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Quantum Mechanics in 3D – A change to polar coordinates 
 
We can write Schrodinger’s equation in the stationary form if we solve the following 
equation. 
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The full, time-dependent version then has the solution 
𝜑! 𝑟, 𝑡 = 𝜑! 𝑟 𝑒!

!
ℏ!" 

However, many times in nature the potential does not depend individually on x, y, and 
z. Instead, it depends only on the distance from some fixed point. That is, it’s 
spherically symmetric.  One such example is electric potential energy, given by 

𝑉 𝑟! =
𝑄𝑞
4𝜋𝜀!
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The more general form of the potential is    𝑉 𝑟 ;   𝑟 = 𝑥! + 𝑦! + 𝑧! 
The problem that arises here is that this gives us an equation in terms of a combination 
of x, y, and z. A more appropriate approach would be to convert these equations to 
spherical coordinates, r, θ, ϕ.  

 A line from an origin to a point in 
three dimensional space forms a 
vector, r. The projection of this 
vector onto the x,y plane has an 
angle 𝜑 with respect to the x axis. 
Likewise, the has an angle 𝜃 with the 
z axis. With a little trigonometric 
intuition, it is easy enough to see in 
the picture that the coordinates 
(x,y,z) of the point can individually be 
represented with sine and cosine, 
where: 

𝑥 = 𝑟𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑   𝑦 = 𝑟𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑  𝑧 = 𝑟𝑐𝑜𝑠𝜃 

Intuitively, this tells us to look for a solution where the eigenstate is represented in 
terms of r, θ, ϕ. The only thing left to do is to represent the gradient squared operator 
in terms of our newfound equations for x,y, and z. 
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Substituting this back into the original equation and expanding the coefficient of the 
gradient squared operator leaves us with: 
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What a mess! We need to find a way to clean this up a bit. The RHS is a constant and the left 
hand side is split into two parts: one part depending on r and its derivatives and one part 
depending on theta and its derivatives. This would lead us to look for a function for the 
eigenstate to be expressed as a product of two separate functions: one function is expressed 
solely in terms of r and the second function is expressed in terms of theta and phi: 

𝜑!(𝑟, 𝜃,𝜑) = 𝑅 𝑟 𝑌(𝜃,𝜑) 

We can perform a separation of variables on the equation and introduce these two new 
functions, and divide through by ϕE. 
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Since the first term on the lhs and the rhs are both functions of r only, the part of the lhs 
dependent on theta and phi (inside the square brackets) must be actually independent of theta 
and phi and is therefore a constant. This leads us to find a solution such that, 

      𝑌 𝜃,𝜑 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑌(𝜃,𝜑) 

To solve this equation would require weeks of higher level math, so we take a simple case where 
θ = 90°. This removes theta from the equation because the sine of 90° is 1, and since theta is 
constant its derivative is zero. We’re left with: 

−ℏ!
𝜕!

𝜕𝜑!
𝐹 𝜑 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝐹(𝜑) 

So we’re looking for a function whose second derivative multiplied by -ℏ2 yields a constant 
multiplied by that same function. A possible solution is the natural exponential function, 

𝐹 𝜑 = 𝑒!"# 

This means that the constant on the RHS is (-α2)(-ℏ2). However, we’re not done. This equation 
introduces to us yet another problem. The variable phi goes from 0 to 2π, which are the same 
point (meaning ϕ + 2π = ϕ). We must require that   

𝑒!"(!!!!) = 𝑒!"# 

For this to be true, α has to be some integer, m, where m = 0, ±1, ±2, ±…, ±∞. This 
requirement tells us that the solution we found is quantized. It can only exist in multiples of ℏ, 
similar to the square well.   

The next part requires a gigantic leap of faith as it’s the very, very heavy math intensive 
portion. It all leads to finding the angular momentum operator(s). 

  



Angular Momentum Operator(s)  

If we look at the differential operator above, it turns out to be the angular momentum operator 
component along the z axis. 

ℏ
𝑖
𝜕
𝜕𝜑

= 𝐿!, 𝐿! = 𝑟! 𝑥 𝑝!   𝑐𝑟𝑜𝑠𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 

This is plausible by analogy to the momentum operator in x-direction (containing the derivative 
with respect to x) which describes motion in x, while the angular momentum operator 
(containing a derivative with respect to 𝜑) describes motion in the 𝜑-direction. (Also, the units 
of ℏ are indeed those of angular momentum - kg m2/s). We find that the solution F(ϕ) follows: 

𝐿!𝐹 𝜑 = 𝑚ℏ𝐹(𝜑) 

Bringing the three equations together, we can more easily see the relationship: 
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𝐿!𝐹 𝜑 = 𝑚ℏ𝐹(𝜑) 

These particular functions are eigenfunctions of the z component of the angular momentum. 
This means that they have a well-defined value of that angular momentum with zero uncertainty, 
which is m͎ℏ. True to quantum mechanics, this means that angular momentum is quantized and 
can only exist in integer multiples of ℏ.  

Example: A dancer (or ice skater) spinning on his or her toes.   

If we could measure accurately enough, we would find that the angular momentum of 
the spinning dancer or skater would not decrease continuously, rather it would decrease 
discretely only in integer multiples of ℏ. Of course, we have no way to measure such 
minute changes (ℏ is on the order of 10-34) in the angular momentum of a (relatively) 
macroscopic object. This phenomenon can, however, be measured for microscopic 
objects such as atoms, molecules, quarks, etc.  

Now back to the original solution, 

      𝑌 𝜃,𝜑 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑌(𝜃,𝜑) 

What does [     ] represent? What belongs in these brackets? Well, if F(ϕ) represents the 
angular momentum about the z-axis and F(ϕ) is special case (a case that eliminated θ, which 
would correlate to momentum about the y-axis) of Y(θ,ϕ) then we can safely assume that the 
total angular momentum belongs inside the brackets!  



𝐿!𝑌(𝜃,𝜑) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑌(𝜃,𝜑) 

 

If we look back at the equation, 
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We can see that 𝐿!! is on the right side inside the brackets. The portion inside the brackets 
corresponds to the total angular momentum operator, and the part, 
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represents the x AND y components of the angular momentum. We cannot find eigenstates to 
the individual three components individually. The different components of the angular 
momentum fulfill a similar equation (follow a similar requirement) as Heisenberg’s Uncertainty 
Principle. Namely, the product of the uncertainty is always greater than zero. Quantum 
Mechanics says that you can have simultaneous eigenstates to the total squared momentum 
and ONLY one component. Now we just need to find these simultaneous eigenstates! 

It pays to find as many operators as possible where we can have simultaneous eigenvalues. We 
are always going to look for simultaneous eigenstates to as many operators as we can. 

**Note: Simultaneous in this sense does not imply relativistic operations. All of the QM covered 
in this course is non-relativistic.  

So, we must find an eigenvalue that works for both the L2 operator and the Lz operator 
simultaneously. We require that: 

𝐿!𝑌 𝜃,𝜑 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑌 𝜃,𝜑     𝐴𝐿𝑆𝑂    𝐿! = 𝑌 𝜃,𝜑 = 𝑚ℏ𝑌(𝜃,𝜑) 

We recall from earlier that m is an integer such that m = 0, ±1, ±2, ±…, ±∞. The answer to this 
is the eigenvalue to the total angular momentum squared operator is, 

𝐿!𝑌 𝜃,𝜑 = ℏ!𝑙(𝑙 + 1)𝑌 𝜃,𝜑   

Where l is also an integer, such that l = 0, 1, 2,… We must introduce a restriction on the integer 
m. The highest value that m can have is ±l. The integers l and m are quantum numbers: numbers 
used to label a state. 



Example 1 

If l=0, then m=0. We must come up with a function that when applied to both operators gives 
us zero. Looking at the whole complicated operator, 
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we see that each term contains a differential operator. For a derivative to be zero, then it must 
act on a function that does not depend on a variable: a constant function. Thus, 

𝑌!! 𝜃,𝜑 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 =  
1
4𝜋

 

The value of the constant was found by normalizing the state. 

𝑠𝑖𝑛𝜃𝑑𝜃
!

!

= 4𝜋
!!

!

 

𝑌!! ! =
1
4𝜋

;  𝑌!! =  
1
4𝜋

 

Example 2 

If we claim that l=1, m=1; 

𝑌!! = −
3
8𝜋

𝑠𝑖𝑛𝜃𝑒!" 

𝐿!𝑌!! = 1ℏ 

𝐿!𝑌!! = 2ℏ! 

 

A visual representation of different values of l and m can be seen at: 

http://ww2.odu.edu/~skuhn/PHYS621/SphericalHarmonics+Bessel/QM_Special_Functions.html 


