Solar neutrinos: the problem and its solution

R. Schiavilla

Theory Center, Jefferson Lab, Newport News, VA 23606, USA
Physics Department, Old Dominion University, Norfolk, VA 23529, USA

September 30, 2015
Discovery of radioactivity

- Becquerel: discovery of radioactivity in uranium salts
- Rutherford: α and β radioactivity
- Curies: discovery of polonium and radium
Discovery of radioactivity

- **Becquerel**: discovery of radioactivity in uranium salts
- **Rutherford**: α and β radioactivity
- **Curies**: discovery of polonium and radium
Discovery of radioactivity

- **Becquerel**: discovery of radioactivity in uranium salts
- **Rutherford**: α and β radioactivity
- **Curies**: discovery of polonium and radium
Discovery of radioactivity

- **Becquerel**: discovery of radioactivity in uranium salts
- **Rutherford**: α and β radioactivity
- **Curies**: discovery of polonium and radium
α, β, and γ radioactivity

The are Three Types of Radioactive Decay
3 October 2009

\[A \longrightarrow B + \text{radiation } \alpha/\beta/\gamma \]

\[M_A c^2 = M_B c^2 + E_{\text{radiation}} + (B \text{ kinetic energy}) \]

- **α**: nucleus of helium atom (2 p and 2 n)
- **β**: energetic electron
- **γ**: energetic electromagnetic radiation
Conservation of energy in β decay: a problem

- Chadwick: electron in β decay emerges with a continuum spectrum of kinetic energies.
- Conservation of energy appears to be violated:

$$T_e \simeq M_A c^2 - M_B c^2 - M_e c^2$$

- Bohr: principle may not be valid in atomic phenomena.
Conservation of energy in β decay: a problem

- **Chadwick**: electron in β decay emerges with a continuum spectrum of kinetic energies
- Conservation of energy appears to be violated:

$$T_e \simeq M_A c^2 - M_B c^2 - M_e c^2$$

- **Bohr**: principle may not be valid in atomic phenomena
Conservation of energy in β decay: a problem

- **Chadwick:** electron in β decay emerges with a continuum spectrum of kinetic energies
- Conservation of energy appears to be violated:

$$T_e \simeq M_A c^2 - M_B c^2 - M_e c^2$$

- **Bohr:** principle may not be valid in atomic phenomena
Conservation of energy in β decay: a problem

- **Chadwick**: electron in β decay emerges with a continuum spectrum of kinetic energies
- Conservation of energy appears to be violated:

 $$T_e \simeq M_A c^2 - M_B c^2 - M_e c^2$$

- **Bohr**: principle may not be valid in atomic phenomena
Pauli’s proposal

- Pauli: additional particle emitted in β decay
 \[A \rightarrow B + e^- + x \]
 \[T_e + E_x \approx M_A c^2 - M_B c^2 - M_e c^2 \]

- x particle must be neutral and lighter than the electron
Pauli’s proposal

- **Pauli:** additional particle emitted in β decay

$$A \longrightarrow B + e^- + x$$

$$T_e + E_x \approx M_A c^2 - M_B c^2 - M_e c^2$$

- x particle must be neutral and lighter than the electron
Pauli’s proposal

- **Pauli**: additional particle emitted in β decay

 \[A \longrightarrow B + e^- + x \]

 \[T_e + E_x \approx M_A c^2 - M_B c^2 - M_e c^2 \]

- x particle must be neutral and lighter than the electron
Fermi’s theory

- **Fermi: in nucleus the process** \(n \rightarrow p + e^- + \bar{\nu}_e \) **occurs**

- **Fermi calls the \(x \) particle “neutrino”**
Weak interaction

- Transformation $n \rightarrow p$ caused by a new interaction, the “weak interaction”
- The “strong interaction” binds protons and neutrons in the nucleus
- Gravitational and electromagnetic interactions act on large distances (familiar to us from our everyday life)
- The strong and weak interactions act on distances of the order 10^{-13} cm \ll atom size of 10^{-8} cm
- Bethe and Peierls calculate probability for

 $A + \nu_e \rightarrow B + e^-$ (from Fermi’s theory)

 and conclude there is “…no practically possible way of observing the neutrino”
Weak interaction

- Transformation $n \rightarrow p$ caused by a new interaction, the "weak interaction"
- The "strong interaction" binds protons and neutrons in the nucleus
- Gravitational and electromagnetic interactions act on large distances (familiar to us from our everyday life)
- The strong and weak interactions act on distances of the order $10^{-13} \text{ cm} \ll$ atom size of 10^{-8} cm
- Bethe and Peierls calculate probability for

$$A + \nu_e \rightarrow B + e^- \text{ (from Fermi’s theory)}$$

and conclude there is “... no practically possible way of observing the neutrino”
Detecting ν's: Pontecorvo's proposal

- Identify copious source of neutrinos: a nuclear reactor produces $\sim 10^{13}$ neutrinos/sec/cm2.
- Pontecorvo: use cleaning fluid (C$_2$Cl$_4$) and the reaction
 \[^{37}\text{Cl} + \nu_e \longrightarrow ^{37}\text{Ar} + e^- \]
 and detect products from radioactive decay of ^{37}Ar.
- Pontecorvo does not put into practice his proposal (defects to the USSR in early fifties).
Detecting ν's: Pontecorvo's proposal

- Identify copious source of neutrinos: a nuclear reactor produces $\sim 10^{13}$ neutrinos/sec/cm2
- Pontecorvo: use cleaning fluid (C_2Cl_4) and the reaction

$$^{37}\text{Cl} + \nu_e \rightarrow ^{37}\text{Ar} + e^-$$

and detect products from radioactive decay of ^{37}Ar
- Pontecorvo does not put into practice his proposal (defects to the USSR in early fifties)
Detecting ν’s: Pontecorvo’s proposal

- Identify copious source of neutrinos: a nuclear reactor produces $\sim 10^{13}$ neutrinos/sec/cm2
- **Pontecorvo**: use cleaning fluid (C_2Cl_4) and the reaction
 \[^{37}Cl + \nu_e \rightarrow ^{37}Ar + e^- \]
 and detect products from radioactive decay of ^{37}Ar
- Pontecorvo does not put into practice his proposal (defects to the USSR in early fifties)
Detecting ν’s: Pontecorvo’s proposal

- **Identify copious source of neutrinos:** a nuclear reactor produces $\sim 10^{13}$ neutrinos/sec/cm2
- **Pontecorvo:** use cleaning fluid (C_2Cl_4) and the reaction
 $$37Cl + \nu_e \rightarrow 37Ar + e^-$$
 and detect products from radioactive decay of ^{37}Ar
- **Pontecorvo does not put into practice his proposal**
 (defects to the USSR in early fifties)
Detecting ν’s: Reines and Cowan’s proposal

- **Reines and Cowan**: use the reaction (also predicted by Fermi’s theory)

$$A Z + \bar{\nu}_e \longrightarrow A(Z - 1) + e^+$$

and detect positron (e^+)

- Experiment facilitated by recent discovery of organic fluids which scintillate
Fig. 1. The first conceptual proposed experiment to detect the free neutrino. This experiment was approved by the authorities at Los Alamos but was superseded by the approach which used a fission reactor as a neutrino source and the delayed coincidence reaction to reduce the background.
Neutrinos from nuclear reactor

Problem: background from cosmic rays

Solution: detect e^+ and n created by weak interactions

Irrefutable proof that neutrinos exist in 1956!
It is discovered that one Helium atom is slightly less massive than four Hydrogen atoms (ΔM).

Eddington: nuclear reactions are responsible for energy production in the Sun ($E = \Delta M \cdot c^2$).

Bethe proposes the sequence of reactions:

\[p + p \rightarrow d + e^+ + \nu_e; \quad p + d \rightarrow ^3\text{He} + \gamma; \quad ^3\text{He} + ^3\text{He} \rightarrow ^4\text{He} + p + p \]

for the conversion $4p \rightarrow ^4\text{He}$ and the release of energy.
A better still nuclear reactor: the Sun!

- It is discovered that one Helium atom is slightly less massive than four Hydrogen atoms (ΔM)
- **Eddington**: nuclear reactions are responsible for energy production in the Sun ($E = \Delta M \ c^2$)
- **Bethe** proposes the sequence of reactions

$$ p + p \rightarrow d + e^+ + \nu_e; \quad p + d \rightarrow ^3\text{He} + \gamma; \quad ^3\text{He} + ^3\text{He} \rightarrow ^4\text{He} + p + p $$

for the conversion $4 \ p \rightarrow ^4\text{He}$ and the release of energy
A better still nuclear reactor: the Sun!

- It is discovered that one Helium atom is slightly less massive than four Hydrogen atoms (ΔM)
- **Eddington**: nuclear reactions are responsible for energy production in the Sun ($E = \Delta M c^2$)
- **Bethe** proposes the sequence of reactions

 $p+p \rightarrow d+e^++\nu_e$; \hspace{1cm} $p+d \rightarrow ^3\text{He}+\gamma$; \hspace{1cm} $^3\text{He}+^3\text{He} \rightarrow ^4\text{He}+p+p$

 for the conversion $4p \rightarrow ^4\text{He}$ and the release of energy
The Sun as a source of neutrinos

- The previous sequence of reactions converts
 \[4p + 2e^- \rightarrow ^4\text{He} + 2\nu_e + (\gamma \text{ radiation}) \]

 and releases the energy
 \[E_\gamma = \left[4\, M(^1\text{H}) + 2\, M_e - M(^4\text{He}) \right] c^2 - 2 \langle E_{\nu_e} \rangle \]
 \[\simeq 26.7 \text{ MeV} \left(4.3 \times 10^{-12} \text{ J} \right) \]

- Sun luminosity is \(L_\odot \simeq 3.8 \times 10^{26} \text{ J} \cdot \text{s}^{-1} = 3.8 \times 10^{17} \text{ GW} \)

 \[N_{\nu_e} \simeq 2 \times L_\odot / \left(4.3 \times 10^{-12} \text{ J} \right) \simeq 1.8 \times 10^{38} \text{ s}^{-1} \]

- The neutrino flux on Earth due to \(pp \) weak fusion is
 \[\phi(pp) \simeq N_{\nu_e} / (4 \pi D^2) \simeq 6.4 \times 10^{10} \text{ neutrinos/(cm}^2 \cdot \text{s)} \]

 where \(D = 1.5 \times 10^8 \text{ km} \) is the distance Earth-Sun
Detecting solar ν_e

Davis sets up tank with 3.8×10^5 liters of C$_2$Cl$_4$ at a depth of 1.5 km in Homestake mine to detect 37Ar from

$$^{37}\text{Cl} + \nu_e \rightarrow ^{37}\text{Ar} + e^-$$

but ν_e's due to pp fusion have too low E_{ν_e} to activate it.

ν_e's from 8B decay in pp chain have $E_{\nu_e} \lesssim 14$ MeV.
Detecting solar ν_e

- **Davis** sets up tank with 3.8×10^5 liters of C_2Cl_4 at a depth of 1.5 km in Homestake mine to detect ^{37}Ar from

$$^{37}\text{Cl} + \nu_e \rightarrow ^{37}\text{Ar} + e^-$$

but ν_e's due to pp fusion have too low E_{ν_e} to activate it.

- ν_e's from ^8B decay in pp chain have $E_{\nu_e} \lesssim 14 \text{ MeV}$.
Detecting solar ν_e

- **Davis** sets up tank with 3.8×10^5 liters of C_2Cl_4 at a depth of 1.5 km in Homestake mine to detect ^{37}Ar from $^{37}\text{Cl} + \nu_e \rightarrow ^{37}\text{Ar} + e^-$

- but ν_e's due to pp fusion have too low E_{ν_e} to activate it

- ν_e's from ^8B decay in pp chain have $E_{\nu_e} \lesssim 14$ MeV
Bahcall develops “standard solar model” (SSM) and estimates ν_e fluxes from reactions in pp chain.

SSM predicts that less than a single 37Ar is produced per day on average!
Bahcall develops “standard solar model” (SSM) and estimates ν_e fluxes from reactions in pp chain

SSM predicts that less than a single ^{37}Ar is produced per day on average!
Bahcall develops “standard solar model” (SSM) and estimates ν_e fluxes from reactions in pp chain.

SSM predicts that less than a single 37Ar is produced per day on average!
The solar neutrino problem

- **Davis** announces first results in 1968: only 1/3 of expected ν_e from SSM are detected
- Doubts on (i) *Davis’* ability to count a few 37Ar atoms out of 10^{30} atoms in tank and (ii) validity of Bahcall’s SSM
- *Davis’* first results were later confirmed over two decades of running!
- A different experiment (Kamiokande, 1989) confirms ν_e deficit observed by Davis
In late 80’s a new experiment, Kamiokande (K), comes online, later upgraded to Super-Kamiokande (SK)

- **SK detector:** \(~ 50 \text{ ktons of pure water and } \sim 11,000\) photomultipliers (PMT’s)
SK: a picture with installed PMT’s

- Stainless steel cylindrical container (∼39 m diameter and ∼41 m height)
Solar neutrinos

Radioactivity

Theory of β decay

Neutrinos

How the Sun shines

The problem

Neutrino flavors

The solution

SK: a picture with nearly filled tank

(c) Kamioka Observatory, ICRR(Institute for Cosmic Ray Research), The University of Tokyo
K experiment confirms Davis’ results

- A ν_e collides with e^- in water molecule and propels it forward
- Fast e^- produces cone of light (Cherenkov radiation) along its path
- K can infer direction and energy of incoming ν_e from direction and intensity of Cherenkov light
- In 1989 K announces that ν_e’s come from the Sun and confirms deficit observed by Davis
K experiment confirms Davis’ results

Elusive Particles Continue to Puzzle Theorists of the Sun

By GEORGE JOHNSON
Published: June 9, 1998

ONE of the biggest embarrassments of 20th-century science -- the sun’s refusal to emit nearly as...
The Standard Model and neutrino flavors

- There are three neutrino flavors: ν_e, ν_μ, and ν_τ (and their three antiparticles: $\bar{\nu}_e$, $\bar{\nu}_\mu$, and $\bar{\nu}_\tau$)

$$\mu^- \longrightarrow e^- + \nu_\mu + \bar{\nu}_e \quad \tau_\mu \simeq 2.2 \times 10^{-6}\text{s}$$

- ν_μ and ν_τ discovered, respectively, in 1962 and 2000
Pontecorvo’s insight: neutrinos have mass and oscillate between flavors, for example $\nu_e \rightarrow \nu_\mu$ or $\nu_e \rightarrow \nu_\tau$.

Only ν_e’s are produced by the Sun and can be detected in Davis’ experiment, while ν_μ and ν_τ escape detection.

How do oscillations occur? In Quantum Mechanics (QM) particles can also be described by waves:

$$\lambda = h/p \quad h = \text{Planck constant} \quad p = mv \text{ momentum}$$
Neutrino flavor oscillations I

- **Pontecorvo’s insight**: neutrinos have mass and oscillate between flavors, for example $\nu_e \rightarrow \nu_\mu$ or $\nu_e \rightarrow \nu_\tau$
- Only ν_e’s are produced by the Sun and can be detected in Davis’ experiment, while ν_μ and ν_τ escape detection.
- How do oscillations occur? In Quantum Mechanics (QM) particles can also be described by waves:
 \[\lambda = \frac{h}{p} \quad h = \text{Planck constant} \quad p = m \nu \text{ momentum} \]
Neutrino flavor oscillations I

- **Pontecorvo’s insight**: neutrinos have mass and oscillate between flavors, for example $\nu_e \rightarrow \nu_\mu$ or $\nu_e \rightarrow \nu_\tau$.
- Only ν_e’s are produced by the Sun and can be detected in Davis’ experiment, while ν_μ and ν_τ escape detection.
- How do oscillations occur? In Quantum Mechanics (QM) particles can also be described by waves:

$$\lambda = h/p \quad h = \text{Planck constant} \quad p = mv \quad \text{momentum}$$
Neutrino flavor oscillations I

- **Pontecorvo’s insight:** neutrinos have mass and oscillate between flavors, for example $\nu_e \rightarrow \nu_\mu$ or $\nu_e \rightarrow \nu_\tau$
- **Only ν_e’s are produced by the Sun and can be detected in Davis’ experiment, while ν_μ and ν_τ escape detection**
- **How do oscillations occur?** In Quantum Mechanics (QM) particles can also be described by waves

$$\lambda = h/p \quad h = \text{Planck constant} \quad p = m \nu \text{ momentum}$$
In the case of two flavors, for simplicity, QM predicts

\[P_{\nu_e \rightarrow \nu_\mu}(x) = \sin^2(2\theta) \sin^2 \left(\frac{\pi x}{L} \right) \text{ with } L = \frac{2 \hbar c^3}{m_2^2 - m_1^2} \]

Presence of matter (electrons in solar interior) modifies \(P_{\nu_e \rightarrow \nu_\mu}(x) \) and enhances oscillations (MSW effect)
Evidence accumulates that neutrinos oscillate: SK measures ν_e's and ν_μ's due to cosmic rays

$$\frac{\#\nu_\mu}{\#\nu_e} \approx 1 \text{ versus expected } \approx 2$$

Variation of ν_μ flux with zenith angle
Evidence accumulates that neutrinos oscillate: SK measures ν_e's and ν_μ's due to cosmic rays

$$\frac{\#\nu_\mu}{\#\nu_e} \approx 1 \text{ versus expected } \approx 2$$

Variation of ν_μ flux with zenith angle.
Evidence accumulates that neutrinos oscillate: SK measures ν_e’s and ν_μ’s due to cosmic rays

\[
\frac{\#\nu_\mu}{\#\nu_e} \simeq 1 \text{ versus expected } \simeq 2
\]

Variation of ν_μ flux with zenith angle
The Sudbury Neutrino Observatory (SNO)

- 1,000 tons of heavy water (D_2O) and 9,600 PMT’s mounted on a geodesic support structure
- SNO detects neutrinos via the processes:

 \[d + \nu_e \rightarrow p + p + e^- \quad d + \nu_x \rightarrow p + n + \nu_x \]
Solar neutrinos

Radioactivity

Theory of β decay

Neutrinos

How the Sun shines

The problem

Neutrino flavors

The solution

The SNO experiment
The SNO results: the solar ν_e problem solved!

- ν_e flux: CC from reaction $d + \nu_e \rightarrow p + p + e^-$
- mostly ν_e flux: ES from $e^- + \nu_e \rightarrow e^- + \nu_e$
- $\nu_e + \nu_\mu + \nu_\tau$ flux: NC from $d + \nu_x \rightarrow p + n + \nu_x$
Summary

- The solar neutrino problem: the story of a triumph!
- The physics of neutrinos is now a field of intense research activity:
 - determination of Δm_{ij}^2 and θ_{ij}
 - role of neutrinos in supernova explosions
 - neutrinos and the matter-antimatter asymmetry problem
 - ...
- The support of the U.S. Department of Energy under contract DE-AC05-06OR231 is gratefully acknowledged
Solar neutrinos

Radioactivity

Theory of β decay

Neutrinos

How the Sun shines

The problem

Neutrino flavors

The solution

ν squared-mass splitting and mixing angle