Lecture 03: Alpha, Beta, and Gamma Radiation: Radiation and Radioactive Material TWO DEMOS: slide 8 slide 32 (2-3 min) Did you know?

- Highly radioactive material decays quickly?
- The term "radiation" may sound scary, but it refers to anything emitted (that is, radiated)
 - -We really only worry about radiation that breaks chemical bonds (**ionizing radiation**)

- Radiation (in broader sense) includes
- -Sound waves
- -Gravitational waves
- -Fast-moving subatomic particles from
 - Nuclear decay (alpha & beta particles, gamma rays)

3

- Cosmic rays (mostly muons, heavy cousins of the electron)
- Accelerators
- -Other electromagnetic waves (lower energy than gamma)

-Electromagnetic waves (only
wavelength varies)•Travel like waves•Interact like discrete particles-Quantized, photon energy $E = hc/\lambda$ •Radio & TV (0.1-10² m)•Microwave (~1 cm)
-Heats water by resonant
absorption5

-Infrared (10⁻⁴ - 10⁻⁶ m); Visual (400 - 800 nm)
-UV (10-400 nm)
Typical chemical bond energy ~ eV
UV photon energy > 3 eV
Photons energetic enough to break chemical bonds (sun burn)

- X-rays (0.01-10 nm) 1 300 keV photons

 Named because they were new and unknown
 Interaction probability decreases with energy
 Energy more mismatched with atomic energies
 less likely to interact
 Higher energy x-rays are more penetrating
- –Gamma rays (< 0.01 nm) 300+ keV photons
 - •Named as the 3rd type of radiation given off by radioactive decay

8

11

- We worry about **ionizing** radiation -All radiation interacts in matter
 - -Ionizing radiation deposits enough energy to break chemical bonds
 - •Weakens materials
 - Damages DNA
- -X-rays, gamma rays (even UV), fast moving subatomic particles

Animation: particle scattering from DNA, breaking bonds

Q

12

- Radioactive materials emit (nuclear) radiation via nuclear decay
 –Radioactivity measured in
 - disintegrations per time
 - •1 Becquerel = 1 disintegration / second (SI)
 - •1 curie = 3.7e10 Becquerels

- So how big is a Curie?
 - -I use microCi sources in the lab, minimal precautions
 - –Be careful with mCi
 - –AVOID Ci

10

Radioactive materials emit radiation via nuclear decay

- Radiation measured in particle flux
 - -#/time or #/area-time
 - –Geiger counter: cpm \rightarrow dpm
- -Let's look at a Geiger counter!
- -[long pause → demo]

[long pause] DEMO: Geiger counter here Audible clicks Measure count rate on dial

Radiation also measured in

absorbed dose in exposed material
100 rad = 1 Gray = 1 J/kg
deposited energy
Enough energy to lift 1 kg by
10 cm (4 in)
Very little heat (< milli K)
-can break a LOT of chemical bonds
7 min 14

biological effects

- 100 Rem = 1 Sievert
 - –Background radiation ~ 0.6 Rem/yr
- Correct grays and rads for bio effects of different radiation in different tissues
 –β,γ = 1, α=20, n,p in between
- Banana equiv dose (informal)
 -0.1 μSv = 10 μRem

15

Half Life

13

- + $\frac{1}{2}$ nuclei in a sample decay in one τ
- Impossible to predict which specific nuclei
- Coin toss analogy
- 800 →400→200→100→50 →25
- Short $\tau \rightarrow$ very radioactive

–But not for long

• Long $\tau \rightarrow$ not very radioactive 17

- Different isotopes have different halflives
 - -Too many p or n \rightarrow away from the valley of stability
- –160 VERY stable, now add p
 - •17F *τ* =64 s,
 - •18Ne *τ* = 1.7 s,
 - •19Na *τ* < 40 ns

- How big is 1 Curie (4e10 disint / sec)?
- That depends on the half life

-238U, $\tau = 5e9$ yr

•Now we need to convert years to seconds

 $-\pi \ge 10^7 \text{ s}$ story

19

- [...] τ = (5e9 yr)(3e7 s/yr) = 1.5e17 s
- [...] 4e10 dis/s * 1.5e17 s = 6e27 atoms
- [...](6e27 at)/(6e23 at/mo)= 10^4 mole
- [...] Weighs 10^4 * 238 g ~ 2 tons
- A couple of cubic feet

1 Curie (4e10 disint / sec)

-131I, τ = 8 d ~ 7e5 s
-[...] 4e10 dis/s * 7e5 s = 3e16 atoms
-[...](3e16 at)/(6e23 at/mo)= 5e-8 mole
-[...] Weighs (5e-8)(131 g) = 6 μg

- -So how much is left after one year?
 - •1 g of U238 is still 1 g and about 1 μ Ci
 - •1 g of 131I: $45\tau \rightarrow 2^{-45} \sim 3e-14$
 - •Only 6 nCi remains, the rest has decayed to 131Xe

22

- So how did we discover this?
 - -Crookes's tubes make cathode rays, visible on fluorescent screens
- –Roentgen noticed fluorescent screens elsewhere in the lab glowing faintly despite shielding→ x-rays!

23

20

- -Crookes didn't have fluorescent screens. He kept returning fogged film to be replaced, instead of investigating why it kept fogging.
- -Limited instrumentation (film and fluor screens)

• Becquerel looked to see if fluorescent materials (which emit light) also emit x-rays.	• Curie's found uranium ore even more effective at fogging film than uranium itself	• Three main types of nuclear decay ($\alpha\beta\gamma$) -All emitted by radium and its
–Place material on sealed film in sun.	–Isolated radium and polonium	decay products
–Only Uranium-sulfite worked		–Behave differently in a magnetic
–But it worked without sunlight too		field
–then checked regular U		• α deflected one way
–It worked too!		• eta deflected the other way
25	13 min 26	• γ undeflected 27

 $-\alpha$ and β have opposite charges $-\gamma$ uncharged

- Fission is completely different (and much rarer)
- α particle = 4He (2p + 2n) very tightly bound
- Daughter nucleus has A-4, Z-2, N-2
- –2p and 2n carried away by α
- -Moves 2 down and 2 left on chart of nuclides

29

- $-241/95 \mathrm{Am} \rightarrow 237/93 \mathrm{Np} + \alpha$
- $-238/92U \rightarrow 234/90$ Th + α

Why alpha decay and not proton emission?

- Heavy nuclei are bound by about 8 MeV per nucleon
 - -Need to find 8 MeV to emit a proton

-The alpha particle is already bound by 7 MeV per nucleon so it is much easier to find the energy to emit an alpha particle

31

34

- α decay due to Electric repulsion stronger than the strong force attraction
- Conserves charge, #n, and #p (expla)
- Conserves energy: Difference in BE
 → KE of fragments

$$-Q = (m_A - m_B - m_\alpha)c^2$$

•Bigger Q \rightarrow shorter τ

 $-4 - 10 \text{ MeV} \rightarrow 10 \text{ Gyr to } 100 \text{ ns}_2$

- -Conserves momentum:
 - •2-body decay → Equal and opposite momenta
 - $-\alpha$ carries most KE
 - -monoenergetic
 - Used to measure nuclear mass differences

33

Decay due to tunneling

Classically forbidden
-α energy = Q > 0

Describe shape of potential

Potential well at r < a
V ~ 1/r barrier for a < r < b

$$-V(r) = Q$$
 at $r = b$

- $-\alpha$ in well hits barrier a LOT (10²¹ Hz) til it tunnels out
- Inverse process:
- $-\alpha$'s aimed at nuclei must tunnel in

 Tunneling details
–Wave function decreases exponentially in forbidden region
• Probability decreases by 2 every 0.5 fm
–Barrier width $\sim 30 \text{ fm}$

37

Tiny!
Double energy
~ halve barrier width
Probability increases to 2^(-30)
~ 10^-9.
τ increases by a factor of a billion!
38

 $-Prob(tunnel) \sim 2^{(-60)} \sim 10^{-18}$.

•One billion-billionth

α Examples

 -232/90Th, Q=4 MeV, tau = 15 Gyr
 Age of universe
 -226/90Th, Q = 6 MeV, tau = 30 min
 -220/90Th, Q = 9 MeV, tau = 10⁻⁵ s

 20 min 39

- Chart of the nuclides
- Proton number vs neutron number
- Stable isotopes in black
- Yellow = alpha decay (heavier, more p rich)

- Beta radiation and the weak nuclear force
- Two kinds of beta decay:
- RIGHT or BELOW the valley of stability (pink)
 - -Too many n: $n \rightarrow p + e^- + anti-\nu$
- First kind of "beta decay", now beta- decay
- Moves diagonally up and left on the chart of nuclides 41

- LEFT or ABOVE the valley of stability (blue)
 - –Too many p: $p \rightarrow n + e + + \nu$
 - •beta+ decay
 - •aka "positron emission"
 - Moves diagonally down and right on the chart of nuclides

- $-\nu$ (m~0,q=0) existence inferred from continuous decay e energy spectrum
- -Max e energy used to measure nuclear ⊿M
- Described by Fermi theory
 - –No tunneling barrier, just weak
 - $-\mbox{Prob}\sim\mbox{overlap}$ of init and final states
 - –Also depends on angular momentum

46

• Examples:

- $-14/6C \rightarrow 14/7N + e + anti-v$
- -239/93Np $\rightarrow 239/94$ Pu + e- + anti- ν
- -26/13Al $\rightarrow 26/12$ Mg + e+ + ν
- τ varies from 10⁻³ to 10²³ s (10¹⁵ yr >> age of universe)

47

- γ rays (photons) and the EM force
 - –No change in A, Z, or N
 - -Most α and β decays leave excited daughter
 - –De-excites via γ emission

• E $\gamma \sim 0.1$ to 10 MeV

• $\lambda \sim 10^{4}$ to 10² fm

• Discrete energies characteristic of —Specific nuclei —Differences in nuclear states

•Atom →e changes orbit→emits photon

49

52

•Nucleus→n,p change orbit→emits photon Graphic for previous slide $\overbrace{arbon Atom}^{Photon} \\ \xrightarrow{-1 eV = 10^{-19} J} \\ \xrightarrow{-1 eV = 10^{-19} J} \\ \xrightarrow{0} \\ \xrightarrow{0$ Done as DEMO, 2-3 minutes?
αβγ interact differently with matter

αβ charged, interact with atomic e-, xfer E
α MUCH heavier and slower, interacts more
Slowed and stopped by a sheet of paper
β slowed and stopped by a few mm plastic
γ does not slow: either interacts & stops ... OR keeps moving
Stopped by a few mm lead (energy dependent)
Geiger counter demo with stopping power

You have 3 encapsulated sources αβγ and must swallow one, put the other in your pocket and the 3rd in your backpack. What do you do?
-α shielded by pants cloth → pocket
-β shielded by backpack material
-γ not shielded by either. Swallow it.

• Blocking α and β radiation from entering your body is not hard and makes a big difference.

• Gamma radiation is always much harder to shield against. Either you have a barrier like lead, or the gamma's gonna getcha.