PHYSICS 323 - Fall Semester 2017 - ODU

Greek Alphabet

Capital A B T A E Z H 6 I K A M
Lowercase o B v 5 € ¢ nmn 6,9 1 K A Tl
Name alpha beta gamma delta epsilon zeta eta theta iota kappalambda mu
Capital N = O Im P )y T Y ® X Y Q
Lowercase v E o T p c T L b, 0 W )
Name nu xi omicron pi rho sigma tau upsilonphi chi psi omega

Fundamental constants:

Speed of light: ¢ = 2.9979:10° m/s (roughly a foot per nanosecond)
Planck constant: # = 6.626:107*J s;h=h/2n

Fundamental charge unit: e = 1.602:10™"° C

Electron mass: me = 9. 109107 kg

Hydrogen atom ('H) mass: my = 1.6735:10%" kg (4 = 1.0078)
Helium atom (*He) mass: m,, =6.6465-10"" kg (4 = 4.0026)
Coulomb’s Law constant: k = 1/ 4neg= 8.988'10° Nm?/C?
Gravitational constant: G = 6.674'10"" Nm?/kg’

Avogadro constant: N, = 6.022:10* particles per mol

Boltzmann constant: k= 13810 J/K = 8.61710” eV/K; R = Ny k= 8.314 J/K/mol
Stefan-Boltzmann constant: ¢ = 5.67-10® W/m’K*

Useful conversions:

1 fm (=1 “Fermi”) = 10" m, 1 nm =10 m = 10 A; 1 PHz = 10"° Hz (“Petahertz”)

l1eV=e 1V=1.60210""J (Energy of elementary charge after 1 V potential difference)

1 keV =1000 eV, 1 MeV=10°¢eV, 1 GeV = 10’ eV, 1 TeV = 10"? eV (“Tera-electronvolt™)
New unit of mass m: 1 eV/c”> = mass equivalent of 1 eV (Relativity!) = 1.78'10°° kg
Momentum p: 1 eV/c = 5.34'10* kg m/s; p in eV/c = mass in eV/c” times velocity in units of ¢
Planck contant: /i = h/2m = 197.33 eV/c 'nm = 6.582'107'° eV 's = 0.658 eV/PHz
Fine-structure constant: o = e/ 4neohc = 1/137.036

Electron mass: n. = 510,999 eV/c> ~ 0.511 MeV/c?

Muon mass: my, = 105.658 MeV/c* = 207 * m.

Proton mass: m, = 938.272 MeV/c* =~ 1836 m.

Neutron mass: m, = 939.565 MeV/c* ~ 1839 Me

Atomic mass unit (1/12 of the mass of a '*C atom): u = 931.494 MeV/c*> ~ 1823 " m,
Rydberg constant: Ry = m. ¢’ a’/2 ~ 13.606 eV

Bohr Radius: ag = fic / (me c¢*ot) = 0.0529 nm (roughly % A; 1 A = 10" m).
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Special Relativity:
For an inertial system S’ moving along the x-axis of S with constant velocity v < ¢, and

with all axes aligned and the same origin (x=y=z=ct=0® x’ =y’ =7"= ct’ =0):

1 v v
y=—;x'=y(x——ct);ct'=y(ct——x);y=y';z=z'
J1-vi/¢? ¢ ¢

Clocks in S” appear to S as if they were going slow by factor 1/y, and vice versa.

Length of object at rest in S° appears contracted by factor 1/y in S.

u \% 1 uy
X [,
u .t u y ¢
Velocity addition: —~=-¢ €. >~ -
c u v c u_v
T+—=— 14 =—
cc cc

A l+v,/c
Doppler shift: —2 = (z7+1)= ——L——
A'emitred Y 1- V2 /c 2
observer and v, is its component along the line of sight; z > 0 is redshift, z < 0 is blueshift)
Four-vectors: x" =(ct,x,y,2); x, = (ct,—x,~y,~z) (u=0,1,23 for ct,x,y z).

(v is the relative velocity between emitter and

Invariant (squared) interval between two events (=points in 4-dim. space-time) is same
in all inertial systems: Ax" = (Act,Ax, Ay,Az) = As* = Ax"Ax,, = Act’ —Ax> = Ay’ - AZ"

1 0 0 O Act

2 2 2 v _ Ax
(As) =(Act)’ - (AF) = ZO}Ax”gWAx =( Act Ax Ay Az) LA
v 00 0 -1 Az

The 4x4 matrix g is called the “metric” - it helps measure distances in terms of coordinates.
Positive As*: “time-like separation”, As® = square of elapsed eigentime ¢t in a system that
travels from the start point (event) to the end point (event) of the interval.

Negative As”: “space-like separation”, -As” = square of distance between the two events in a
system (which always exists!) where they occur simultaneously.

As® = 0: “light-like separation”; a light ray could travel from one event to the other.
1

V1= /¢c?

E = Pc is total energy of object = sum of rest mass energy (Ers= mc”) plus kinetic energy

Four-momentum: P" = (E / c,Px,Py,PZ) =Tmec,Tmu); T = . u = velocity,

Tiin = (T-1)*mc” (= ™/, u” only if u<<c). Sum of all momenta is conserved in collisions,
separately for each component. Transformation of P¥ to coordinate system S’ is analog to
x¥ (see above). Objects with no rest mass (e.g., photons): always u = ¢, E = |P|c.
2 . —
Invariant Interval: (PO)2 -P’= (5) ~P-P -P=m’c* =>E=cym’c’ + P?; 2. % .
c ) c
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Quantum Mechanics:
Formal/abstract: All possible knowledge about a system is encoded in its state vector |1/)>

- often only probabilities can be predicted. State vectors are members of a (complex)

Hilbert space: they can be added, multiplied by a complex number (scalar), and we can
define a scalar product (1|, ) (= some complex number ¢, with (1, |y ) =c). All state

vectors must be normalizable and by convention are normalized to 1: (y[y) =
Example: Motion in Motion in 1D => state vector represented by “wave function” y(x).

Addition: [y, +y,](x) =y, (x)+ 1, (x). Multiplication with scalar: [cy, ](x) = cy,(x) .

Scalar product: (y, |y, ) f W, (x)y,(x)dx . Normalizable: (y[1) f Y (O)Y(x)dx <o =>

12

Normalized vector: [y>/ (< y | y >)“ . Probability to find particle in interval x...x+dx:

dPr(x..x+dx)= |1/;(x)|2 dx = (x) y(x)dx (assuming normalized state vector, (¥|y) =

Formal/abstract: Operators are linear functions turning vectors into other vectors:
O|y) =|@): O[c|w)] = c|@): O[|w,)+|w,)] = Oly,) + O|y), . A vector |g,) is called an

eigenvector of an operator O with eigenvalue o (=complex number) IF O|g,)=w|¢,).

Observables are represented by (Hermitian) operators 2 with only real eigenvalues ®.. Any
measurement of the observable must give one of these eigenvalues as result. After we
measure ®, the system will be in the state described by vector “Pw,.> (“collapse of the wave
function”). The probability to measure this particular eigenvalue for a state described by

2
|1/)> is given by Pr(w,) = K%i ‘1/’>‘ . The average (expectation value) for the observable over
many independent trials with the same initial state |t) is <Q>w = (y|Q|y) with standard
deviation o, = <Qz>— <Q>2 :
Example: Motion in 1D => Important observables:
Position X#(x) = x-y(x)—> eigenvectors ¥, (x)= O(x-x,) w/ eigenvalue xo; Momentum

ipox/h

d . . .
Py(x)= —a—w(x) —> eigenvectors ¥, (x)=e w/ eigenvalue po; Hamiltonian (= total

2 2 2
energy, kinetic plus potential): Hy(x) = (;; +V(X )) Y(x)= —;—a—w(x) +V(xX)yY(x).
m ma

Heisenberg’s uncertainty principle: Position x and momentum p cannot be predicted with
arbitrary precision simultaneously; 6.6, 7/2.

Formal/abstract: Time evolution (Schrodinger Equation): State vector becomes function

of time: [y (1) ; —|1//> ()= —H|1,U>(t) where H is the Hamiltonian operator.
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Eigenstates of H: H|g,) = E|g,) => “stationary” solutions of Schrodinger Equation:

|y (1)) =|@g)e™"  (no time dependence for any observable).
2 2

Example: Motion in 1D => Eigenvalue equation: —;—;—ZTP(X) +V(xX)Y(x)=Ey(x).
m 0x

Solution: “Stationary States”. Eigenstates of the free Hamiltonian (V(x) = 0):

ipx —ip—t . .
(x,t) = Ae™ e "> (simultaneously eigenstates of momentum operator
b yeig P

Gaussian Wave Package:

= Linear combination of “free Hamiltonian eigenstates” (but not an eigenstate itself), with

Gaussian weighting over a range of momenta. At time ¢ = 0:

1 % _(/7_1’())2 i 1 i _ x? h
4ol P G

Yewp(X,2=0) = e " e dp= e" e ;0 =—

V2rmo, _‘£ N27o, 20,

Average momentum po, with standard deviation c,. Average position x = 0; standard

deviation for position is o, = —— which is the smallest possible given Heisenberg’s

20,

Uncertainty Relation. However, o will increase with time while o, is constant.

Eigenstates of a 1-dim. square well potential (V(x) =0 for 0 <x < L, infinite elsewhere):

2 . (nmx n’m’h?
n(x) =0 forx <0, x>L; else @, (x)=,[—sin|— | E, =———,n=1,2, ...
¢n(x) @,(x) i (L) T
Eigenstates of Harmonic Oscillator:
2 2
't PO
2m 2

<pn(x)=AHn(‘/m7wX)e_2hx yE,=(n+p)hw ,n=0,1,...

Hy(y)=1,H (y)=2y,H,(y) =4y’ -2;

1/4 1/4 1/4
A =(m_a)) A =L(@) A =L(@)
" Nzn) 77" 2\=n) 77 s\an)

Quantum Mechanics in 3D:

Cartesian coordinates: (x,y,z)
Y(x,y,z); H= —h—2 i+i+i +V(x,y,2); APr(r,At) = |1/J(x y z)|2 At
9 b b 2m axz ayz azz b b b b b b
(Small volume At = AxAyAz located at position (X,y,z)).
Separation of variables: Look for solutions for the eigenvalue equation of the type

Y(x,y,2) =P, (OY,(V)yY;(2)
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Example: Infinite square well in 3D:

8 . nmx . ]ﬂy . kmz 2 2 2 h2ﬂ2
2 (x,y, =,/—sm sin sin E o =(n"+j +k

Spherical coordinates: r, 0, ¢

Small volume for probability: At = rAr sinfAO A¢
Hamiltonian in spherical coordinates:

hz(iaza+1 1 9 o 1 1 &

> —sin—+ +V(r)
2m\r° dr 9dr r°sind o 09 r’sin ﬁaq)

2
=-h_i2ir2i+ ! 12 +V(r)
2mr-or Or 2mr

Here, L’ is the squared orbital angular momentum operator with eigenfunctions
(0,@); 1Y, =h*((+1)Y, ;0=0,1,2.. SLY, =fmY, m=-(,—0+]1,../

/m ”m ‘m

(L. is the z-component of the angular momentum operator). Examples:

YN0, 9) = %\/ % e .sinf

1\/g-(’osﬁ =
2V w
Yoo (O,¢0) = Q/ _1\/> g

5 zn-‘*-smﬁ

Separation of variables: Look for eigenstates of the Hamiltonian of form
wEfm (7",19 (77) = RE/(F)Y (19 QU) with
19 n M + 1)

e a0

E[( )+V(r)RE1(r) E- RE,(I’)

Probability to find particle in volume At at position (r, 6, ¢): |1/JE[m(r ,19,<,‘0)|2 At
Radial probability distribution: APr(r...r+Ar) = R, (1)l rAr

Hydrogen-like atoms:

(Nucleus of mass m, and charge Ze, bound particle of mass m, and charge —e)

2
V(r)=- Ze __Zahe a = e’/ dngohc
e r r

Mass must be replaced by “reduced mass” of 2-body system with masses m; and m;:
__mm,

r

m;+m,

Energy Eigenvalues:

E, 6 =- u Z — Ry (n=1,2,...;Ry=m. o’/ 2 =13.6 eV). Degenerate in ¢ and m; ( =0,
m, n’

e

l,...,n-1,m, = -(...+0; also degenerate in electron spin ms= +1/2 => total degeneracy 2n”.
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Characteristic radius: a = %ao ao = he / (me c? a)=0.53 A =0.053 nm.
u,

Eigenstates: ¥, ,,(r,%,@)=R, (Y, (0.¢) . R, (r) (examples):
2 2-rla o0 rla ey

R, (r)= —e "R, (r) = W 24 R, (1) = NP e

Energy of a photon: E, = hf = hc/A

Momentum of a photon: p, = h/A

Light emitted or absorbed in transition with energy difference AE = Eiii — Efinar:
f=AE/h, A = h¢/AE = 2nthc/AE

Pauli principle: No two identical Fermions (spin-1/2, 3/2, ... particles) can be in the same

exact quantum state. (-> See Fermi-Dirac statistics)

Nuclear Physics

Mass-energy of an atom: (Z protons, N neutrons, A = Z+N):
My* =7 Mp02 + N M,c*+ Z me® — BE (Binding energy)
typical binding energies BE = 7-8 MeV'A  with a maximum for nuclei around iron (A=56).
Light nuclei have significantly lower BE per nucleon; beyond iron, the BE per nucleon
decreases slowly with A (due to Coulomb repulsion).
Energy liberated during a nuclear fusion reaction 1 + 2 -> 3: AE = M\¢* + Myc” — Msc?
Energy liberated during a nuclear decay 1 -> 2 + 3: AE = Mic” - Mhc® — Msc?
Density: roughly constant p = 0.16 Nucleons / fm® = 2x10"” kg/m’
Radioactive nuclei:

alpha-decay: (Z,A) - (Z-2,A-2) + *He + energy

beta-plus decay: (Z,A) = (Z-1,A) +e" + v,

beta-minus decay: (Z,A) > (Z+1,A) + e + vV,

Decay probability in time Az: APr(Af) = At/t (7 = lifetime = T,/ In 2)

Number of undecayed nuclei at time ¢ (starting with Ny): N(t) = N, e’

Particle Physics

Fundamental Fermions (spin-1/2 particles obeying Pauli Exclusion Principle):

quarks (up, down, charm, strange, top, bottom) and leptons (electron, muon, tau, electron-
neutrino, muon-neutrino, tau-neutrino) and their antiparticles.

Force-mediating Gauge Bosons (spin-1 particles obeying Bose-Einstein statistics):
Photon y (electromagnetic interaction), W', W, A (weak interaction), gluons (strong
interaction) [graviton (gravity) only conjectured]. All except weak interaction bosons are
massless; the latter gain mass (80-91 GeV/c’) through interaction with the Higgs field.
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Name | Symbol | Mass (MeV/c?®)’ J B Q(e) Particle/antiparticle name Symbol | Q (e)
— 1 1 .~ Electron/ Positronl18l elet |-1/4+1
Up u 23 55 /o +7 +73
- . -+
wm | 48708 % | +% | -% Muon/Antimuon('® WIS NS
¢ Tau/ Antitaul! /T | =17+
Charm c 1275 +25 A +¥ +2
i ; i34 —
Strange 5 95 +5 % + A Electron neutrino / Electron antineutrinol34! Ve !/ Vg 0
Muon neutrino / Muon antineutrinol34! v,/ Vu 0
Top t 173210 510710 | % +¥ +2
ol & 2180230 n +% | -y Tauneutrino/Tau antineutrino®*! Ve / Vy 0

All interactions proceed via gauge bosons coupling to various charges:

- electromagnetic interaction: electric charge (+ or -) (all charged Fermions plus W bosons)
- weak interaction: weak charges (“weak isospin and weak hypercharge”) — all particles
except gluons

- strong interaction: color charges (“red”, “green”, “blue”) — all quarks and gluons.

Molecules and Condensed Matter

Ionic Bond: One atom gives up 1 (or more) electron(s), the other picks it (them) up;

binding through electrostatic attraction.
Covalent Bond: Electron(s) shared between two atoms. Example: Let 3, (7)) = wave

function for hydrogen ground state with proton at position 1, and ,(7,) for proton at

position 2. Symmetric superposition . (7.) = ! Y, (r)+ ! Y, (1)) is attractive (net charge
. S\le _T 1\'e = 2\
2 V2

. . . - 1 S
between protons), antisymmetric superposition y,(7,) = %wl r)- ﬁ% (r,) 1s non-

binding (zero net charge between protons).

Metallic Bond: Many electrons (one or more per atom) shared between a large number N

of atoms -> positively charged “rest atoms” in “Fermi gas” of electrons. Electron energy
eigenstates are clustered in “bands”; highest (partially or totally unoccupied) band =
conduction band, next lower (filled) band = valence band. Each band contains of order N
eigenstates. Interaction between electron gas and oscillation modes (=phonons) of the “rest
atoms” gives rise to conductive heating, V = RI, and superconductivity (Bose-Einstein
condensation of “Cooper pairs” of electrons).

Conductors: partially filled conduction band and/or overlapping conduction and valence bands.
Isolators: Completely empty conduction band, completely filled valence band, large band gap.
Semi-conductors: Similar to isolators, but with smaller band gap. Can conduct at finite
temperatures (see Fermi-Dirac distribution below). Conductivity increased through electron

donor (n-doped) or electron acceptor (p-doped) impurities. pn-junction = diode.
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Thermal/Statistical Physics

Boltzmann Distribution: number n(E) of atoms (molecules, ...) out of an ensemble with a
total of N atoms (...) with given energy E in a system with absolute temperature 7 (in K).
Discrete energy levels E (e.g., quantum systems) with degeneracy g; (= number of

eigenstates of the Hamiltonian with energy eigenvalue E):

n(E) Cg, ~EJKT _ C= eu/kT N/Egz —E;/kT

(E u)/kT ?

(C is a normalization constant; u is the “chemical potential™)

Continuous energy levels E (classical system, e.g. monatomic gas) with state density
g(E)dE (= volume in “phase space” between energy E and energy E + dE):
dn(E...E+dE)=Cg(E)dEe™" ;C=N/ f g(E)dEe™"™™

State density for simple monatomic gas:

¢(E)dE = 4wp*dp = 4xm\2mEdE

Consequences: Ideal gas law PV =nRT = n Nx kT, (n=number of mols; N =n N,);
average energy per degree of freedom (dimension of motion) = 2 kT => total kinetic
energy of a monatomic gas = 3/2 kT per atom or E = 3/2 nNa kT = 3/2 nRT

Fermi-Dirac Distribution (for a system of indistinguishable Fermions):

n(E)=N ; u here is right above the Fermi energy = the highest filled

o u)/kT +1

energy level necessary to accommodate all N fermions, where all lower energy levels
are filled with as many Fermions as the Pauli principle allows
(= the state of a (degenerate) Fermi gas at close to zero temperature).

Bose-Einstein Distribution (for a system of indistinguishable bosons):

n(E)=N ; # here is right below the ground state energy (the lowest

o u)/kT 1

available energy level). If T goes to zero, all levels but that lowest energy level are

empty = Bose-Einstein condensation.

dn (A...A+dA 2
Photon density for black-body radiation: n,( v ) = i—f o /ilk);_l = 8;1]; %

Energy density (= energy contained in electromagnetic radiation of wave length A, per unit

volume V) for black-body radiation (i.e., Bose-Einstein Distribution for a photon gas:

dE df _8mwhc dA dE  2mhc®  dA
v =8 hc T 35 T ; Energy flux/surface area Al a5 T ]
4
(Planck’s Law); Maximum for A = he = 2.9 mm . Total over all wave lengths: o7

49663kT  TI[K]



