Greek Alphabet

Capital	А	В	Γ	Δ	Е	Ζ	Н	Θ	Ι	Κ	Λ	М
Lowercase	εα	β	γ	δ	3	ζ	η	θ, θ	ι	κ	λ	μ
Name	alpha	beta	gamma	delta	epsil	on zeta	eta	theta	iota	kappa	lambda	mu
Capital	Ν	Ξ	0	П	Р	Σ	Т	Y	Φ	Х	Ψ	Ω
Lowercase	eν	ξ	0	π	ρ	σ	τ	υ	φ , φ	χ	Ψ	ω
Name	nu	xi	omicron	pi	rho	sigma	tau	upsilo	n phi	chi	psi	omega

Fundamental constants:

Speed of light: $c = 2.9979 \cdot 10^8$ m/s (roughly a foot per nanosecond) Planck constant: $h = 6.626 \cdot 10^{-34}$ J s; $\hbar = h / 2\pi$ Fundamental charge unit: $e = 1.602 \cdot 10^{-19}$ C Electron mass: $m_e = 9.109 \cdot 10^{-31}$ kg Hydrogen atom (¹H) mass: $m_H = 1.6735 \cdot 10^{-27}$ kg (A = 1.0078) Helium atom (⁴He) mass: $m_{^4He} = 6.6465 \cdot 10^{-27}$ kg (A = 4.0026) Coulomb's Law constant: $k = 1/4\pi\epsilon_0 = 8.988 \cdot 10^9$ Nm²/C² Gravitational constant: $G = 6.674 \cdot 10^{-11}$ Nm²/kg² Avogadro constant: $N_A = 6.022 \cdot 10^{23}$ particles per mol Boltzmann constant: $k = 1.38 \cdot 10^{-23}$ J/K = 8.617 \cdot 10^{-5} eV/K; $R = N_A \cdot k = 8.314$ J/K/mol Stefan-Boltzmann constant: $\sigma = 5.67 \cdot 10^{-8}$ W/m²K⁴

Useful conversions:

1 fm (= 1 "Fermi") = 10^{-15} m, 1 nm = 10^{-9} m = 10 Å; 1 PHz = 10^{15} Hz ("Petahertz") 1 eV = e^{-1} V = $1.602 \cdot 10^{-19}$ J (Energy of elementary charge after 1 V potential difference) 1 keV = 1000 eV, 1 MeV= 10^{6} eV, 1 GeV = 10^{9} eV, 1 TeV = 10^{12} eV ("Tera-electronvolt") New unit of mass m: $1 \text{ eV/}c^{2}$ = mass equivalent of 1 eV (Relativity!) = $1.78 \cdot 10^{-36}$ kg Momentum p: $1 \text{ eV/}c = 5.34 \cdot 10^{-28}$ kg m/s; p in eV/c = mass in eV/c^{2} times velocity in units of cPlanck contant: $\hbar = h/2\pi = 197.33 \text{ eV/}c^{-1}$ nm = $6.582 \cdot 10^{-16}$ eV $\cdot \text{s} = 0.658 \text{ eV/PHz}$ Fine-structure constant: $\alpha = e^{2}/4\pi\epsilon_{0}\hbar c = 1/137.036$ Electron mass: $m_{e} = 510,999 \text{ eV/}c^{2} \approx 0.511 \text{ MeV/}c^{2}$ Muon mass: $m_{\mu} = 105.658 \text{ MeV/}c^{2} \approx 207 \cdot m_{e}$ Proton mass: $m_{\mu} = 938.272 \text{ MeV/}c^{2} \approx 1836 \cdot m_{e}$ Neutron mass: $m_{n} = 939.565 \text{ MeV/}c^{2} \approx 1839 \cdot m_{e}$ Atomic mass unit (1/12 of the mass of a ^{12}C atom): $u = 931.494 \text{ MeV/}c^{2} \approx 1823 \cdot m_{e}$ Rydberg constant: $Ry = m_{e} c^{2} \alpha^{2}/2 \approx 13.606 \text{ eV}$ Bohr Radius: $a_{0} = \hbar c / (m_{e}c^{2}\alpha) = 0.0529 \text{ nm}$ (roughly ½ Å; $1 \text{ Å} = 10^{-10} \text{ m}$).

Special Relativity:

For an inertial system S' moving along the x-axis of S with constant velocity v < c, and with all axes aligned and the same origin ($x = y = z = ct = 0 \Leftrightarrow x' = y' = z' = ct' = 0$):

$$\gamma = \frac{1}{\sqrt{1 - v^2/c^2}}; x' = \gamma\left(x - \frac{v}{c}ct\right); ct' = \gamma\left(ct - \frac{v}{c}x\right); y = y'; z = z$$

Clocks in S' appear to S as if they were going slow by factor $1/\gamma$, and vice versa. Length of object at rest in S' appears contracted by factor $1/\gamma$ in S.

Velocity addition:
$$\frac{u_x}{c} = \frac{\frac{u_x}{c} + \frac{v}{c}}{1 + \frac{u_x}{c} \frac{v}{c}}; \frac{u_y}{c} = \frac{\frac{1}{\gamma} \frac{u_y}{c}}{1 + \frac{u_x}{c} \frac{v}{c}}.$$

Doppler shift: $\frac{\lambda_{obs}}{\lambda_{emitted}} = (z+1) = \frac{1+v_{\parallel}/c}{\sqrt{1-v^2/c^2}}$ (v is the **relative** velocity between emitter and

observer and v_{\parallel} is its component along the line of sight; z > 0 is redshift, z < 0 is blueshift) Four-vectors: $x^{\mu} = (ct, x, y, z)$; $x_{\mu} = (ct, -x, -y, -z)$ ($\mu = 0, 1, 2, 3$ for ct, x, y, z).

Invariant (squared) interval between two events (=points in 4-dim. space-time) is same in all inertial systems: $\Delta x^{\mu} = (\Delta ct, \Delta x, \Delta y, \Delta z) \Rightarrow \Delta s^2 = \Delta x^{\mu} \Delta x_{\mu} = \Delta ct^2 - \Delta x^2 - \Delta y^2 - \Delta z^2$

$$(\Delta s)^{2} = (\Delta ct)^{2} - (\Delta \vec{r})^{2} = \sum_{\mu,\nu=0...3} \Delta x^{\mu} g_{\mu\nu} \Delta x^{\nu} = (\Delta ct \quad \Delta x \quad \Delta y \quad \Delta z) \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} \Delta ct \\ \Delta x \\ \Delta y \\ \Delta z \end{pmatrix}$$

The 4x4 matrix g is called the "metric" - it helps measure distances in terms of coordinates. Positive Δs^2 : "time-like separation", Δs^2 = square of elapsed eigentime $c\tau$ in a system that travels from the start point (event) to the end point (event) of the interval.

Negative Δs^2 : "space-like separation", $-\Delta s^2 =$ square of distance between the two events in a system (which always exists!) where they occur simultaneously.

 $\Delta s^2 = 0$: "light-like separation"; a light ray could travel from one event to the other.

Four-momentum:
$$P^{\mu} = (E/c, P_x, P_y, P_z) = (\Gamma mc, \Gamma m \vec{u}); \Gamma = \frac{1}{\sqrt{1 - \vec{u}^2/c^2}} \cdot u = \text{velocity},$$

 $E = P \circ c$ is total energy of object = sum of rest mass energy ($E_{\text{rest}} = mc^2$) plus kinetic energy $T_{\text{kin}} = (\Gamma - 1) * mc^2 (\approx m/2 u^2 \text{ only if } u << c)$. Sum of all momenta is conserved in collisions, separately for each component. Transformation of P^{μ} to coordinate system S' is analog to X^{μ} (see above). Objects with no rest mass (e.g., photons): always u = c, E = |P|c.

Invariant Interval:
$$(P^0)^2 - \vec{P}^2 = \left(\frac{E}{c}\right)^2 - P_x^2 - P_y^2 - P_z^2 = m^2 c^2 \Rightarrow E = c\sqrt{m^2 c^2 + \vec{P}^2}; \frac{\vec{u}}{c} = \frac{\vec{P}c}{E}$$
.

Quantum Mechanics:

Formal/abstract: All *possible* knowledge about a system is encoded in its state vector $|\psi
angle$

- often only probabilities can be predicted. State vectors are members of a (complex) Hilbert space: they can be added, multiplied by a complex number (scalar), and we can define a scalar product $\langle \psi_1 | \psi_2 \rangle$ (= some complex number *c*, with $\langle \psi_2 | \psi_1 \rangle$ =c). All state vectors must be normalizable and by convention are normalized to 1: $\langle \psi | \psi \rangle$ =1.

Example: Motion in Motion in 1D => state vector represented by "wave function" $\psi(x)$. Addition: $[\psi_1 + \psi_2](x) = \psi_1(x) + \psi_2(x)$. Multiplication with scalar: $[c\psi_1](x) = c\psi_1(x)$. Scalar product: $\langle \psi_1 | \psi_2 \rangle = \int_{-\infty}^{\infty} \psi_1^*(x)\psi_2(x)dx$. Normalizable: $\langle \psi | \psi \rangle = \int_{-\infty}^{\infty} \psi^*(x)\psi(x)dx < \infty =>$

Normalized vector: $|\psi\rangle / (\langle \psi | \psi \rangle)^{1/2}$. Probability to find particle in interval x...x+dx: $d \Pr(x...x+dx) = |\psi(x)|^2 dx = \psi(x)^* \psi(x) dx$ (assuming normalized state vector, $\langle \psi | \psi \rangle = 1$).

Formal/abstract: Operators are linear functions turning vectors into other vectors: $\mathbf{O}|\psi\rangle = |\varphi\rangle; \mathbf{O}[c|\psi\rangle] = c|\varphi\rangle; \mathbf{O}[|\psi_1\rangle + |\psi_2\rangle] = \mathbf{O}|\psi_1\rangle + \mathbf{O}|\psi\rangle_2$. A vector $|\varphi_{\omega}\rangle$ is called an eigenvector of an operator \mathbf{O} with eigenvalue ω (=complex number) IF $\mathbf{O}|\varphi_{\omega}\rangle = \omega|\varphi_{\omega}\rangle$. Observables are represented by (Hermitian) operators $\mathbf{\Omega}$ with only **real** eigenvalues ω . Any measurement of the observable must give one of these eigenvalues as result. After we measure ω_i , the system will be in the state described by vector $|\varphi_{\omega_i}\rangle$ ("collapse of the wave function"). The probability to measure this particular eigenvalue for a state described by $|\psi\rangle$ is given by $\Pr(\omega_i) = |\langle \varphi_{\omega_i} | \psi \rangle|^2$. The average (expectation value) for the observable over many independent trials with the same initial state $|\psi\rangle$ is $\langle \Omega \rangle_{\psi} = \langle \psi | \mathbf{\Omega} | \psi \rangle$ with standard deviation $\sigma_{\Omega} = \sqrt{\langle \Omega^2 \rangle - \langle \Omega \rangle^2}$.

Example: Motion in 1D => Important observables:

Position $\mathbf{X}\psi(x) = x \cdot \psi(x) \rightarrow$ eigenvectors $\psi_{x_0}(x) = \delta(x - x_0)$ w/ eigenvalue x_0 ; Momentum $\mathbf{P}\psi(x) = \frac{\hbar}{i} \frac{\partial}{\partial x} \psi(x) \rightarrow$ eigenvectors $\psi_{p_0}(x) = e^{ip_0 x/\hbar}$ w/ eigenvalue p_0 ; Hamiltonian (= total

energy, kinetic plus potential):
$$\mathbf{H}\psi(x) = \left(\frac{\mathbf{P}^2}{2m} + V(X)\right)\psi(x) = -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\psi(x) + V(x)\psi(x).$$

Heisenberg's uncertainty principle: Position *x* and momentum *p* cannot be predicted with arbitrary precision simultaneously; $\sigma_x \sigma_p \ge \hbar/2$.

Formal/abstract: Time evolution (Schrödinger Equation): State vector becomes function of time: $|\psi\rangle(t)$; $\frac{\partial}{\partial t}|\psi\rangle(t) = \frac{1}{i\hbar}\mathbf{H}|\psi\rangle(t)$ where **H** is the Hamiltonian operator.

Eigenstates of **H**: $\mathbf{H} | \varphi_E \rangle = E | \varphi_E \rangle \implies$ "stationary" solutions of Schrödinger Equation: $| \psi_E(t) \rangle = | \varphi_E \rangle e^{-iEt/\hbar}$ (no time dependence for any observable).

Example: Motion in 1D => Eigenvalue equation: $-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\psi(x) + V(x)\psi(x) = E\psi(x)$.

Solution: "Stationary States". Eigenstates of the free Hamiltonian (V(x) = 0):

$$\psi_p(x,t) = Ae^{\frac{t}{\hbar}px}e^{-\frac{t}{\hbar}\frac{p}{2m}t}$$
 (simultaneously eigenstates of momentum operator)

Gaussian Wave Package:

= Linear combination of "free Hamiltonian eigenstates" (but not an eigenstate itself), with Gaussian weighting over a range of momenta. At time t = 0:

$$\psi_{GWP}(x,t=0) = \sqrt{\frac{1}{\sqrt{2\pi\sigma_p}}} \int_{-\infty}^{\infty} e^{-\frac{(p-p_0)^2}{4\sigma_p^2}} e^{\frac{i}{\hbar}px} dp = \sqrt{\frac{1}{\sqrt{2\pi\sigma_x}}} e^{\frac{i}{\hbar}p_0x} e^{-\frac{x^2}{4\sigma_x^2}}; \sigma_x = \frac{\hbar}{2\sigma_p}$$

Average momentum p_0 , with standard deviation σ_p . Average position x = 0; standard deviation for position is $\sigma_x = \frac{\hbar}{2\sigma_p}$ which is the smallest possible given Heisenberg's

Uncertainty Relation. However, σ_x will increase with time while σ_p is constant. Eigenstates of a 1-dim. square well potential (V(x) = 0 for $0 \le x \le L$, infinite elsewhere):

$$\varphi_n(x) = 0 \text{ for } x < 0, x > L; \text{ else } \varphi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right); E_n = \frac{n^2 \pi^2 \hbar^2}{2mL^2}, n = 1, 2, \dots$$

Eigenstates of Harmonic Oscillator: \mathbf{p}^2

$$\begin{aligned} \mathbf{H} &= \frac{\mathbf{P}^{2}}{2m} + \frac{m\omega^{2}}{2} \mathbf{X}^{2} \\ \varphi_{n}(x) &= AH_{n} \left(\sqrt{\frac{m\omega}{\hbar}} x \right) e^{-\frac{m\omega}{2\hbar}x^{2}}; E_{n} = (n + \frac{1}{2})\hbar\omega , n = 0, 1, \dots \\ H_{0}(y) &= 1, H_{1}(y) = 2y, H_{2}(y) = 4y^{2} - 2; \\ A_{0} &= \left(\frac{m\omega}{\pi\hbar}\right)^{1/4}, A_{1} = \frac{1}{\sqrt{2}} \left(\frac{m\omega}{\pi\hbar}\right)^{1/4}, A_{2} = \frac{1}{\sqrt{8}} \left(\frac{m\omega}{\pi\hbar}\right)^{1/4}. \end{aligned}$$

Quantum Mechanics in 3D:

Cartesian coordinates:
$$(x, y, z)$$

 $\psi(x, y, z)$; $\mathbf{H} = -\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right) + V(x, y, z)$; $\Delta \Pr(\vec{r}, \Delta \tau) = \left| \psi(x, y, z) \right|^2 \Delta \tau$

(Small volume $\Delta \tau = \Delta x \Delta y \Delta z$ located at position (x,y,z)).

Separation of variables: Look for solutions for the eigenvalue equation of the type $\psi(x, y, z) = \psi_1(x)\psi_2(y)\psi_3(z)$

Example: Infinite square well in 3D:

 $\varphi_{njk}(x, y, z) = \sqrt{\frac{8}{L^3}} \sin \frac{n\pi x}{L} \sin \frac{j\pi y}{L} \sin \frac{k\pi z}{L}; E_{njk} = (n^2 + j^2 + k^2) \frac{\hbar^2 \pi^2}{2mL^2}$

Spherical coordinates: *r*, θ , ϕ

Small volume for probability: $\Delta \tau = r \Delta r \sin \theta \Delta \theta \Delta \phi$ Hamiltonian in spherical coordinates:

$$\mathbf{H} = -\frac{\hbar^2}{2m} \left(\frac{1}{r^2} \frac{\partial}{\partial r} r^2 \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{1}{\sin \vartheta} \frac{\partial}{\partial \vartheta} \sin \vartheta \frac{\partial}{\partial \vartheta} + \frac{1}{r^2} \frac{1}{\sin^2 \vartheta} \frac{\partial^2}{\partial \varphi^2} \right) + V(r)$$
$$= -\frac{\hbar^2}{2m} \frac{1}{r^2} \frac{\partial}{\partial r} r^2 \frac{\partial}{\partial r} + \frac{1}{2mr^2} \vec{\mathbf{L}}^2 + V(r)$$

Here, $\vec{\mathbf{L}}^2$ is the squared orbital angular momentum operator with eigenfunctions $Y_{\ell m}(\vartheta,\varphi)$; $\vec{\mathbf{L}}^2 Y_{\ell m} = \hbar^2 \ell(\ell+1) Y_{\ell m}$; $\ell = 0, 1, 2...; \mathbf{L}_z Y_{\ell m} = \hbar m Y_{\ell m}$; $m = -\ell, -\ell+1, ..., \ell$

 $(\mathbf{L}_{z}$ is the z-component of the angular momentum operator). Examples:

$$Y_1^{-1}(\theta,\varphi) = \frac{1}{2}\sqrt{\frac{3}{2\pi}} \cdot e^{-i\varphi} \cdot \sin\theta$$
$$Y_{00}(\vartheta,\varphi) = \sqrt{\frac{1}{4\pi}}; \qquad Y_1^0(\theta,\varphi) = \frac{1}{2}\sqrt{\frac{3}{\pi}} \cdot \cos\theta =$$
$$Y_{11}(\theta,\varphi) = \frac{-1}{2}\sqrt{\frac{3}{2\pi}} \cdot e^{i\varphi} \cdot \sin\theta$$

Separation of variables: Look for eigenstates of the Hamiltonian of form $\psi_{E\ell m}(r, \vartheta, \varphi) = R_{E,\ell}(r)Y_{\ell m}(\vartheta, \varphi)$ with

$$-\frac{\hbar^2}{2m}\frac{1}{r^2}\frac{\partial}{\partial r}r^2\frac{\partial}{\partial r}R_{E,\ell}(r) + \frac{\hbar^2\ell(\ell+1)}{2mr^2}R_{E,\ell}(r) + V(r)R_{E,\ell}(r) = E \cdot R_{E,\ell}(r)$$

Probability to find particle in volume $\Delta \tau$ at position (r, θ, ϕ) : $|\psi_{E\ell m}(r, \vartheta, \varphi)|^2 \Delta \tau$ Radial probability distribution: $\Delta Pr(r...r+\Delta r) = |R_{E\ell}(r)|^2 r^2 \Delta r$

Hydrogen-like atoms:

(Nucleus of mass m_2 and charge Ze, bound particle of mass m_1 and charge -e)

$$V(r) = -\frac{Ze^2}{4\pi\varepsilon_0 r} = -\frac{Z\alpha\hbar c}{r} \quad \alpha = e^2 / 4\pi\varepsilon_0\hbar c$$

Mass must be replaced by "reduced mass" of 2-body system with masses m_1 and m_2 :

$$\mu_r = \frac{m_1 m_2}{m_1 + m_2}$$

Energy Eigenvalues:

$$E_{n\ell} = -\frac{\mu_r}{m_e} \frac{Z^2}{n^2} Ry \ (n = 1, 2, ...; Ry = m_e c^2 \alpha^2 / 2 = 13.6 \text{ eV}). \text{ Degenerate in } \ell \text{ and } m; \ell = 0,$$

1,..., *n*-1, $m_{\ell} = -\ell \dots + \ell$; also degenerate in electron spin $m_s = \pm 1/2 \Longrightarrow$ total degeneracy $2n^2$.

Characteristic radius: $a = \frac{m_e}{\mu_r Z} a_0$ $a_0 = \hbar c / (m_e c^2 \alpha) = 0.53 \text{ Å} = 0.053 \text{ nm}.$

Eigenstates: $\psi_{n,\ell,m}(r,\vartheta,\varphi) = R_{n,\ell}(r)Y_{\ell m}(\vartheta,\varphi)$. $R_{n,\ell}(r)$ (examples):

$$R_{1,0}(r) = \frac{2}{a^{3/2}} e^{-r/a}; R_{2,0}(r) = \frac{2 - r/a}{\sqrt{8}a^{3/2}} e^{-r/2a}; R_{2,1}(r) = \frac{r/a}{\sqrt{24}a^{3/2}} e^{-r/2a}$$

Energy of a photon: $E_{\gamma} = hf = hc/\lambda$ **Momentum of a photon:** $p_{\gamma} = h/\lambda$

Light emitted or absorbed in transition with energy difference $\Delta E = E_{init} - E_{final}$: $f = \Delta E/h, \lambda = hc/\Delta E = 2\pi\hbar c/\Delta E$

Pauli principle: No two identical Fermions (spin-1/2, 3/2, ... particles) can be in the same exact quantum state. (-> See Fermi-Dirac statistics)

Nuclear Physics

Mass-energy of an atom: (*Z* protons, *N* neutrons, A = Z+N):

 $M_{\rm A}c^2 = Z M_{\rm p}c^2 + N M_{\rm n}c^2 + Z m_{\rm e}c^2 - BE \text{ (Binding energy)}$

typical binding energies BE = 7-8 MeV^A with a maximum for nuclei around iron (A=56). Light nuclei have significantly lower *BE* per nucleon; beyond iron, the *BE* per nucleon decreases slowly with *A* (due to Coulomb repulsion).

Energy liberated during a nuclear fusion reaction $1 + 2 \rightarrow 3$: $\Delta E = M_1 c^2 + M_2 c^2 - M_3 c^2$ Energy liberated during a nuclear decay $1 \rightarrow 2 + 3$: $\Delta E = M_1 c^2 - M_2 c^2 - M_3 c^2$

Density: roughly constant $\rho = 0.16$ Nucleons / fm³ = 2×10¹⁷ kg/m³

Radioactive nuclei:

alpha-decay: $(Z,A) \rightarrow (Z-2,A-2) + {}^{4}\text{He} + \text{energy}$ beta-plus decay: $(Z,A) \rightarrow (Z-1,A) + e^{+} + v_{e}$ beta-minus decay: $(Z,A) \rightarrow (Z+1,A) + e^{-} + \bar{v}_{e}$ Decay probability in time Δt : $\Delta Pr(\Delta t) = \Delta t/\tau$ ($\tau = \text{lifetime} = T_{1/2}/\ln 2$)

Number of undecayed nuclei at time *t* (starting with N_0): $N(t) = N_0 e^{-t/\tau}$

Particle Physics

Fundamental Fermions (spin-1/2 particles obeying Pauli Exclusion Principle):

quarks (up, down, charm, strange, top, bottom) and leptons (electron, muon, tau, electronneutrino, muon-neutrino, tau-neutrino) and their antiparticles.

Force-mediating Gauge Bosons (spin-1 particles obeying Bose-Einstein statistics): Photon γ (electromagnetic interaction), W^+ , W, Z^0 (weak interaction), gluons (strong interaction) [graviton (gravity) only conjectured]. All except weak interaction bosons are massless; the latter gain mass (80-91 GeV/ c^2) through interaction with the Higgs field.

PHYSICS 323 - Fall Semester 2017 - ODU

Name	Symbol	Mass (MeV/c ²) [*]	J	В	Q (e)	Particle/antiparticle name	Symbol	Q (e)
				-		Electron / Positron ^[18]	e ⁻ /e ⁺	-1/+1
Up	u	2.3 ^{+0.7} _{-0.5}	1/2	+1/3	+2/3			1711
Down	d	4.8 ^{+0.5} _{-0.3}	1/2	+1⁄3	-1/3	Muon / Antimuon ^[19]	μ / μ+	-1 / +1
					:	Tau / Antitau ^[21]	τ / τ +	-1 / +1
Charm	с	1275 ±25	1/2	+1/3	+2/3			
Strange	s	95 ± 5 $\frac{1}{2}$ + $\frac{1}{3}$ - $\frac{1}{3}$ Electron neutrino / Electron antineutrino ^[34]		v _e /v _e	0			
						Muon neutrino / Muon antineutrino ^[34]	$v_{\mu}/\overline{v}_{\mu}$	0
Тор	t	173 210 ±510 ± 710	1/2	+1/3	+2/3		•μ••μ	_
Bottom	b	4180 ±30	1/2	+1/3	-1/3	Tau neutrino / Tau antineutrino ^[34]	v_{τ} / \overline{v}_{τ}	0

All interactions proceed via gauge bosons coupling to various charges:

- electromagnetic interaction: electric charge (+ or -) (all charged Fermions plus *W* bosons)

- weak interaction: weak charges ("weak isospin and weak hypercharge") – all particles except gluons

- strong interaction: color charges ("red", "green", "blue") - all quarks and gluons.

Molecules and Condensed Matter

Ionic Bond: One atom gives up 1 (or more) electron(s), the other picks it (them) up; binding through electrostatic attraction.

Covalent Bond: Electron(s) shared between two atoms. Example: Let $\psi_1(\vec{r_e})$ = wave function for hydrogen ground state with proton at position 1, and $\psi_2(\vec{r_e})$ for proton at position 2. Symmetric superposition $\psi_s(\vec{r_e}) = \frac{1}{\sqrt{2}}\psi_1(\vec{r_e}) + \frac{1}{\sqrt{2}}\psi_2(\vec{r_e})$ is attractive (net charge between protons), antisymmetric superposition $\psi_A(\vec{r_e}) = \frac{1}{\sqrt{2}}\psi_1(\vec{r_e}) - \frac{1}{\sqrt{2}}\psi_2(\vec{r_e})$ is non-

binding (zero net charge between protons).

Metallic Bond: Many electrons (one or more per atom) shared between a large number N of atoms -> positively charged "rest atoms" in "Fermi gas" of electrons. Electron energy eigenstates are clustered in "bands"; highest (partially or totally unoccupied) band = conduction band, next lower (filled) band = valence band. Each band contains of order N eigenstates. Interaction between electron gas and oscillation modes (=phonons) of the "rest atoms" gives rise to conductive heating, V = RI, and superconductivity (Bose-Einstein condensation of "Cooper pairs" of electrons).

Conductors: partially filled conduction band and/or overlapping conduction and valence bands. *Isolators*: Completely empty conduction band, completely filled valence band, large band gap. *Semi-conductors*: Similar to isolators, but with smaller band gap. Can conduct at finite temperatures (see Fermi-Dirac distribution below). Conductivity increased through electron donor (n-doped) or electron acceptor (p-doped) impurities. pn-junction = diode.

Thermal/Statistical Physics

Boltzmann Distribution: number n(E) of atoms (molecules, ...) out of an ensemble with a total of *N* atoms (...) with given energy *E* in a system with absolute temperature *T* (in K).

Discrete energy levels E_i (*e.g.*, quantum systems) with degeneracy g_i (= number of eigenstates of the Hamiltonian with energy eigenvalue E_i):

$$n(E_i) = Cg_i e^{-E_i/kT} = \frac{g_i}{e^{(E_i - \mu)/kT}}; C = e^{\mu/kT} = N / \sum g_i e^{-E_i/kT}$$

(C is a normalization constant; μ is the "chemical potential")

Continuous energy levels *E* (classical system, e.g. monatomic gas) with state density g(E)dE (= volume in "phase space" between energy *E* and energy E + dE): $dn(E...E + dE) = C g(E)dE e^{-E/kT}$; $C = N / \int g(E)dE e^{-E/kT}$

State density for simple monatomic gas:

 $g(E)dE = 4\pi p^2 dp = 4\pi m \sqrt{2mEdE}$

Consequences: Ideal gas law $PV = nRT = n N_A kT$, $(n = \text{number of mols}; N = n N_A)$; average energy per degree of freedom (dimension of motion) = $\frac{1}{2} kT \Rightarrow$ total kinetic energy of a monatomic gas = 3/2 kT per atom or $E_{\text{tot}} = \frac{3}{2} n N_A kT = \frac{3}{2} nRT$

Fermi-Dirac Distribution (for a system of indistinguishable Fermions):

 $n(E_i) = N \frac{g_i}{e^{(E_i - \mu)/kT} + 1}$; μ here is right above the Fermi energy = the highest filled

energy level necessary to accommodate all N fermions, where all lower energy levels are filled with as many Fermions as the Pauli principle allows

(= the state of a (degenerate) Fermi gas at close to zero temperature).

Bose-Einstein Distribution (for a system of indistinguishable bosons):

$$n(E_i) = N \frac{g_i}{e^{(E_i - \mu)/kT} - 1}$$
; μ here is right below the ground state energy (the lowest

available energy level). If T goes to zero, all levels but that lowest energy level are empty = Bose-Einstein condensation.

Photon density for black-body radiation:
$$\frac{dn_{\gamma}(\lambda...\lambda+d\lambda)}{dV} = \frac{8\pi}{\lambda^4} \frac{d\lambda}{e^{hc/\lambda kT} - 1} = 8\pi \frac{f^2}{c^3} \frac{df}{e^{hf/kT} - 1}$$

Energy density (= energy contained in electromagnetic radiation of wave length λ , per unit volume V) for black-body radiation (i.e., Bose-Einstein Distribution for a photon gas: $\frac{dE}{V} = 8\pi h \frac{f^3}{c^3} \frac{df}{e^{hf/kT} - 1} = \frac{8\pi hc}{\lambda^5} \frac{d\lambda}{e^{hc/\lambda kT} - 1}$; Energy flux/surface area $\frac{dE}{dAdt} = \frac{2\pi hc^2}{\lambda^5} \frac{d\lambda}{e^{hc/\lambda kT} - 1}$

(Planck's Law); Maximum for $\lambda = \frac{hc}{4.9663kT} = \frac{2.9 \text{ mm}}{T[K]}$. Total over all wave lengths: σT^4