Delta q_{i}(x) \text{ (and } g_{2}(x) \approx -g_{1}(x) + \int_{x}^{1} \frac{g_{1}(y)}{y} dy \text{)}$$

At finite Q²: pQCD evolution ($q(x,Q^2), \Delta q(x,Q^2) \Rightarrow$ DGLAP equations), and gluon radiation

$$g_1(x,Q^2)_{pQCD} = \frac{1}{2} \sum_{q}^{N_f} e_q^2 \left[(\Delta q + \Delta q) \otimes (1 + \frac{\alpha_s(Q^2)}{2\pi} \delta C_q) + \frac{\alpha_s(Q^2)}{2\pi} \Delta G \otimes \frac{\delta C_G}{N_f} \right]$$

 \Rightarrow access to gluons. $\frac{\partial C_{g}}{\partial C_{g}} - Wilson$ coefficient functions

SIDIS: Tag the flavor of the struck guark with the leading FS hadron \Rightarrow separate $q_i(x,Q^2)$, $\Delta q_i(x,Q^2)$

Jefferson Lab kinematics: $Q^2 \approx M^2 \Rightarrow$ target mass effects, higher twist contributions and resonance excitations

- Non-zero $R = \frac{F_2}{2xF_1} \left(\frac{4M^2x^2}{Q^2} + 1 \right) 1, g_2^{HT}(x) = g_2(x) g_2^{WW}(x)$ Further Q²-dependence (power series in $\frac{1}{Q^n}$)

\Rightarrow Our 1D View of the Nucleon

xf(x,Q)

Valence PDFs

- Behavior of PDFs still unknown for $x \rightarrow 1$
 - SU(6): d/u = 1/2, $\Delta u/u = 2/3$, $\Delta d/d = -1/3$ for all x
 - Relativistic Quark model: Δu , Δd reduced
 - Hyperfine effect (1-gluon-exchange): Spectator spin 1 suppressed, $d/u \rightarrow 0$, $\Delta u/u \rightarrow 1$, $\Delta d/d \rightarrow -1/3$
 - Helicity conservation: $d/u \rightarrow 1/5$, $\Delta u/u \rightarrow 1$, $\Delta d/d \rightarrow 1$
 - Orbital angular momentum: can explain slower convergence to $\Delta d/d \rightarrow 1$
- Plenty of data on proton \rightarrow mostly constraints on u and Δu
- Knowledge on d limited by lack of free neutron target (nuclear binding effects in d, ³He)
- Large x requires very high luminosity and resolution; binding effects become dominant uncertainty for the neutron

Moments of Structure Functions

Related to matrix elements of local operators (OPE) - in principle accessible to lattice QCD calculations

Sum rules relate moments to the total spin carried by quarks in the nucleon (and β -decay matrix elements), sea quark asymmetries etc.

At low Q²: Higher Twist, Parton-Hadron Duality, Chiral Perturbation Theory, GDH Sum Rule

Bjorken Sum Rule:
$$\Gamma_{l}^{p} - \Gamma_{l}^{n} = \frac{g_{A}}{6} + QCD \text{ corr.}$$

GDH Sum Rule: $\Gamma_{1}(Q^{2} \rightarrow 0) \rightarrow -\frac{Q^{2}}{2M^{2}} \frac{\kappa^{2}}{4}$
...and γ_{0}, δ_{LT}
Gottfried Sum Rule:
 $\int_{0}^{1} [F_{2}^{p}(x,Q^{2}) - F_{2}^{n}(x,Q^{2})] \frac{dx}{x} = \frac{1}{3} - \frac{2}{3} \int_{0}^{1} [\overline{d}(x,Q^{2}) - \overline{u}(x,Q^{2})] dx$
 $Q^{2} (GeV^{2})$
GDH sum rule

Unpolarized Structure Functions

12