Quiz 2

Assume S^{\prime} contains a rod 1 m in length, aligned with the x^{\prime} axis. It has a (rest) mass $m=1 \mathrm{~kg}$.
The origin of S^{\prime} is identical with the origin of S. Please answer the following questions.

A. What is the velocity v of S^{\prime} relative to S in units of c ?
B. At what point $(c t, x)$ in S does the event $E_{1}=$ "clock in S^{\prime} strikes 1 m " occur?
C. What is the invariant interval $(\Delta s)^{2}$ between the origin and that event in S ?
D. What is the invariant interval $(\Delta s)^{2}$ between the origin and that event in S^{\prime} ?
E. If S measures both ends of the rod simultaneously (at $c t=0$), what length does it measure?
F. What are the coordinates of the event $E_{2}=$ " S ' measures the far side end of the rod, simultaneously with its origin $\left(c t^{\prime}, x^{\prime}\right)=(0,0)^{\prime \prime}$?
G. What is the invariant interval $(\Delta s)^{2}$ between the origin and that event in S ?
H. What is the total 4 -momentum of the rod in S^{\prime} ? $\left(\mathrm{P}^{0}, \mathrm{P}^{1}, \mathrm{P}^{2}, \mathrm{P}^{3}\right)$
I. What is the total 4 -momentum of the rod in S ? ($\mathrm{P}^{0}, \mathrm{P}^{1}, \mathrm{P}^{2}, \mathrm{P}^{3}$)

J . The rod collides with an identical one at rest in S . What is the invariant mass of the combined object after the collision?

Quiz 2

Assume S^{\prime} contains a rod 1 m in length, aligned with the x^{\prime} axis. It has a (rest) mass $m=1 \mathrm{~kg}$.
The origin of S^{\prime} is identical with the origin of S. Please answer the following questions.

A. What is the velocity v of S^{\prime} relative to S in units of c ? Answ.: $v / c=\Delta x / \Delta c t=1 / 2 ; v=0.5 c$
B. At what point $(c t, x)$ in S does the event $E_{1}=$ "clock in S' strikes 1 m " occur?

Answ.: $c t=\gamma c t^{\prime}=(1+0.25)^{-1 / 2} \cdot 1 \mathrm{~m}=1.155 \mathrm{~m}$ (time dilation); $x=v c t=0.577 \mathrm{~m}$
C. What is the invariant interval $(\Delta s)^{2}$ between the origin and that event in S ?

Answ.: $1 \mathrm{~m}^{2}$ - either by direct calculation $\left(c t^{2}-x^{2}\right)$ or by observing that it must be the same as in S^{\prime} (see below)
D. What is the invariant interval $(\Delta s)^{2}$ between the origin and that event in S^{\prime} ?

Answ.: $1 \mathrm{~m}^{2}$ by definition for a time-like interval or by direct calculation

E. If S measures both ends of the rod simultaneously (at $c t=0$), what length does it measure?
Answ.: $1 / \gamma \mathrm{m}=0.866 \mathrm{~m}$ (length contraction or use Lorentz transformation with $c t=0$)
F. What are the coordinates of the event $E_{2}=$ " S ' measures the far side end of the rod, simultaneously with its origin $\left(c t^{\prime}, x^{\prime}\right)=(0,0)^{\prime \prime}$? Answ.: $c t=\gamma c t^{\prime}+\gamma v / c x^{\prime}=0+0.577 \mathrm{~m}$; $x=\gamma v / c c t^{\prime}+\gamma x^{\prime}=0+1.155 m$

Quiz 2

Assume S^{\prime} contains a rod 1 m in length, aligned with the x^{\prime} axis. It has a (rest) mass $m=1 \mathrm{~kg}$.
The origin of S^{\prime} is identical with the origin of S. Please answer the following questions.

F. What are the coordinates of the event $E_{2}=$ " S ' measures the far side end of the rod, simultaneously with its origin $\left(c t^{\prime}, x^{\prime}\right)=(0,0)$ "? Answ.: $c t=\gamma c t^{\prime}+\gamma v / c x^{\prime}=0+0.577 \mathrm{~m}$; $x=\gamma v / c c t^{\prime}+\gamma x^{\prime}=0+1.155 m$
G. What is the invariant interval $(\Delta s)^{2}$ between the origin and that event in S ?

Answ.: Again, $1 \mathrm{~m}^{2}$ by definition (space-like interval), direct calculation or invariance
H. What is the total 4-momentum of the rod in S^{\prime} ? $\left(\mathrm{P}^{0}, \mathrm{P}^{1}, \mathrm{P}^{2}, \mathrm{P}^{3}\right)$

Answ.: $\mathrm{P}^{0}=E / c=m c=2.9979 \cdot 10^{8} \mathrm{~kg} \mathrm{~m} / \mathrm{s} ; \mathrm{P}^{1}=\mathrm{P}^{2}=\mathrm{P}^{3}=0(u=0!)$
I. What is the total 4-momentum of the rod in S ? $\left(\mathrm{P}^{0}, \mathrm{P}^{1}, \mathrm{P}^{2}, \mathrm{P}^{3}\right)$

Answ.: $\mathrm{P}^{0}=E / c=\Gamma m c=3.462 \cdot 10^{8} \mathrm{~kg} \mathrm{~m} / \mathrm{s} ; \mathrm{P}^{1}=\Gamma m v=1.731 \cdot 10^{8} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$; rest $=0(u=v!)$
J. The rod collides with an identical one at rest in S . What is the invariant mass of the combined object after the collision?
Answ.: $\mathrm{P}_{\text {tot }}^{0}=m c+\Gamma m c=6.46 \cdot 10^{8} \mathrm{~kg} \mathrm{~m} / \mathrm{s} ; \mathrm{P}_{\text {tot }}^{1}=\Gamma m v=1.731 \cdot 10^{8} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
$m^{2} c^{2}=\left(\mathrm{P}_{\text {tot }}^{0}\right)^{2}-\left(\mathrm{P}_{\text {tot }}^{1}\right)^{2}=\left[(1+\Gamma)^{2}-0.5^{2} \Gamma^{2}\right](1 \mathrm{~kg} \mathrm{c})^{2} \Rightarrow \mathrm{~m}=2.076 \mathrm{~kg}$

