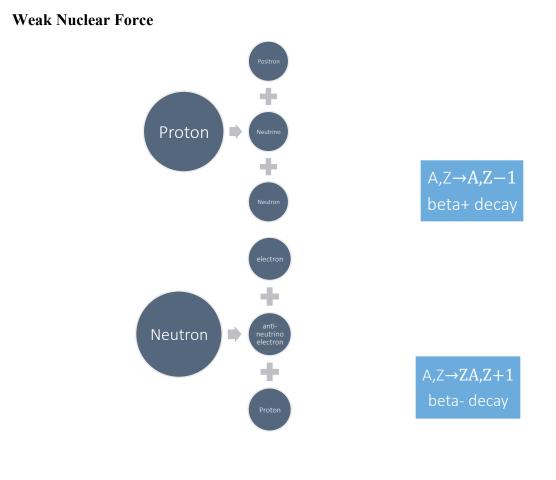
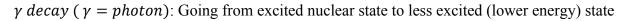

Nuclei:

- Made of neutrons and protons ("nucleons"), A = Z + N
- Mass of a nucleus= $Z * m_p + N * m_r |BE|/c^2$
- Binding energy (BE) is roughly proportional to A (around 8-9 MeV/nucleon)
 o => binding only due to next neighbors, not all nucleons in the nucleus
- Isotope: same Z, but different N(A)
- Decays
- Size few times $10^{-15}m = fm = 1$ Fermi
 - **o** To resolve, use electrons with a few 100 to thousands of MeV
 - *volume~A* => roughly constant density


Strong Nuclear Force

MUCH stronger than electrostatic force between protons, but


VERY short-ranged (after a few fm distance, it has NO effect).

$\alpha - decay$	$a = {}^{4}He$ nucleus
$A, Z \rightarrow A - 4, Z - 2$	strong and electromagnetic

All Decays are spontaneous and largely unaffected by anything outside the nucleus - QM says we can not predict the moment of a decay, just the probability that it decays at a certain time.

Exponential Decay Law: The decay rate ("activity") at any time is proportional to the number of radioactive nuclei (of the species under consideration) at that time. With τ = mean life time:

$$\frac{\Delta N_{decay}}{\Delta t} (t) = \frac{1}{\tau} * N_{nuclei}(t)$$
$$N_{nuclei} = N_0 e^{\frac{-t}{\tau}}$$

Half Life

 $t_{\frac{1}{2}} = ln2 \ \tau$