The Milky Way

The Milky Way

- Ingredients
 - Stars
 - Star remnants:
 - Dwarfs, pulsars, black holes
 - Interstellar gas and dust
 - Central black hole
 - Dark matter (WIMPs?)
- Structure
 - Central black hole
 - Central "bulge"; "bars"?
 - Disk with spiral arms
 - (thin and thick components)
 - Halo (old, metal poor stars, globular clusters, "MaCHOs").

The Milky Way

Distribution and Proper Motion of Stars in the Milky Way

- Use parallax to measure distance to "nearby" stars (up to 200 pc => 20% precision); further away: Use magnitude-temperature (main branch) or magnitude-variability correlation (Cepheids)
- Measure "sideways" motion by detecting angular displacement over time (after subtracting parallax)
- Measure radial motion using Doppler effect
- => get local distribution in space, relative velocities of 50 km/s average (exception: Kapteyn's star - 300 km/s => Halo star)
- Grand picture: find our position and motion relative to far-away halo stars (clusters) (all very old; well known magnitude)
- Result: Sun is about 8 kpc away from center of Milky Way, moving with 220 km/s around that center
- Surprise! All other parts of the Milky way seem to ALSO have that same approximate velocity!

Consequences

- 220 km/s = 225 pc/Myr => ω = 0.028 rad/Myr => One revolution takes 224 Myr (20 times since sun came into being)
- $\omega^2 = GM/r^3 => M \approx 10^{11} M_{sun}$
- since ωr is roughly constant, *M* increases like *r*
- Little paradox: Why haven't the spiral arms been "wound tightly around the center"? My guess: They don't represent actual motion of stars, but rather compression "wave" of luminous gas where new stars are born (while older stars fall behind)
- BIG paradox: Lots more mass than visible stars; constant v = ωr extends much beyond "visible" edge *)

1 pc = $3 \cdot 10^{16}$ m ^{*)} Most of the visible mass lies within sun's radius ($2 \cdot 10^{10}$ L_{sun})

Another view of the Milky Way

Rotation curves for different types of galaxies, as function of absolute magnitude

=> Dark Matter

- MaCHOs: Brown dwarfs, white dwarfs, black holes; Can be detected through gravitational lensing: Some are there, but probably not enough
- Neutrinos: We know how many there must be, but they have too little mass
- Dust etc.: Would be visible in IR or radio
- WIMPs! (Weakly Interacting Massive Particles)
 new type of matter, not yet discovered; probably more massive than a U atom but only interacting via weak force and gravity (neutral!); "Neutralinos" predicted by Supersymmetry => Wait for CERN's LHC

What about the Center?

Sagittarius A*

- invisible for light (too much dust in the way)
- visible in IR and radio waves (see image)
- Star density 10⁸ times larger (collisions not negligible!)
- Highly compact radio source
- < 6 AU in size! (angular resolution in radio band, time resolution in X-rays)
- High luminosity (> 1000 suns)
- Motion of nearby stars + Kepler's Law => $M = 4.10^6 M_{sun}$
- Black hole!
- Schwarzschild radius = 0.07 AU
- Mass influx of order $M_{sun}/3000$ yr

What about the other galaxies?

What about the other galaxies?

- 3 major types:
 - Spiral (with and without central "bar") Milky Way, Andromeda,...
 - mostly larger (10⁹ 10¹² M_{sun}, 5 100 kpc)
 - Irregular (similar, but not much structure) Large Magellanic Cloud...
 - Elliptical (see next slide)
 - Probably all have central black holes

Messier 51, "Whirlpool galaxy". Picture courtesy Josh Frechem ©

Hanny's Voorwerp Arms without a galaxy? (Giving birth to new stars)

Pinwheel galaxy showing star formation in red arms (far from center)

Elliptical galaxies

- Mostly structure-less, range from humongous (100's of kpc, 10¹³ M_{sun}) to tiny (globular cluster size; those are the most frequent)
- Tend to contain "older stars" (and therefore may be older themselves)
- Some gas and dust, but less than spirals
- Star motion mostly random, little correlated rotation
- "True" eccentricity can't be established easily the most eccentric observed has ε = 0.7 (but any given galaxy could be more eccentric then it appears)

Elliptical galaxies

- Recent discovery: Elliptical galaxies may contain a lot more red dwarfs than previously thought (maybe 10x as many as the Milky Way)
 - Milky Way: 100 times more than sun-like stars
 - Possibly slightly less dark matter needed to explain total mass
 - ...but **more** stars in the Universe overall!
- Largest galaxies: cD ellipticals
 - up to 1 MPc across, 10^{13} 10^{14} M_{sol}
 - Mostly in center of large, dense clusters

Galactic Encounters of the 3rd Kind

- Probability for collisions:
 - our sun with another star: 1 in 10 billion/4.6 Gyr
 - depends on star density x cross sectional area x relative speed; 1/80 Gyr in galactic center
 - 1/17 Gyr for galaxy in Coma cluster (10⁴ galaxies)!
- => Galaxy collisions are rather likely, especially in dense clusters! (Andromeda and Milky Way are next *)
 - can merge into a single galaxy (2 black holes?)
 - possible source for elliptical galaxies mergers where much more frequent in the past when the Universe was smaller!
 - or pass through each other (stars rarely collide)
 - even at glancing collision, deformation (tidal forces)
 - tails, rings (ripple "waves" after passage of one through other)

Monster black hole turned on by galaxy collision

And even more gigantic collisions...

Colliding galaxy clusters overlaid with lensing images of dark matter.

NASA/ESA/D HARVEY/R MASSEY/H EBELING/ J-