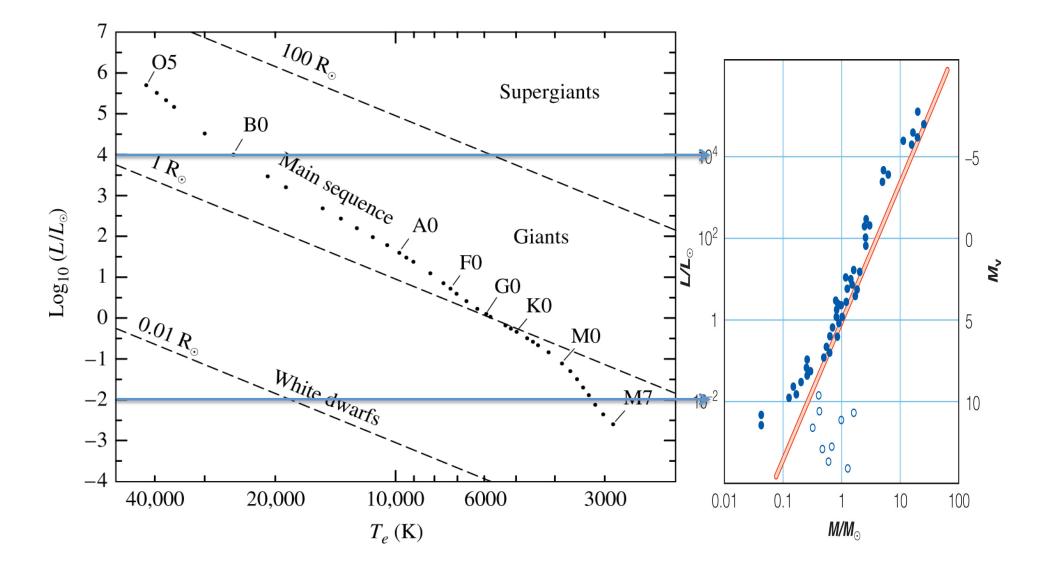
Stellar Structure

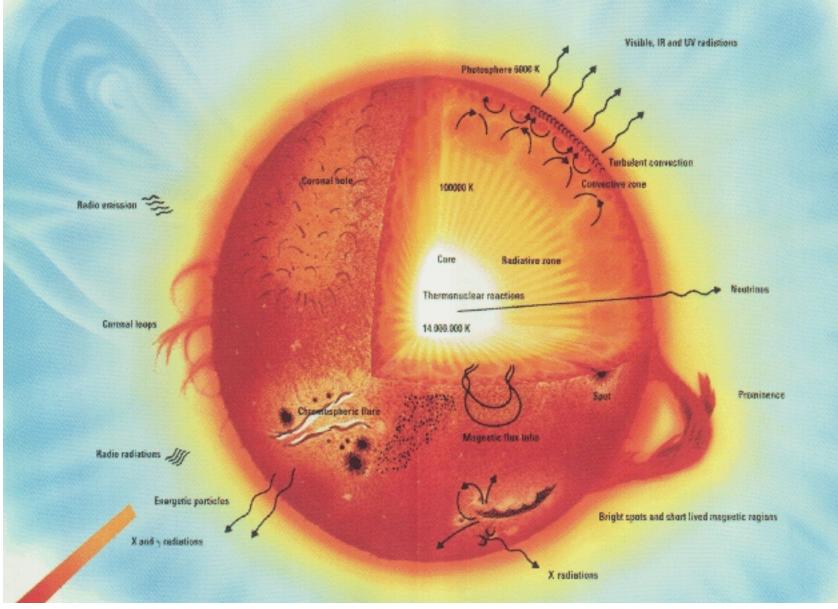
What have we learned?

- Can determine surface temperature via blackbody radiation, and absorption spectra
- Can determine relative magnitude, and after determining distance through parallax, absolute magnitude => Luminosity
- Relating black-body intensity to Luminosity yields surface and hence radius
- Binary stars: red- and blue shift of spectral lines determines absolute velocities; time dependence determines angular velocity of rotation around common center of gravity => distance of both stars from center of gravity
- Kepler's law gives sum of masses and Newton's 3rd law gives ratio of masses => individual masses
- Combining everything: average density

Hertzsprung-Russel Diagram



Question: How do we deduce interior structure of stars from these observations?



What do we need to know?

- Where does radiated energy ultimately come from?
- Need to figure out ρ , *P*, *T* as function of r < R
- 3 ingredients:
 - energy transport from center to surface -> T(r)
 - hydrostatical equilibrium (what keeps the star from further collapse -> ρ , P
 - Equation of state to relate ρ , P, T

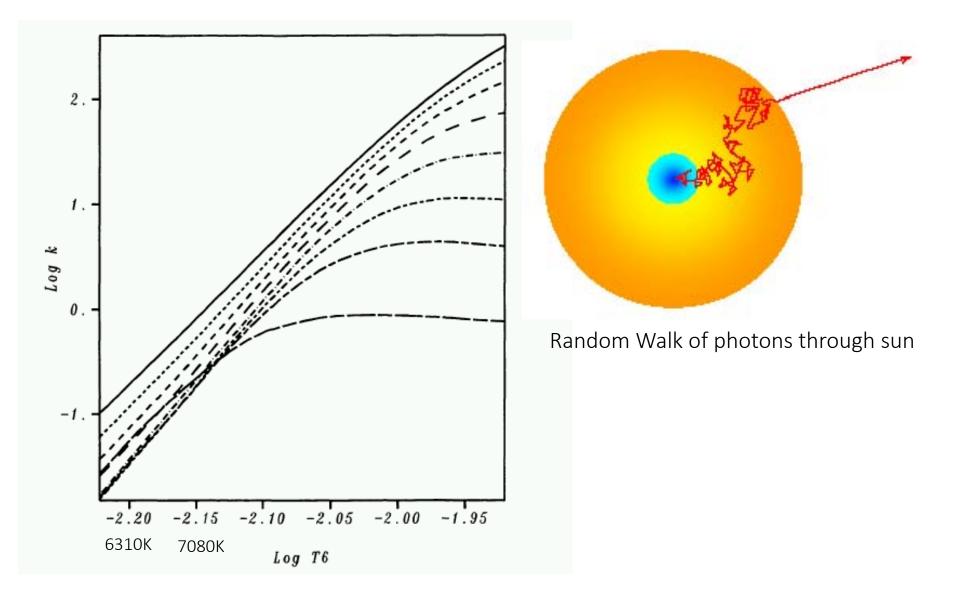
Energy Transport

- 3 mechanisms:
 - Heat conduction (can be ignored given the humongous sizes of stars)
 - Heat convection: Does play a significant role in many stars (see later)
 - Radiation (electromagnetic)
 - Propagation (in particular net outward flow)
 - Also need to account for radiation sinks and sources
 - Also contributes to pressure!

Interaction of photons with matter

- Absorption
 - excitation of atoms from lower to higher energy eigenstates
 - ionization of atoms (electrons kicked out)
- Emission
 - Atoms going from higher to lower energy eigenstate
 - Electrons get "caught" by ions
- Scattering
 - Bremsstrahlung
 - Thompson (Compton) scattering

Opacity in Photosphere



Propagation of electromagnetic waves

Energy per volume dV in wave length interval $d\lambda$: $\frac{dE(\lambda...\lambda + d\lambda)}{dV} = u_{\lambda}d\lambda ; u_{\lambda} = \text{specific energy density.}$ Example: black-body $u_{\lambda} = \frac{dn_{\gamma}}{d\lambda}\frac{hc}{\lambda} = \frac{8\pi hc}{\lambda^5}\frac{1}{e^{hc/\lambda kT}-1}$

Total (integral over all wave lengths): $dE_{tot}/dV = 4\sigma/c T^4$

Power emitted per area dA into solid angle $d\Omega$ in wave length interval $d\lambda$: $\frac{dE(\lambda...\lambda + d\lambda)}{dt \, dA \, d\Omega} = \cos\theta \cdot I_{\lambda}(\theta, \varphi) \, d\lambda \quad ; I_{\lambda} = \text{specific intensity.}$

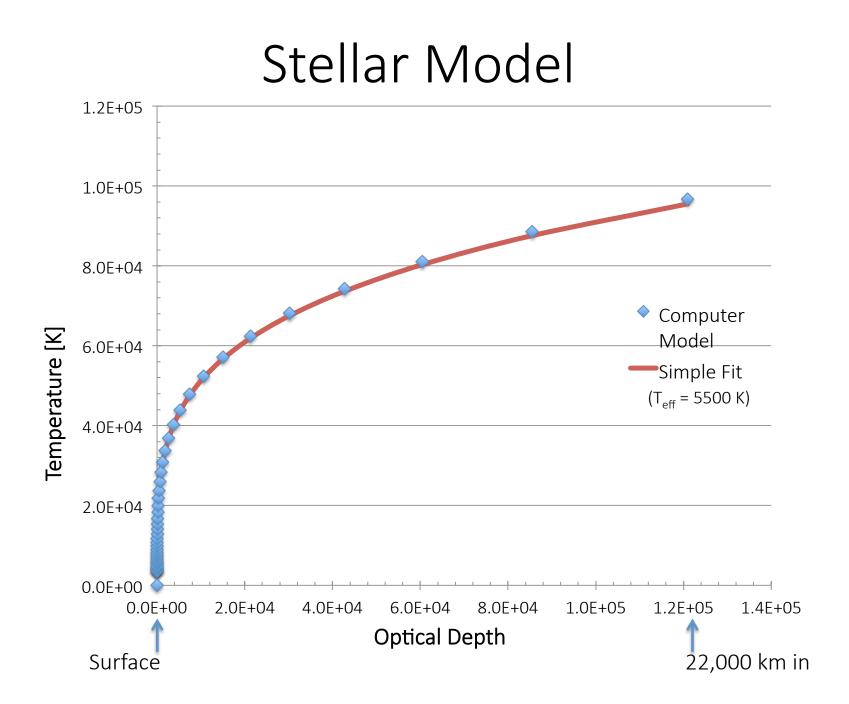
Average:
$$\langle I_{\lambda} \rangle = \frac{1}{4\pi} \iint I_{\lambda}(\theta, \varphi) d\Omega = \frac{c}{4\pi} u_{\lambda}$$
. Ex.: black-body: $\langle I_{\lambda} \rangle = \frac{2hc^2}{\lambda^5} \frac{d\lambda}{e^{hc/\lambda kT} - 1}$

Power emitted in positive (neg.) *z*-direction per area *dA* perpendicular to *z* and per *d* λ : Radiation flux density $F_{\lambda} = \int_{0}^{2\pi} d\varphi \int_{0(\pi/2)}^{\pi/2} \cos\theta \cdot I_{\lambda}(\theta,\varphi) \sin\theta d\theta$

For isotropic specific intensity (for top hemisphere): $\Rightarrow F_{\lambda} = \pi \langle I_{\lambda} \rangle$

Black-body radiation: $F_{\lambda}d\lambda = \frac{2\pi hc^2}{\lambda^5} \frac{d\lambda}{e^{hc/\lambda kT} - 1} = 2\pi hc \frac{f^3}{c^3} \frac{df}{e^{hf/kT} - 1}$ Radiation pressure in z-direction: $dP_{\lambda}^z = \frac{2}{c} d\lambda \int_{0}^{2\pi} d\varphi \int_{0(\pi/2)}^{\pi/2(\pi)} \cos^2\theta \cdot I_{\lambda}(\theta,\varphi) \sin\theta d\theta$

For isotropic specific intensity in top hemisphere: $\Rightarrow dP_{\lambda}^{z} = \frac{4\pi}{3c} \langle I_{\lambda} \rangle d\lambda = \frac{1}{3} u_{\lambda} d\lambda$



Interior Structure

