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Greek Alphabet 
Capital Α        Β      Γ           Δ        Ε          Ζ    Η      Θ      Ι       Κ          Λ          Μ 

Lowercase α        β       γ            δ        ε           ζ η     θ, ϑ   ι      κ         λ         µ 

Name alpha  beta  gamma  delta  epsilon  zeta   eta   theta   iota  kappa lambda   mu 
Capital Ν       Ξ     Ο              Π       Ρ        Σ         Τ    Υ          Φ        Χ        Ψ       Ω 

Lowercase ν        ξ      ο              π        ρ        σ τ     υ          φ, ϕ     χ         ψ       ω 

Name nu      xi    omicron   pi      rho    sigma   tau   upsilon phi     chi      psi    omega 
 

Important constants: 
Speed of light: c = 2.9979.108 m/s (roughly a foot per nanosecond) 
Planck constant: h = 6.626.10-34 J s; ! = h / 2π = 1.0546.10-34 J s 
Fundamental charge unit: e = 1.6022.10-19 C 
Coulomb’s Law constant: 1/ 4πε0 = 8.988.109 Nm2/C2s 
Gravitational constant: G = 6.674.10-11 Nm2/kg2 
Avogadro constant: NA = 6.022.1023 particles per mol; 1 mol = A gram (A = molecular mass) 
Boltzmann constant: k = 1.38.10-23 J/K = 8.617.10-5 eV/K; R = NA

. k = 8.314 J/K/mol 
Stefan-Boltzmann constant: σ = 5.67.10-8 W/m2K4 
Thompson cross section: σ e = 6.65 ⋅10−29  m2  

Electron mass: me = 9.109.10-31 kg 
Hydrogen atom (1H) mass: mH = 1.6735.10-27 kg (A = 1.0078) 
Helium atom (4He) mass: m4He

= 6.6465 ⋅10−27  kg  (A = 4.0026) 

Hubble constant: Ho = 68 km/s / Mpc 
MEarth = 5.97.1024 kg ; REarth = 6.371.106 m 
Msun = 1.989.1030 kg ; Rsun = 6.955.108 m, Δearth-sun = 1 A.U. = 1.496.1011 m 
Lsun = 3.84.1026 W (corresponds to black-body effective temperature T = 5777 K; M = 4.83) 

Useful conversions: 
1 A.U. = 1.496.1011 m; 1 parsec = 1 pc = 206,265 A.U. = 3.086.1016 m = 3.262 light years 
Absolute magnitude: M = m at 10 pc distance; M2 = M1 + 2.5.log10(L1/L2) 
  L = luminosity = light energy emitted/second; M = 71.29− 2.5lg L Watt( )   

Apparent magnitude: m = M + 5.log10(d/10 pc); m2 = m1 + 2.5.log10(F1/F2) 

  F = brightness = light absorbed/second/m2; F = L
4πd 2 ;m = 66.29− 2.5lg L
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1 fm (= 1 “Fermi”) = 10-15 m, 1 nm = 10-9 m = 10 Å; 1 PHz = 1015 Hz 
1 eV = e. 1V = 1.602.10-19 J (Energy of elementary charge after 1 V potential difference) 
1 keV = 1000 eV, 1 MeV= 106 eV, GeV = 109 eV, 1 TeV = 1012 eV 
New unit of mass m: 1 eV/c2 = mass equivalent of 1 eV (Relativity!) = 1.78.10-36 kg 
Momentum p: 1 eV/c = 5.34.10-28 kg m/s; p in eV/c = mass in eV/c2 times velocity in units of c 
Planck contant: !c = 197.33 eV nm (1 nm = 10-9 m); ! = 6.582.10-16 eVs = 0.658 eV/ PHz 
Fine-structure constant: α = e2 / 4πε0!c = 1/137.036 
Electron mass: me = 510,999 eV/c2 ≈  0.511 MeV/c2; Muon mass: mµ = 105.658 MeV/c2 ≈  207 . me 
Muon mass: mµ = 105.658 MeV/c2 ≈  207 . me 
Proton mass: mp

 = 938.272 MeV/c2 ≈  1836 . me ; Neutron mass: mn = 939.565 MeV/c2 ≈  1839 . me 
Neutron mass: mn = 939.565 MeV/c2 ≈  1839 . me 
Atomic mass unit (1/12 of the mass of a 12C atom, ⇔A ≡ 1): u = 931.494 MeV/c2  ≈  1823 . me 
Rydberg energy: Ry = me c2 α2/ 2 = 13.606 eV 
Bohr Radius: a0 = !c / (me c2 α) = 0.0529 nm (roughly ½ Å). 
Planck Length: lp = G! c3 =1.616 ⋅10−35m.  Planck Energy: EP = !c lP =1957MJ =1.22 ⋅10

28eV  

Planck mass: mP = Ep/c2 = 22 µg. Planck time: tP = lP/c = 5.39.10-44 s. 
 

Special Relativity: 
4-vector: Event (ct, x, y, z) = ct, !r( )  =: (x0, x1, x2, x3) = xµ, µ = 0…3 

For an inertial system S’ moving along the x-axis of S with constant velocity v < c, and with all 
axes aligned and the same origin (xµ = (0,0,0,0) ó x’µ = (0,0,0,0) ): 

γ =
1

1− v2 / c2
; x ' = γ x − v

c
ct

"

#
$

%

&
' ; ct ' = γ ct − v

c
x

"

#
$

%

&
' ; y = y ' ; z = z '  

Clocks in S’ appear to S as if they were going slow by factor 1/γ, and vice versa. 
Length of object at rest in S’ appears contracted by factor 1/γ in S.

 

Velocity addition:  ux
c
=

u'x
c
+
v
c
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'
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uy
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=
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'
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Doppler shift: λobs
λemitted

= (z+1) = 1+ v|| / c
1− v2 / c2

  (v is the relative velocity between emitter and 

observer and v|| is its component along the line of sight; z > 0 is redshift, z < 0 is blueshift) 
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Invariant interval between two events (points in 4-dim. space-time) separated by Δx µ = Δct,Δ!r( ) :

Δs( )2 = Δct( )2 − Δ
!r( )2 = Δxµgµν

µ,ν=0...3
∑ Δxν = Δct Δx Δy Δz( )

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Δct
Δx
Δy
Δz

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 
The 4x4 matrix g is called the “metric” - it helps measure distances in terms of coordinates. 
The invariant interval has the same magnitude in all inertial systems! 

Positive (Δs)2: “time-like separation” => elapsed “eigen” (proper) time Δτ = 1
c

Δs( )2  in an inertial 

system that travels from the start point (event) to the end point (event) of the interval. Negative 
(Δs)2: “space-like separation” (too far for any causal connection between the events). 
(Δs)2= 0: “light-like separation”; a light ray could travel from one event to the other. 

Four-momentum: . u = velocity,  

E = P0.c is total energy of object = sum of rest mass energy (Erest = mc2) plus kinetic energy  
Tkin = (Γ-1)*mc2 (≈ m/2 u

2 only if u<<c). Sum of all momenta is conserved in collisions, separately 
for each component. Transformation of Pµ to coordinate system S’ is analog to xµ (see above). 

Invariant Interval: P0( )
2
−
!
P 2 =

E
c

⎛

⎝
⎜

⎞

⎠
⎟
2

−Px
2 −Py

2 −Pz
2 =m2c2 ⇒ E = c m2c2 +

!
P 2 ;
!u
c
=

!
Pc
E

 .  

Objects with no rest mass (e.g., photons): always u = c,  E = |P|c. 

Gravity: 
Newtonian Gravity: 

Relationship between distance a of two masses M and m and orbital period: ω 2 =
G M +m( )

a3
 

Gravitational potential (=potential energy per unit mass) at a distance r from a spherical mass M:  

Φgrav =
Vgrav
m

= −
GM
r

. Gravitational potential energy of uniform sphere of mass M and radius R:  

Vgrav = −
3
5
GM 2

R
. Virital Theorem: Tkin = −Etot =

1
2
Vgrav  for a system of masses in stable orbits. 

General Relativity: 
Freely falling reference frames are the new local inertial coordinate systems, where photons move 
with the speed of light in straight lines and a resting object stays at rest in the absence of external 
forces (other than gravity). Objects under the influence of only gravity (no other force) follow 
“geodesics” (best possible rendition of a “straight line”) which maximize the proper time elapsed 
between 2 points (analog to ordinary straight lines that correspond to the shortest distance between  
2 points).  

Pµ = E / c,Px,Py,Pz( ) = (Γmc,Γm!u); Γ = 1
1− "u2 / c2
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Time Dilation: The local time tlocal near a massive object elapses more slowly than time t∞ in the 

coordinate system of a fixed observer far away: Δtlocal = 1+
2Φgrav

c2
Δt∞ ;Φgrav =

Vpot
grav

m
= −

GM
r

%

&
'

(

)
*    

(last expression is for spherical mass M) 

Schwarzschild radius: Rs =
2GM
c2

⇒ Δtlocal = 1− Rs
r
Δt∞  . Local elapsed time near Schwarzschild 

radius (= event horizon)  becomes zero for any finite remote elapsed time -> all motion appears to 
come to a standstill as seen from far away (∞ slow “ageing”).  => Schwarzschild metric: 

Δs( )2 = Δxµgµν
µ,ν=0...3
∑ Δxν = Δct Δr Δθ Δϕ( )

1− Rs / r 0 0 0
0 −1 / 1− Rs / r( ) 0 0

0 0 −r2 0
0 0 0 −r2 sin2 θ
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Proper time Δτ = 1
c

Δs( )2  near spherical mass M: dτ = 1− Rs
r
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Curvature: No global inertial coordinate systems are possible in general, since the acceleration of 
gravity (“free fall”) has different magnitudes and different directions at different points in space. 
Consequence: “straight” lines (= geodesics) become curved (both in real space –> bending of light 
around massive objects, and in space-time –> different rates of falling at different radial distance); 
parallel straight lines (light rays) can converge in a single point (Gravitational lensing) etc. => 
space-time itself is curved! Consequences: Light rays bending near massive objects (stars etc.), 
time-dilation and red-shift of light emitted near massive objects, event horizons,… 

Universe at large:  
Co-moving coordinate system: !rc = const.  for a point (object) locally at rest relative to “Hubble 
flow”; true distance from origin D = a(t)rc . Scale factor a(t) = Radius of curvature in a curved 

universe (otherwise arbitrary; rc is meant to be dimensionless). Universal time t (same everywhere; 
defined through Hubble parameter H(t) – see below). t0 = present time: 

Hubble law: vr =
dD
dt

= !a(t)rc =
!a(t)
a(t)

D(t) =:H (t)D⇒ H (t) = !a(t)
a(t)

 (Hubble parameter). At present: 

H0 = H (t0 ) = 68− 70 km/s
1 Mpc

≈
1

14 ⋅109 yr
. Speed of light in co-moving coordinates: drc

dt
=

c
a(t)

 

Redshift for light emitted at t and received at t0:  z =
a(t0 )
a(t)

−1 . Invariant distance of object at time of 

emission: rc (em.) =
c
a(t)

dt
te

t0

∫ ⇒ D(em., te ) = a(te )rc (em.); D(em., t0 ) = a(t0 )rc (em.) . 

General (Walker-Robertson) metric: ds2 = dt2 − a2 (t) drc
2 + SK

2 (rc ) dθ
2 + sin2θ dϕ 2( )"

#
$
% .  
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Critical density: ρc (t) =
3H 2 (t)
8πG

.  

Today: ρc (t0 ) = 3H 2
0

8πG
≈10−26  kg/m3 ≈  6 protons/m3  ≈  9 ⋅10−10  J/m3   

Closed Universe (positive curvature): ρtot = ρM + ρR + ρΛ > ρc  ⇒ K =1, SK (rc ) = sin(rc ) .  
Flat Universe (no curvature): ρtot = ρc  ⇒ K = 0, SK (rc ) = rc .  
Open Universe (negative curvature): ρtot < ρc  ⇒ K = −1, SK (rc ) = sinh(rc ) . 
 
Evolution: 

H 2 (t) = !a
2 (t)
a2 (t)

=
8π
3
Gρtot (t)−

Kc2

a2 (t)
= H0

2 ρtot (t)
ρc (t0 )

−
Kc2

H0
2a2 (t)

⎛

⎝
⎜

⎞

⎠
⎟= H0

2 ΩM (t)+ΩR (t)+ΩΛ (t)+ΩK (t)( )

⇒ !a(t) = a(t)H0 ΩM (t)+ΩR (t)+ΩΛ (t)+ΩK (t)⇒
da
a
= ΩM (t)+ΩR (t)+ΩΛ (t)+ΩK (t) H0dt

 

with the following ingredients: 
1) Matter (both baryonic and dark matter), non-relativistic, density due to mass:  

ΩM (t) =
ρM (t)
ρc (t0 )

=
ρM (t0 )
ρc (t0 )

a30
a3(t)

=ΩM
0 a30
a3

.  (Note the “mixed defintion” where ρc is always taken at 

today’s value). Today: ΩM
0 ≈ 0.3 , roughly 26% dark matter and 4% baryons. 

2) Radiation (any relativistic particles, including photons, neutrinos in the early Universe and ultra-hot 

matter): ΩR (t) =
ρR (t)
ρc (t0 )

=
ε(t) / c2

ρc (t0 )
=
ρR (t0 )
ρc (t0 )

a40
a4 (t)

=ΩR
0 a40
a4

.  

ε(t) = energy density ∝T 4 ;T (t) = T t0( ) a0
a(t)

 . Today: ΩR
0 = 8.24 ⋅10−5  (mostly due to 2.7 K CMB) 

3) Dark energy (cosmological constant Λ): ΩΛ (t) = ρΛ (t)
ρc (t0 )

=
ρΛ (t0 )
ρc (t0 )

 (const.) =ΩΛ
0 . Today, ΩΛ

0 ≈ 0.7 . 

4) Curvature: ΩK (t) = −
Kc2

H0
2a2 (t)

=ΩK
0 a20
a2

. Note: By definition ΩK
0 =1−ΩM

0 −ΩR
0 −ΩΛ

0 . In principle, can 

be negative (open Universe) or positive (closed Universe). Today’s value unknown but very close to 0 
(within 2%). Must have been extremely close to 0 in the early Universe (Inflation predicts 0).  
 

General behavior of scale factor for different scenarios (dominance of one of the Ω terms): 
Matter dominated Universe: a(t) = a0 1+ 3

2 H0t( )2/3  Radiation dominance: a(t) = a0 1+ 2H0t( )1/2  
Dark energy/inflation dominance: a(t) = a0e

H0t . (Negative) curvature dominance: a(t) = a0 + ct  
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Quantum Mechanics: 
Formal/abstract (for experts only): All knowledge about a system is encoded in state vector 
ψ . State vectors can be linearly combined, and we can define a scalar product ψ ' ψ  (complex 

number). By convention all state vectors are normalized to 1: ψ ψ =1  .  
Observables O are represented by operators Ω with eigenvectors ϕi  and eigenvalues ωi (real 
numbers):  Ω ϕi =ωi ϕi . Any measurement of O must give one of these eigenvalues as result. 
After we measure ωi, the system will be in the state described by vector ϕi  (“collapse of the 

state”). The probability to measure this particular eigenvalue is given by Pr(ωi ) = ϕi ψ
2
. The 

average (expectation value) for the observable over many independent trials is O = ψ Ω ψ  with 

a standard deviation ΔO = O2 − O 2 .  

Heisenberg’s uncertainty principle: Position x and momentum p cannot be predicted with 
arbitrary precision simultaneously; ΔxΔp ≥ !/2. 

Time evolution (Schrödinger Equation): ψ (t) ; ∂
∂t
ψ (t) = 1

i!
H ψ (t)  where H is the Hamil-

tonian operator that represents total mechanical energy (kinetic and potential). Eigenstates of H: 
H ϕE = E ϕE ; ϕE (t) = ϕE e−iEt/!  represent bound (stationary) states. 
 

CONSEQUENCES: 
1) In general, only probabilistic predictions can be made about measurements of observables 
2) Quantization of light (in form of photons) and of energy levels in atoms, nuclei, molecules,… 
 
Hydrogen-like atoms:  
(Nucleus of mass m2 and charge Ze, bound particle of mass m1 and charge –e) 

V (r) = − Ze2

4πε0r
= −

Zα!c
r  

Strictly speaking, mass must be replaced by “reduced mass” of 2-body system with masses m1  

and m2:
 
µ =

m1m2

m1 +m2

≈ m1  if m1 <<m2
 

Energy Eigenvalues = possible energy levels of “stationary bound states”: 

En = −
µ
me

Z 2

n2 Ry ≈ −
1
n2 Ry for hydrogen atom

 
(n = 1, 2, … ; Ry = me c2 α2/ 2 = 13.6 eV). Degenerate 

in
 
ℓ
 
and m; ℓ =0, 1,…, n-1, mℓ = -ℓ…+ℓ; also degenerate in electron spin ms = ±1/2 => total 

degeneracy gn = 2n2. 

Characteristic radius:
 
a = me

µrZ
a0

   
a0 = !c / (me c2 α) = 0.53 Å.
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Light emitted or absorbed in transition with energy difference ΔE = Einit – Efinal:  
f = ΔE/h, λ = hc/ΔE = 2π!c/ΔE  (Photon energy Eγ = hf and momentum pγ = h/λ) 
 
Pauli principle:  
No two identical Fermions (spin-1/2, 3/2, … particles) can be in the same exact quantum state.  

Consequence: Only up to two spin-1/2 particles (one with spin “up”, one with spin “down”) can 
fit 

in a “phase-space volume” (= ordinary volume V times momentum-space volume 
4π
3
pf
3

) of size h3 

(Planck’s constant cubed). Therefore, a “Fermi gas” (also called a “degenerate gas”) of spin-1/2 
particles has to occupy available momentum states

 
up to a maximum of

 
the Fermi momentum 

pf = ! 3π
2( )
1/3
n1/3; n = Ntot

V  where Ntot is the total number of Fermions. As a consequence, the 

minimum total kinetic energy for a Fermi gas with Ntot identical fermions in a sphere of radius R is
 

Ekin
tot =

3
5
Ntot

pf
2

2m
=

3!2

10m
Ntot 3π 2( )

2/3 Ntot

V
!

"
#

$

%
&

2/3

=
3!2 9π

4
!

"
#

$

%
&

2/3

10m
Ntot

5/3

R2 ;non-relativistic

3
4
Ntotcpf =

3
4
!cNtot 3π 2( )

1/3 Ntot

V
!

"
#

$

%
&

1/3

=
3!c 9π

4
!

"
#

$

%
&

1/3

4
Ntot

4/3

R
;  ultra-relativistic

'

(

)
)
))

*

)
)
)
)

 

 
Astrophysics:  
For a white dwarf of mass M, equilibrium between gravity and “Fermi pressure” is

 
reached when 

R = !
2Ntot

5/3

meGM
2
9π
4

!

"
#

$

%
&
2/3

 with Ntot =
M

1.008 g
NA

2
. (careful: 1 g = 0.001 kg!) 

For a neutron star, replace me with mn and Ntot with Ntot =
M

1.009 g
NA  . 

Chandrasekar limit: White dwarfs become unstable beyond M = 1.4 Msun; neutron stars become unstable 
beyond 2 Msun  (both due to relativistic effects: the kinetic energy goes up only like 1/R instead of 1/R2 as the 
Fermi momentum approaches the mass of the fermion in magnitude). 
  



PHYSICS 313  -  Winter/Spring Semester - ODU 

Nuclear Physics 
Mass-energy of an atom: (Z protons, N neutrons, A = Z+N): 
MAc2 = Z Mpc2 + N Mnc2 + Z mec2  – BE (Binding energy) 
typical binding energies BE = 7-8 MeV.A   with a maximum of BE/A for nuclei around iron (A=56). 
Light nuclei have significantly lower BE per nucleon; beyond iron, the BE per nucleon decreases 
slowly with A (due to Coulomb repulsion). 
Energy liberated during a nuclear fusion reaction 1 + 2 -> 3: ΔE = M1c2 + M2c2 – M3c2  
Energy liberated during a nuclear decay 1 -> 2 + 3: ΔE = M1c2 - M2c2 – M3c2  
Density: roughly constant ρ = 0.16 Nucleons / fm3 = 2×1017 kg/m3 
Radioactive nuclei:  

alpha-decay: (Z,A) → (Z-2,A-2) + 4He + energy 
beta-plus decay: (Z,A) → (Z-1, A) + e+ + νe 
beta-minus decay: (Z,A) → (Z+1, A) + e- + νe  

Decay probability in time Δt: ΔPr(Δt) = Δt/τ (τ = lifetime = T1/2 / ln 2) 
Number of undecayed nuclei at time t (starting with N0): N(t) = N0 e

-t/τ 

Particle Physics 
Fundamental Fermions (spin-1/2 particles obeying Pauli Exclusion Principle): 
quarks (up, down, charm, strange, top, bottom) and leptons (electron, muon, tau, electron-neutrino, 
muon-neutrino, tau-neutrino) and their antiparticles: 
 

   
 
Force-mediating Gauge Bosons (spin-1 particles obeying Bose-Einstein statistics): 
Photon γ (electromagnetic interaction), W+, W-, Z0 (weak interaction), gluons (strong interaction) 
[graviton (gravity) only conjectured]. All except weak interaction bosons are massless; the latter 
gain mass (80-91 GeV/c2) through interaction with the Higgs field. 
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Thermal/Statistical Physics 
Boltzmann Distribution: number n(E) of atoms (molecules, …) out of an ensemble with a total of 
N atoms (…) with given energy E in a system with absolute temperature T (in K). 

Discrete energy levels Ei (e.g., quantum systems) with degeneracy gi (= number of eigenstates 
of the Hamiltonian with energy eigenvalue Ei): 

n(Ei ) =Cgie
−Ei /kT =

gi
e(Ei−µ )/kT

;C = eµ /kT = N / gie
−Ei /kT∑

 
(C is a normalization constant; µ is the “chemical potential”) 
Continuous energy levels E (classical system, e.g. monatomic gas) with state density g(E)dE (= 
volume in “phase space” between energy E and energy E + dE): 
dn(E...E + dE) =Cg(E)dE e−E /kT ;C = N / g(E)dE e−E /kT∫

 
State density for simple monatomic gas:  
g(E)dE = 4π p2dp = 4πm 2mEdE

 Consequences: Ideal gas law PV = nRT = n NA kT, (n = number of mols; N = n NA); average 
energy per degree of freedom (dimension of motion) = ½ kT  => total kinetic energy of a 
monatomic gas = 3/2 kT per atom or Etot = 3/2 n NA kT = 3/2 nRT 

Fermi-Dirac Distribution (for a system of indistinguishable Fermions): 

n(Ei ) = N
gi

e(Ei−µ )/kT +1
 

; µ here is right above the Fermi energy = the highest filled
 energy level 

necessary to accommodate all N fermions, where all lower energy levels are filled with as many 
Fermions as the Pauli principle allows  
(= the state of a (degenerate) Fermi gas at close to zero temperature). 

Bose-Einstein Distribution (for a system of indistinguishable bosons): 

n(Ei ) = N
gi

e(Ei−µ )/kT −1
; µ here is right below the ground state energy (the lowest available energy 

level). If T goes to zero, all levels but that lowest energy level are empty = Bose-Einstein 
condensation. 

Photon density for black-body radiation:
 

dnγ (λ…λ + dλ)
dV

=
8π
λ 4

dλ
ehc/λkT −1

= 8π f 2

c3
df

ehf /kT −1  
Energy density (= energy contained in electromagnetic radiation of wave length λ, per unit volume 
V) for black-body radiation (i.e., Bose-Einstein Distribution for a photon gas: 
dE
V

= 8πh f
3

c3
df

ehf /kT −1
=
8πhc
λ 5

dλ
ehc/λkT −1  

; Energy flux/surface area
 
dE
dAdt

=
2πhc2

λ 5
dλ

ehc/λkT −1  
(Planck’s Law); Maximum for λ = hc

4.9663kT
=

2.9 mm
T [K ]

. Total over all wave lengths: σT4  
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Propagation of electromagnetic waves 
Energy per volume dV in wave length interval dλ: 
dE(λ…λ + dλ)

dV
= uλdλ ; uλ = specific energy density.  

   Example: black-body uλ =
dnγ
dλ

hc
λ
=
8πhc
λ 5

1
ehc/λkT −1

 

Total (integral over all wave lengths): dEtot/dV = 4σ/c T 4 
      Maximum intensity per unit wave length interval for λ = 2.9 mm / T [K]  
    (Wien displacement law)

 

 Total power emitted (intensity integrated over all wave lengths) I = σ T 4  
    (Stefan-Boltzmann equation) 
 Total luminosity of spherical black-body of radius R:

 
L = 4πR2σT 4

 
Apparent brightness (flux density) at distance d: F = L

4πd 2  
Power emitted per area dA into solid angle dΩ in wave length interval dλ: 
dE(λ…λ + dλ)

dt dAdΩ
= cosθ ⋅ Iλ (θ,ϕ )dλ

 
; Iλ = specific intensity.  

   Average: Iλ =
1
4π

Iλ (θ,ϕ )∫∫ dΩ =
c
4π

uλ  . Ex.: black-body: Iλ =
2hc2

λ 5
dλ

ehc/λkT −1
 

Power emitted in positive (neg.) z-direction per area dA perpendicular to z and
 
per dλ:  

   Radiation flux density Fλ = dϕ
0

2π

∫ cosθ ⋅ Iλ (θ,ϕ )
0 (π /2)

π /2 (π )

∫ sinθdθ  

  For isotropic specific intensity (for top hemisphere): ⇒ Fλ = π Iλ  

   
Black-body radiation:Fλdλ =

2πhc2

λ 5
dλ

ehc/λkT −1
= 2πhc f

3

c3
df

ehf /kT −1  

Radiation pressure in z-direction:
 
dPλ

z =
2
c
dλ dϕ

0

2π

∫ cos2θ ⋅ Iλ (θ,ϕ )
0(π /2)

π /2(π )

∫ sinθdθ
 

   
For isotropic specific intensity in top hemisphere: ⇒ dPλ

z =
4π
3c

Iλ dλ = 1
3
uλdλ⇒ Ptot =

1
3
Etot

V  
Scattering probability: d Pr = Natoms

V
σds = ρ

mAtom

σds = ρκds ; σ = cross section, ρ = density.  

κ=σ/mAtom = opacity. Mean free path ℓ =1/κσ . τ = D/ℓ = optical depth. Total pathlength = D.τ. For 
ionized star atmospheres (70% H),

 
Rosseland opacity κ ≈ 0.034 m2 /kg .   For fully ionized hydrogen, 

κ =
σ e

mH

= 0.042 m2 /kg  => Lmax =
4πGMc
κ

= 3.3−3.8( ) ⋅104 LsunM
Msun  

(Eddington Luminosity Limit). 


