Active Galactic Nuclei

- Many Galaxies, especially younger ones (far away), have extremely bright center (nucleus); can vary over ≈ few days
 - Seyfert Galaxies (typically spiral):
 - Bright nucleus with emission lines (instead of absorption as normal)
 - Doppler broadening (Seyfert I), lots of X-rays
 - continuum spectrum (central source) brighter than rest of galaxy
 - (radio loud/quiet UV, Xray) from extremely hot center
 - Radio Galaxies:
 - Emission mostly at 10 cm; have jets and "radio lobes"
 - Example: Cygnus A (240 Mpc) brighter in radio spectrum than all but sun and 1 nearby supernova remnant (5.10³⁷ W = 10¹¹ suns!)

AGN NGC3079 taken in H α (Balmer series, λ =656.28 nm) filter. Picture courtesy Josh Frechem ©

Quasars

- Quasars (quasi-Stellar radio sourceS)
 - Detected in the 60's:
 - Very strongly red-shifted (30-95% c) => far away (?) (100-1000 Mpc)
 - Extremely bright (10¹²⁻¹⁴ suns, up to 10⁵ Milky Ways), broad spectra
 - appear star-like in telescope (since nuclei outshine whole galaxy by huge factor)
 - Vary within days/hours cannot be large (causality argument)
 - initial controversy: Redshift-distance relationship wrong?
 - View now: Early stages of most galaxies, powered by accretion

Engine for all these AGNs: Supermassive Black Holes

- Size: •
 - Cannot be much larger than $t_{var} \ge c$ (illuminated sphere) => 1 hr implies 7 AU
- Mass: Eddington limit •
 - Energy flux density: $F = \frac{L}{4\pi r^2}$ Momentum Flux: $F_p = \frac{L/c}{4\pi r^2}$
 - Radiation Force on electrons: $F_{r.p.} = \frac{L}{4\pi r^2 c}\sigma_e$; $\kappa = \frac{1}{m_H/\sigma_e}$
 - ...must be < grav. force on proton (attached to e⁻ in plasma): $F_{grav} = \frac{GMm_p}{R_p^2}$
 - $=> \text{ yields max. Lumi: } L_E = \frac{4\pi GMc}{L_{sun}\overline{\kappa}} = \frac{4\pi GMm_p c}{\sigma_e} = 3.3 3.8 \cdot 10^4 L_{sun} \frac{M}{M_{sun}}$
 - Schwarzschild radius 9.10^8 km = 6 A.U. => Consistent!

Luminosity via Accretion

- Straight-line infall mass-energy disappears and simply makes black hole bigger (
- Accretion disk (rotating) lots of gas, "friction" => most of gravitational energy change converted into heat => luminosity
- Non-rotating BH -> smallest orbit = 3R_S, expect grav. binding energy = 1/6 mc² but in fact only 5.7% available (= efficiency)
- Rotating BH -> can get up to 42% (some energy rotational)
- Assume efficiency η = 10% on average
- $L = \eta dM/dt c^2$
- => dM/dt = 7 M_{sun}/yr for $L = 10^{13} L_{sun}$
 - Compare nuclear: $\eta = 0.7\% \Rightarrow req. 10^{11} M_{sun}$ in 1 B years
- Maybe explains history: after a few10⁹ yrs, BH creates maximum *L*; later it runs out of fuel - see later...

AGN NGC 4151

Iron Blowing in Quasar Winds

Galactic Evolution

- Looking at far-away galaxies we see young galaxies (as they were a long time ago)
 - Example: Quasar with redshift z = 6.4 (meaning $\lambda_{obs}/\lambda_{em}$ = 7.4) => light we see was emitted when Universe was only 2 Gyr old
 - at that time, quasar was 3.7 Gyr c away
 - Now it's 27 Gyr *c* away
 - Luminosity requires accretion of 200 $\rm M_{sun}/yr$
 - Do that for 10 Gyr => $2 \cdot 10^{12} M_{sun}!$ No black holes that large have ever been seen (plus where should that mass come from?
 - Back then, 1 in 1000 galaxies was a quasar
 - Today: 1 in 10⁶ galaxies is a quasar
 - Possible reasons:
 - fuel is all gobbled up or blown away, BHs still around but "hibernating"
 - Much more food around in the past: colliding galaxies (higher density)

Galactic Evolution II

- General observation: Oldest stars only a few Gyr younger than Universe, most in galaxies
- Most elliptical galaxies (and bulges) probably were formed after 3 Gyr (did the disks come later?)
 - Possible precursors: "weirdly shaped" irregulars that later merged (see Hubble Deep Sky survey)
- Initially high star forming activity, many giants -> relatively high luminosity, blue color
- Later smaller stars dominate, more reddish color
- Spiral galaxies: continue to make new stars plenty of gas left
- Elliptic galaxies: May have used up their gas quickly; due to larger initial density fluctuation?
 - or because of wind from central BH? or are they due to collisions Summary: Evolution is complicated and not yet fully understood
 - collisions in the early Universe play a big role!