PHYS323 MODERN PHYSICS Lecture Notes 9/8/2015

Summary up to now:

Event (point) in space-time characterized by coordinates (ct, x, y, z) = (x*) (contravariant 4-
vector, p=0,1,2,3) with respect to some inertial coordinate system S.
Lorentz-transformation relates these to coordinates (x’#) in some other inertial system S’.
Define (x,) = (ct, -x, -y, -z) (covariant 4-vector) etc.

Separation between two space-time points (events): Ax+ = xH; - XH4

Invariant squared interval: As2 = Axt Ax, = Act2-Ax2-Ay2-Az2 (repeated indices are summed
over).

Important Law of Special Relativity: As2 = Ax# Ax, = As’2 = Ax'* AX',,!

Addition of velocities: S’ moves with +v in +x-direction relative to S.
1) If object moves with velocity u’ in +x’-direction relative to S’, then its velocity (3-vector)

_ u'+v
inSis u= (—2,0,0)
I+u'v/c
2) If object moves with velocity u’ in +y’=direction relative to S’, then its velocity (3-vector)
1 1
inSis u= v,—u',O); T —
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NOW: Continue on to DYNAMICS: Behavior of particles under the action of a force F!

— u . . .
Newton’s Law: F =ma = md— if m is constant. More general, if m can vary (e.g., rocket
!

burning its fuel or coal hopper being filled with coal), it is better to write

= dmu dp : : —
F= = = = with momentum p = mu. We would like to figure out the correct definition
of momentum in special relativity! At low velocities, it should be the same, but from
experience we know that something might change at higher velocities. Assume that
something is the mass (or, rather, the factor multiplying velocity). For now, let’s use the
“relativistic mass” m(u) which should only depend on the magnitude of u (to make all
coordinate systems equivalent to each other). What can it be?

For this, we use momentum conservation: A system of masses on which there is no net
outside force should have constant total momentum - in all Inertial Systems!

Consider the following example:

Our 2 usual coordinate systems S and S’ represent a train (S’) driving along a platform (S) in
x-direction with high velocity v. Both on the train and on the platform there is one brother
each of an identical pair of twins. Both brothers have a piece of putty in their hands which is
exactly the same in size, mass, form etc. And they both hurl their projectiles at each other
with exactly the same velocity (as measured relative to their OWN coordinate systems).
Assume that relative to S, the putty of the 1st brother moves exactly in the y direction with
velocity -us, and relative to S’, the putty of the 2nd brother moves exactly in the y’ direction
with velocity +u’; ; both velocities have the same magnitude: |u1| = |u’2|. The two putty
masses are mi (as measured in S) and m’; (as measured in S’), and again they must both be
exactly equal in magnitude. In general, if the velocities u1 and u’; are not small (relative to c),
the two masses are not necessarily equal to the mass of putty at rest, mo,, since we assumed



that the mass might be modified as a function of velocity. However, following the rule that
relativity should “converge” to standard Newtonian mechanics when the velocities involved
are small, we may assume thatas u; =u’2<<c, we have mi=m’2=mo.

Now let’s assume that the two putty masses collide in mid-flight, stick together and continue
as a single mass. Because the situation is completely symmetric with respect to the y-axis,
and since both coordinate systems must be equally “fundamental”, there is no way that the
combined putty mass could have a velocity component in the y-direction - it can only move
along x (or x’). Therefore, the final momentum component of the combined putty in y- (or
y’-) direction is zero. Momentum conservation requires that therefore, the sum of the two y-
components of the two initial putty masses must also be zero! This must be true for ANY
coordinate system we choose to describe the whole process - momentum conservation
must be coordinate-system independent!

Let’s describe the process from the point of view of S (you get the same result if instead you
choose S’ - a nice little exercise!):

The y-component of the putty thrown by the 1st brother in S is of course py1 = -m1 u1.
Furthermore, from the summary above we know that the y-component of the velocity of the
putty thrown by the 2nd brother, as measured in S, mustbe u = 1/y u2’ = 1/y ui. We must
therefore conclude that the only way momentum conservation can work is if the mass m; of
the 2nd putty, as measured in S, has increased by a factor y over that of the 1st one. Since this

must be true no matter what the initial velocity u’; was, it follows that the velocity

!
m,
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This turns out to be universally true: The mass of any object increases by a factor I" from its

dependent mass of the putty must be equal to m, =ym, =

rest mass mo once it is moving with velocity u: m(u) = ———==1Im;I' =

. ~ m — -
and the momentum is therefore p=——ii=Tmu.

Vi-u?/c?

Let’s check if this works correctly even if the initial velocities u1 = u’; are not small relative
to c: In that case, the 2nd putty in S’ has already a mass larger than its rest mass:

m .
m,'= — 0 Ofcourse, mi also must have this mass. Therefore, we must conclude

Jl-u,"”/c?

that m, as measured in S has increased by another factor y (following the same argument

above), and therefore It must be equal to
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However, to be consistent, this same result should come out if we use the total velocity

m,

- 1
squared of the 2nd putty in S: &, = u; + ujy= v +—u, 2=y +(1 -V’ /cz)u2 It follows that
Y

the mass of the 2nd putty as measured in S should be equal to
m m
e = (2) 2 2, 2 : 2 2\, 12,2
\/1—u2/c \/l—v /c +(1—v /c )uz' /c




which is exactly the same result as we got before. So our conclusion is self-consistent.
Furthermore, we can see that the transformation rules for transverse momenta are simple
(as opposed to those for transverse velocities): py = p,’! (The same must be true for the z-
components).

Now let us turn to the x-components. Obviously, here things must be a bit more
complicated. Let’s study again a simple example involving the same train S’ and platform S.
But instead of two putties colliding, we now have a firecracker of initial mass M” atrestin S’
that explodes into two identical pieces, each with relativistic mass mi’ = m;’. Let's assume
that, just by chance, the two masses move with velocity u’1 = v and v’z = -v along the x’ axis,
again all measured in S’. Clearly, momentum is conserved since m:’ u’1 + m2’ v’z = 0, which
is also the initial momentum along x (mass M’ at rest). Finally, we observe that if the mass of

P . ! mO
each fragment in its own rest frame is mo, then m,'=

= = My =m,
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How does the whole explosion look like from the perspective of S? First, we can conclude
that the mass m; of the fragment going backwards in S’ must be equal to its rest mass mo,
since in fact my is at rest in S (uz = 0), as one can see from the rule for velocity addition in x-
w'+v 2y

direction. On the other hand, m1 is moving with velocity u, = , SO its

l+u'v/c? 1+l

mass must be equal to

m, m, mo(l"“’z/cz) 1+v?/c?
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Finally, we can conclude (again from our knowledge of how masses depend on velocity) that
the original mass of the firecracker, as measured in S (where it has velocity v), must be

MY
M = ——— . Now we can impose momentum conservation in x-direction in S:
J1-v*/¢?
1+v?/c> 2v 2my ! M'v ,
pi+p,=mu +0=m = =My = ————. By direct
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comparison, we must conclude that M = =m +m, !

1-v*/¢? "o 1-v?/c’ o 1-v?/c’
Amazingly, it appears that whatever the relativistic replacement of “mass” is, is actually
conserved in a collision, as well - NOT only the three components of the moment (and NOT
the rest masses as would be the case in Newtonian mechanics: M # 2my in either coordinate
system!) Again, as a consistency check, we can now deduce that

2m m
M'=\N1-v/c*M = 0 _\J1-v*/c? =2——"—=m,'+m,", so the same
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relativistic mass conservation is true in S’, as well. Obviously, there must be some deeper
meaning to the relativistic mass m(u) that we introduced!

To figure out what this meaning is, let’s see what the limit of the relativistic mass is at small
but non-zero velocities, where Newton mechanics should apply approximately. Therefore,
we develop the expression for the relativistic mass into a Taylor series:

m(u)=Lzmo(l—%[—u2/c2]+§[—u2 /c2]2+---)zcl—2(mo+%u2)+---

Nl=-u?/c?



The first term is indeed the normal (proper) rest mass, but the second term turns out to be
the kinetic energy (divided by c2). So, we find that, to our surprise, the conserved quantity is
something like a combination of mass and energy! Since energy is another quantity that
should be conserved in any collision, Einstein concluded that the mass m(u), multiplied
with ¢2, must be equal to a more general definition of energy:

moc2
N1-u/c?
be approximated by mou2/2- at higher velocities, it is defined as the difference Ewc — moc? =
(I'-1) moc2. To summarize: The sum of all actual (rest) masses of objects in a collision is no
longer conserved in Special Relativity. However, if we generalize energy by adding the so-
called rest-mass energy mo c2 (and using the relativistically correct form of kinetic energy),
we end up once again with a conserved quantity - the total relativistic energy Eto: = T'moc2.

E

otrel = m(u)c® = =T'myc’ = myc” +T,, . NOTE: Only for small velocities can Tiin

Obviously, there are very important consequences to this identification which we will
explore in detail. However, before we get to this, let’s conclude our analysis of how
momenta transform from one coordinate system to another. Let’s again use our coordinate
systems S and S’, but now take an arbitrary particle with rest mass m0 moving with velocity
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u’ in the x-direction relative to S’. What is its momentum in '? p '=m'(u")u'=

u'+v

Of course, it's speed in S is u = ———— and therefore its mass is
I+u'v/c
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and its momentum in x-direction
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where we have used Einstein’s equation in S’ : E’ = m’(u’) c2. This looks suspiciously similar
to the Lorentz transformations for x# at the beginning of this LN! In fact, if we define a “zero-
component of the momentum vector” as p? = E/c = m(u)c, then we can write

P’ =m@u)c=ym'c+ yK p.'=yp": yz p" (from the [] brackets 2 equations above) and
c c

!
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p'=p.=yp,+y——=yp"+y—p"”. We even have a relativistic invariant:
c c

p'p, = (p0)2 —(px)z - (py)2 - (Pz)2 =y’mic® —=y’mgv’ = myc® (true in all coordinate systems)



