Nuclear Reactions in Stars

Interior Structure of Sun

What Powers the Sun?

- Gravitational energy (potential plus kinetic, according to virial theorem) as function of radius: $E_{tot} = -\frac{3}{10} \frac{GM^2}{R}$
- Therefore, maximum amount of energy "generated" by Sun through contraction to present radius:

$$E_{tot} = -\frac{3}{10} \frac{6.674 \cdot 10^{-11} (1.989 \cdot 10^{30})^2}{6.955 \cdot 10^8} \text{ J} = 1.14 \cdot 10^{41} \text{ J}$$

Energy actually radiated by Sun over last 4.5 B yrs
 $E_{rad} = L_{Sun} \cdot T = 3.84 \cdot 10^{26} \text{ W} \cdot 1.42 \cdot 10^{17} \text{ s} = 5.45 \cdot 10^{43} \text{ J}$
= 500 times more! (Or Sun must be less than 9 M yrs
old!)

• Solution: Must be something else \rightarrow nuclear fusion

The Structure of Matter

- What is the Universe made off?
- What are the most fundamental objects in Nature?
- What particles where there in the beginning (right after the big bang)?
- How do they interact?
- How do they form composite objects?

Matter Particles

- Make up visible matter
- Pointlike (<10⁻¹⁸ m), Fundamental ^{*)}
- Have mass (from < ½ eV to 178,000,000,000 eV = 178 GeV)
- Distinct from their antiparticles *)
- Fermions (Spin ½) ⇒ they "defend" their space (Pauli Principle) and can only be created in particle-antiparticle pairs
- Can be "virtual", but make up matter being (nearly) "real"
- "stable" (against strong decays; lifetimes from ∞ to 10⁻²⁴ s)

x2 for R, x2 for antiparticles

*) Until further notice

Forces and Force Carriers

- Mediate Interactions (Forces) - form "Waves"
- Pointlike, Fundamental
- Massless *)
- Some are their own antiparticles (photon, Z⁰, graviton)
- Spin 1, 2 -> Bosons (tend to cluster together, can be produced in arbitrary numbers)
- Can be real, but carry forces as virtual particles
- Some are absolutely stable (γ, gluons, gravitons)

*) See next slide

Note: gluons come in 8 possible combinations of color/anticolor (9th is "sterile" – doesn't exist)

GGGGGGGGGG

Hadronic Particle Zoo

- what can one build from quarks?

Family Name	Particle Name	Particle Symbol	Antiparticle Symbol	Composition	Mass	Electric Charge	Lifetime in Seconds
baryon	proton	p or p+	p	uud	1,836	+1	stable
	neutron	n or na	n To	udd	1,839	0	887
	lambda	A* A+	A. A-	uas	2,183	0	2.0 × 10-1
	lambda-c	A%	A ⁰	udb	11,000	-1	1.1 × 10-12
	siama	Σ^+	Σ^{+}	UUS	2.328	+1	0.8×10^{-10}
	- (g	Σ^0	Σ^0	(ud±du)s	2,334	0	$7.4 imes 10^{-20}$
		Σ-	$\overline{\Sigma}^+$	dds	2,343	-1	1.5 × 10 ⁻¹¹
	xi	三 ⁰	臣	US5	2,573	0	2.9×10^{-11}
		Ξ.	Ξ.	dss	2,585	-1	1.6×10^{-11}
	xi-c	Ec	E'c	dsc	4,834	0	9.8 × 10 ⁻¹⁴
		= 'c	= c 0 t	USC	4,820	+1	3.5 × 10-11
	omega	0 ⁸	00.	222	5 202	0	64 × 10-14
	on regard	** C			3,6.36		0.4 6 10
meson	pion	य +	π-	, Ebu	273	+1	2.6×10^{-9}
		ж0	π^0	<u>(uu-00)</u> V2	264	0	8.4×10^{-17}
	kaon*	K+	K-	ĨIJ	966	+1	1.2×10^{-8}
		K ²	K ^a	dš	974	0	8.9 × 10 ⁻¹¹ 5.7 × 10 ⁻⁹
	J/psi	Vr to L	1 or VP	5	6,060	0	1.0×10^{-28}
	omega	60	60	$\frac{(uu+dd)}{\sqrt{2}}$	1,532	0	6.6 × 10-11
	eta	η	η	$\frac{(u\bar{u}+d\bar{d})}{\sqrt{2}}$	1,071	0	3.5×10^{-11}
	eta-c	ης	η _c	55	5,832	0	3.1×10^{-22}
	В	Ba	B	db	10,331	0	1.6×10^{-13}
	(j)	B+	B	uþ	10,331	+1	1.6×10^{-11}
	8-5	B's	8'1	S D	10,507	0	1.6 × 10-14
	D	Do t	U0	cu cd	3,049	-1	4.2 × 10 ···
	D-s	D+	D-,	cš	3.852	+1	4.7×10^{-13}
	chi	X ⁰	X ⁰ c	CČ	6,687	0	3.0×10^{-11}
	psi	Ψ^0_{c}	Ψ^0c	cč	7,213	0	1.5×10^{-31}
	upsilon	Ŷ	Ŷ	pp	18,513	0	8.0×10^{-10}

*The neutral kaon is composed of two particles; the average lifetime of each particle is given.

The Structure of Matter

Periodic Table

Related Question: Where do all the heavier nuclei come from?

made of C, N, O, metals,...

Nuclear Binding energies

Α

Interior of the Sun

Nuclear Power Generation

The CNO Cycle

In stars slightly more massive than the sun, a more powerful energy generation mechanism than the PP chain takes over.

> The CNO Cycle

Helium Burning

- Requires temperatures above 10⁸ K (8.6 keV)
- ⁸Be is unstable -> αα! Only at high temperature are there a few ⁸Be in equilibrium with ⁴He (energy sink!)
- ⁸Be + α -> ¹²C would be too slow if not for ¹²C excited state
- Predicted by Hoyle!
- Some α get eaten by
 ¹²C -> ¹⁶O admixture

Fusion into Heavier Elements

Fusion into heavier 26 A 27AI 25 elements than C, O: 24 Mc²⁵Mg 26MC 23Na-²²Na 24Na ²¹Na ²⁰Ne⁻ ¹⁸F requires very high 170 ¹⁸O ¹⁶O temperatures; occurs only in very massive 14N 15_N 13 stars (more than 8 solar masses)