The Hydrogen Atom.

The Φ equation.

The first equation we want to solve is

$$
\frac{\mathrm{d}^{2} \Phi}{\mathrm{~d} \varphi^{2}}=-\mathrm{m}^{2} \Phi
$$

This equation is of familiar form; recall that for the free particle, we had

$$
\frac{\mathrm{d}^{2} \psi}{\mathrm{dx}^{2}}=-\mathrm{k}^{2} \psi
$$

for which the solution is

$$
\psi(x)=a_{0} \cos k x+a_{1} / k \sin k x
$$

Since

$$
\mathrm{e}^{ \pm i x}=\cos x \pm i \sin x
$$

a more general solution to equations of this type is

$$
\Phi=\mathrm{A}^{\mathrm{i} m \varphi}+\mathrm{Be}^{-\mathrm{i} m \varphi}
$$

In order that

$$
\Phi(\varphi)=\Phi(\varphi+2 \pi)
$$

The value of Φ at some value of φ must be the same at $\varphi+2 \pi$, since Φ is periodic.
it is necessary that

$$
\begin{aligned}
\mathrm{Ae}^{\mathrm{im} \varphi}+\mathrm{Be}^{-\mathrm{im} \varphi} & =\mathrm{Ae}^{\mathrm{i} m(\varphi+2 \pi)}+\mathrm{Be}^{-\mathrm{im}(\varphi+2 \pi)} \\
& =\mathrm{Ae} \mathrm{e}^{\mathrm{im} \varphi} \mathrm{e}^{\mathrm{i} m 2 \pi}+\mathrm{Be}^{-\mathrm{im} \varphi} \mathrm{e}^{-\mathrm{im} 2 \pi}
\end{aligned}
$$

Since $\mathrm{e}^{ \pm \mathrm{im} 2 \pi}=\cos (\mathrm{m} 2 \pi) \pm i \sin (\mathrm{~m} 2 \pi)=1$ only when $\mathrm{m}=0, \pm 1, \pm 2 \ldots$, the Φ equation has solutions

$$
\Phi=\mathrm{A} \mathrm{e}^{\mathrm{imp}}, \quad \mathrm{~m}=0, \pm 1, \pm 2, \ldots
$$

We can determine A by requiring that the wavefunctions be normalized,

$$
\begin{aligned}
& \int_{0}^{2 \pi} \Phi^{*} \Phi \mathrm{~d} \varphi=|\mathrm{A}|^{2} \int_{0}^{2 \pi} \mathrm{e}^{-\mathrm{i} m \varphi} \cdot \mathrm{e}^{\mathrm{i} m \varphi} \mathrm{~d} \varphi=|\mathrm{A}|^{2} \int_{0}^{2 \pi} \mathrm{~d} \varphi=1 \\
& |\mathrm{~A}|^{2}(2 \pi-0)=1 \Rightarrow|\mathrm{~A}|^{2}=\frac{1}{2 \pi}, \quad \mathrm{~A}=\frac{1}{\sqrt{2 \pi}}
\end{aligned}
$$

so

$$
\Phi_{\mathrm{m}}=\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{\mathrm{i} \mathrm{~m} \varphi} \quad \mathrm{~m}=0, \pm 1, \pm 2, \ldots
$$

are the final solutions to the Φ equation.

A postscript.

These wavefunctions are complex. Sometimes it is more useful to have real wavefunctions. These can be constructed by first defining

$$
\begin{aligned}
& \Phi_{+}=\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{+\mathrm{i}|\mathrm{~m}| \varphi}=\frac{1}{\sqrt{2 \pi}}(\cos \mathrm{~m} \varphi+\mathrm{i} \sin \mathrm{~m} \varphi) \\
& \Phi_{-}=\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-\mathrm{i}|\mathrm{~m}| \varphi}=\frac{1}{\sqrt{2 \pi}}(\cos \mathrm{~m} \varphi-\mathrm{i} \sin \mathrm{~m} \varphi)
\end{aligned}
$$

and then adding and subtracting Φ_{+}and $\Phi_{-} \ldots$ we say, "forming linear combinations":

$$
\begin{array}{lll}
\Phi_{\text {symm }}=\frac{1}{\sqrt{2}}\left(\Phi_{+}+\Phi_{-}\right)=\frac{1}{\sqrt{\pi}} \cos |\mathrm{~m}| \varphi & \begin{array}{l}
\text { These functions are } \\
\text { also solutions to the }
\end{array} \\
\Phi \text { equation. Try it! }
\end{array}
$$

each of which is a real function. We cannot associate with these functions a particular m value, but only with $|\mathrm{m}|$. The first three of these functions are

$$
\begin{aligned}
& \Phi_{0}=\frac{1}{\sqrt{2 \pi}} \\
& \Phi_{ \pm 1}=\frac{1}{\sqrt{\pi}} \cos \varphi \\
& \Phi_{\mp 1}=\frac{1}{\sqrt{\pi}} \sin \varphi \quad \text { etc. }
\end{aligned}
$$

The Θ equation.

The Θ equation is

$$
\frac{1}{\sin \theta} \frac{\mathrm{~d}}{\mathrm{~d} \theta}\left(\sin \theta \frac{\mathrm{~d} \Theta}{\mathrm{~d} \theta}\right)-\frac{\mathrm{m}^{2} \Theta}{\sin ^{2} \theta}+\beta \Theta=0 .
$$

Rearranging,

$$
\frac{\mathrm{d}^{2} \Theta}{\mathrm{~d} \theta^{2}}+\frac{\cos \theta}{\sin \theta} \frac{\mathrm{d} \Theta}{\mathrm{~d} \theta}+\left(\beta-\frac{\mathrm{m}^{2}}{\sin ^{2} \theta}\right) \Theta=0 .
$$

Now, make the substitutions

$$
\begin{aligned}
& x=\cos \theta, \sin ^{2} \theta=1-x^{2} \\
& \frac{d}{d \theta}=\frac{d}{d x} \frac{d x}{d \theta}=-\sin \theta \frac{d}{d x}, \frac{d^{2}}{d \theta^{2}}=\sin ^{2} \theta \frac{d^{2}}{d x^{2}}-\cos \theta \frac{d}{d x}
\end{aligned}
$$

After some algebra, we get

$$
\left(1-x^{2}\right) \frac{d^{2} \Theta}{d x^{2}}-2 x \frac{d \Theta}{d x}+\left(\beta-\frac{m^{2}}{\left(1-x^{2}\right)}\right) \Theta=0
$$

This equation is identical to the associated equation of Legendre

$$
\left(1-x^{2}\right) \frac{d^{2} P}{d x^{2}}-2 x \frac{d P}{d x}+\left(\ell(\ell+1)-\frac{m^{2}}{\left(1-x^{2}\right)}\right) P=0
$$

if we identify P with Θ and β with $\ell(\ell+1)$.

The solutions P of the associated Legendre equation are called the associated Legendre functions; these may be expressed in closed form as (since $x=\cos \theta$)

$$
\mathrm{P}_{\ell}^{|\mathrm{m}|}(\cos \theta)=\left(1-\cos ^{2} \theta\right)^{\frac{|\mathrm{m}|}{2}} \sum_{\mathrm{k}-0} \frac{(-1)^{\mathrm{k}}(2 \ell-2 \mathrm{k})!(\cos \theta)^{\ell-|\mathrm{m}|-2 \mathrm{k}}}{2^{\ell}(\ell-\mathrm{k})!\mathrm{k}!(\ell-|\mathrm{m}|-2 \mathrm{k})!}
$$

Here, $\mathrm{P}_{\ell}^{|\mathrm{m}|}$ is a polynomial of degree ℓ and order $|\mathrm{m}|$, where ℓ and m are integers. k is an (integer) index, and the sum (Σ) runs from $\mathrm{k}=0$ to an upper limit of

$$
\begin{aligned}
& \mathrm{k}=(\ell-|\mathrm{m}|) / 2 \text { if }(\ell-|\mathrm{m}|) \text { is even } \\
& \mathrm{k}=(\ell-|\mathrm{m}|-1) / 2 \text { if }(\ell-|\mathrm{m}|) \text { is odd }
\end{aligned}
$$

Since m is an integer, and since the solutions to the associated Legendre equation are acceptable only if $(\ell-|\mathrm{m}|)$ is an integer, it is necessary that

$$
\ell=\text { int eger } \quad, \quad \text { with } \quad \ell \geq|\mathrm{m}|
$$

The solutions $\mathrm{P}(\Theta)$ must of course be normalized; the requirement that

$$
1=\int_{0}^{\pi} \Theta_{\ell, \mathrm{m}}^{*} \Theta_{\ell, \mathrm{m}} \mathrm{~d} \theta=\int_{-1}^{1}|A|^{2} P_{\ell}^{*|\mathrm{~m}|}(\cos \theta) \mathrm{P}_{\ell}^{|\mathrm{m}|}(\cos \theta) \mathrm{d}(\cos \theta)
$$

leads to

$$
\mathrm{A}=\left\{\left(\frac{2 \ell+1}{2}\right) \frac{(\ell-|\mathrm{m}|!}{(\ell+|\mathrm{m}|!}\right\}^{\frac{1}{2}}
$$

which gives

$$
\Theta_{\ell, \mathrm{m}}(\theta)=\left\{\left(\frac{2 \ell+1}{2}\right) \frac{(\ell-|\mathrm{m}|)!}{(\ell+|\mathrm{m}|)!}\right\}^{\frac{1}{2}} \mathrm{P}_{\ell}^{|\mathrm{m}|}(\cos \theta)
$$

These wavefunctions, though they appear to be complicated, are not, at least for small ℓ. For example,

$$
\begin{array}{ll}
\ell=0, \mathrm{~m}=0 . & \Theta_{0,0}(\theta)=\frac{\sqrt{2}}{2} \\
\ell=1, \mathrm{~m}=0 . & \Theta_{1,0}(\theta)=\frac{\sqrt{6}}{2} \cos \theta \\
\ell=1, \quad \mathrm{~m}= \pm 1 . & \Theta_{1, \pm 1}(\theta)=\frac{\sqrt{3}}{2} \sin \theta \tag{p}
\end{array}
$$

$$
\begin{array}{ll}
\ell=2, \quad \mathrm{~m}=0 . & \Theta_{2,0}(\theta)=\frac{\sqrt{10}}{4}\left(3 \cos ^{2} \theta-1\right) \\
\ell=2, \quad \mathrm{~m}= \pm 1 . & \Theta_{2, \pm 1}(\theta)=\frac{\sqrt{15}}{4} \sin \theta \cos \theta \\
\ell=2, \quad \mathrm{~m}= \pm 2 . & \Theta_{2, \pm 2}(\theta)=\frac{\sqrt{15}}{4} \sin ^{2} \theta \tag{d}
\end{array}
$$

You have already met these functions before, though possibly not in this form. These are the angular functions describing the probability amplitudes in s, p, d orbitals!

Some postscripts.

- The associated Legendre functions are derivatives of the Legendre polynomials P_{ℓ} $(\cos \theta)$

$$
\mathrm{P}_{\ell}^{\mathrm{m}}(\mathrm{x})=\left(1-\mathrm{x}^{2}\right)^{\frac{\mathrm{m}}{2}} \frac{\mathrm{~d}^{\mathrm{m}}}{\mathrm{dx}^{\mathrm{m}}} \mathrm{P}_{\ell}(\mathrm{x})
$$

The L. polynomials

$$
\mathrm{P}_{\ell}(\mathrm{x})=\sum_{\mathrm{k}=0} \frac{(-1)^{\mathrm{k}}(2 \ell-2 \mathrm{k})!\mathrm{x}^{\ell-2 \mathrm{k}}}{2^{\ell}(\ell-\mathrm{k})!\mathrm{k}!(\ell-2 \mathrm{k})!} \quad \begin{aligned}
& \text { upper limit on } \Sigma: \ell / 2 \text { if } \ell \\
& \text { even. }(\ell-1) / 2 \text { if } \ell \text { odd. }
\end{aligned}
$$

are, in turn, solutions of the Legendre equation

$$
\left(1-x^{2}\right) \frac{d^{2} z}{d x^{2}}-2 x \frac{d z}{d x}+\ell(\ell+1) z=0 \quad(z=P)
$$

- The functions $\sqrt{\ell+\frac{1}{2}} \quad \mathrm{P}_{\ell}(\cos \theta)$ and $\mathrm{P}_{\ell}^{|\mathrm{m}|}(\cos \theta)$ form an orthonormal set in the interval $-1 \leq \cos \theta \leq 1$.
- The L. functions are symmetric or antisymmetric as ℓ is even or odd

$$
\begin{aligned}
& \mathrm{P}_{\ell}(-\cos \theta)=(-1)^{\ell} \mathrm{P}_{\ell}(\cos \theta) \\
& \mathrm{P}_{\ell}^{|\mathrm{m}|}(-\cos \theta)=(-1)^{\ell-\mathrm{m}} \mathrm{P}_{\ell}^{|\mathrm{m}|}(\cos \theta)
\end{aligned}
$$

- The functions do not exceed 1 in absolute value

$$
\left|\mathrm{P}_{\ell}(\cos \theta)\right| \leq 1 \quad ; \quad \text { e.g. } \quad \mathrm{P}_{\ell}(1)=1, \quad \mathrm{P}_{\ell}(-1)=(-1)^{\ell} .
$$

- Since the $\mathrm{P}_{\ell}(\mathrm{x})$ are polynomials, there exist ℓ roots, or ℓ values of $\cos \theta$, for which P_{ℓ} (x) changes sign. The sign of $\mathrm{P}_{\ell}(\mathrm{x})$ is often indicated by a circular diagram,

At the north pole in this diagram, $\theta=0$ and $x=\cos \theta=+1$; at the equator, $x=\cos \frac{\pi}{2}$ $=0$; at the south pole, $\mathrm{x}=\cos \pi=-1$. We then use lines on the circle to indicate the values of θ at which the polynomial is zero:

- Recurrence relations exist for both the $\mathrm{P}_{\ell}^{|\mathrm{m}|}$ and P_{ℓ}, e.g.

$$
(2 \ell+1)(\cos \theta) \mathrm{P}_{\ell}^{\mathrm{m}}=\mathrm{P}_{\ell+1}^{\mathrm{m}+1}-\mathrm{P}_{\ell-1}^{\mathrm{m}+1}
$$

- The product functions $\mathrm{Y}_{\ell}^{\mathrm{m}}(\theta, \varphi)$

$$
\mathrm{Y}_{\ell}^{\mathrm{m}}(\theta, \varphi)=\Theta_{\ell, \mathrm{m}}(\theta) \Phi_{\mathrm{m}}(\varphi)
$$

are called spherical harmonies. These are given by the formula

$$
\mathrm{Y}_{\ell}^{\mathrm{m}}(\theta, \varphi)=\left\{\frac{(2 \ell+1)(\ell-|\mathrm{m}|)!}{4 \pi(\ell+|\mathrm{m}|)!}\right\}^{\frac{1}{2}} \mathrm{P}_{\ell}^{|\mathrm{m}|}(\cos \theta) \mathrm{e}^{\mathrm{im} \varphi} .
$$

The R equation.

The radial equation for the electron "in orbit" about the nucleus of the hydrogen atom is

$$
\frac{\mathrm{d}^{2} \mathrm{R}}{\mathrm{dr}^{2}}+\frac{2}{\mathrm{r}} \frac{\mathrm{dR}}{\mathrm{dr}}+\left[\frac{2 \mathrm{~m}}{\hbar^{2}}\left(\mathrm{E}+\frac{\mathrm{Ze}^{2}}{\mathrm{r}}\right)-\frac{\ell(\ell+1)}{\mathrm{r}^{2}}\right] \mathrm{R}=0
$$

If we consider bound states $(\mathrm{E}<0)$ only, and introduce the new variables n and ρ, where

$$
\begin{aligned}
\mathrm{E} & =-\frac{\mathrm{mZ}^{2} \mathrm{e}^{4}}{2 \mathrm{n}^{2} \mathrm{~h}^{2}}=-\frac{\mathrm{Z}^{2} \mathrm{e}^{2}}{2 \mathrm{n}^{2} \mathrm{a}_{0}} \quad\left(\mathrm{a}_{0}=\frac{\hbar^{2}}{\mathrm{me}^{2}}\right) \\
\mathrm{r} & =\frac{1}{2}\left(\frac{\mathrm{n}^{2} \hbar^{2}}{\mathrm{mZe}^{2}}\right) \rho=\frac{1}{2}\left(\frac{\mathrm{na}_{0}}{\mathrm{Z}}\right) \rho
\end{aligned}
$$

the radial equation becomes

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \mathrm{R}}{\mathrm{~d} \rho^{2}}+\frac{2}{\rho} \frac{\mathrm{dR}}{\mathrm{~d} \rho}+\left(-\frac{1}{4}+\frac{\mathrm{n}}{\rho}-\frac{\ell(\ell+1)}{\rho^{2}}\right) \mathrm{R}=0 \tag{A}
\end{equation*}
$$

We seek solutions of the form

$$
\begin{equation*}
\mathrm{R}=\mathrm{c} \mathrm{u}(\rho) \rho^{\ell} \mathrm{e}^{-\rho / 2} \tag{B}
\end{equation*}
$$

If (B) is substituted into (A), we find that $u(\rho)$ must satisfy the differential equation

$$
\begin{equation*}
\rho \frac{d^{2} u}{d \rho^{2}}+(2 \ell+2-\rho) \frac{d u}{d \rho}+(n-\ell-1) u=0 \tag{C}
\end{equation*}
$$

Eq. (C) is of the same form as the associated equation of Laguerre,

$$
\begin{equation*}
x \frac{d^{2} \mathrm{~L}}{\mathrm{dx}^{2}}+(\beta+1-\mathrm{x}) \frac{\mathrm{dL}}{\mathrm{dx}}+(\alpha-\beta) \mathrm{L}=0 \tag{D}
\end{equation*}
$$

(D) has solutions, known as the associated Laguerre polynomials, which are of the form

$$
L_{\alpha}^{\beta}(x)=-\sum_{k=0}^{\alpha-\beta}(-1)^{k} \frac{(\alpha!)^{2}}{(\alpha-\beta-k)!(\beta+k)!k!} x^{k}
$$

where α and β are integers, k is an index running from 0 to $(\alpha-\beta)$, and $(\alpha-\beta)$ is an integer greater than zero. Thus, the solutions $u(\rho)$ of Eq. (C) are of the form $L_{\alpha}^{\beta}(x)$, providing one makes the identifications

$$
\mathrm{x}=\rho,(\beta+1)=(2 \ell+2),(\alpha-\beta)=(\mathrm{n}-\ell-1)
$$

Combining these relations, one finds

$$
\beta=2 \ell+1, \alpha=\mathrm{n}+\ell .
$$

and

$$
L_{n+\ell}^{2 \ell+1}(p)=\sum_{k=0}^{n-\ell-1}(-1)^{k+1} \frac{[(n+\ell)]^{]^{2}}}{(n-\ell-1-k)!(2 \ell+1+k)!k!} \quad \rho^{k}
$$

Eigenvalues.

Since the condition for solution is

$$
(\alpha-\beta)=(\mathrm{n}-\ell-1)>0
$$

and since $\ell=0,1,2, \ldots, \mathrm{n}$ may take the values

$$
\mathrm{n}=1,2,3, \ldots
$$

with the restriction that

$$
\mathrm{n} \geq \ell+1
$$

This gives the allowed (negative) values of the energy

$$
\mathrm{E}_{\mathrm{n}}=-\frac{\mathrm{m} \mathrm{Z}^{2} \mathrm{e}^{4}}{2 \mathrm{n}^{2} \hbar^{2}} \quad, \quad \mathrm{n}=1,2,3, \ldots \text { (independent of } \ell, \mathrm{m} \text {). }
$$

This result is identical with the values obtained by means of the Bohr theory. The resulting energy level diagram is shown on the right.

Eigenfunctions.

The radial wavefunctions for the hydrogen atom are of the form

$$
\mathrm{R}(\rho)=\mathrm{c} \rho^{\ell} \mathrm{e}^{-\rho / 2} \mathrm{~L}_{\mathrm{n}+\ell}^{2 \ell+1}(\rho)
$$

To determine the normalizing constant c , we require that

$$
\int_{0}^{\infty}|R(r)|^{2} r^{2} d r=c^{2} \int_{0}^{\infty} \rho^{2 \ell} e^{-\rho}\left|L_{n+\ell}^{2 \ell+1}(\rho)\right|^{2} r^{2} d r=1
$$

Substituting $\mathrm{r}=\left(\mathrm{na}_{0} / 2 \mathrm{Z}\right) \rho$, this becomes

$$
\begin{aligned}
1 & =c^{2}\left(\frac{\mathrm{na}_{0}}{2 \mathrm{Z}}\right)^{3} \int_{0}^{\infty} \rho^{2 \ell+2} \mathrm{e}^{-\rho}\left|L_{\mathrm{n}+\ell}^{2 \ell+1}(\rho)\right|^{2} \mathrm{~d} \rho \\
& =\mathrm{c}^{2}\left(\frac{\mathrm{na}_{0}}{2 \mathrm{Z}}\right)^{3} \frac{2 \mathrm{n}[(\mathrm{n}+\ell) \cdot]^{3}}{(\mathrm{n}-\ell-1)!} \quad \text { (EWK, p. 66). }
\end{aligned}
$$

so that

$$
\mathrm{c}= \pm\left\{\left(\frac{2 \mathrm{Z}}{\mathrm{na}_{0}}\right)^{3} \frac{(\mathrm{n}-\ell-1)!}{2 \mathrm{n}[(\mathrm{n}+\ell)!]^{3}}\right\}^{\frac{1}{2}}
$$

We choose $\mathrm{c}<0$ to make the (total) wavefunction positive, so

$$
\mathrm{R}_{\mathrm{nL}}(\mathrm{r})=-\left\{\left(\frac{2 \mathrm{Z}}{\mathrm{na}_{0}}\right)^{3} \frac{(\mathrm{n}-\ell-1)!}{2 \mathrm{n}[(\mathrm{n}+\ell)!]^{3}}\right\}^{\frac{1}{2}}\left(\frac{2 \mathrm{Zr}}{\mathrm{na}}\right)^{\ell} \mathrm{e}^{-\mathrm{Zr} / \mathrm{na}_{0}} \mathrm{~L}_{\mathrm{n}+\ell}^{2 \ell+1}\left(\frac{2 \mathrm{Zr}}{\mathrm{na}_{0}}\right)
$$

The first few $R_{n L}(r)$ are, expressed in terms of $\rho=2 \mathrm{Zr} / \mathrm{na}_{0}$,

$$
\begin{array}{ll}
\mathrm{R}_{10}=2\left(\frac{Z}{a_{0}}\right)^{\frac{3}{2}} \mathrm{e}^{-\rho / 2} & \mathrm{R}_{30}=\frac{1}{9 \sqrt{3}}\left(\frac{Z}{a_{0}}\right)^{\frac{3}{2}}\left(6-6 \rho+6 \rho^{2}\right) \mathrm{e}^{-\rho / 2} \\
\mathrm{R}_{20}=\frac{2}{2 \sqrt{2}}\left(\frac{Z}{a_{0}}\right)^{\frac{3}{2}}(2-\rho) \mathrm{e}^{-\rho / 2} & \mathrm{R}_{31}=\frac{1}{9 \sqrt{6}}\left(\frac{Z}{\mathrm{a}_{0}}\right)^{\frac{3}{2}}(4-\rho) \rho \mathrm{e}^{-\rho / 2} \\
\mathrm{R}_{21}=\frac{1}{2 \sqrt{6}}\left(\frac{Z}{a_{0}}\right)^{\frac{3}{2}} \rho \mathrm{e}^{-\rho / 2} & \mathrm{R}_{32}=\frac{1}{9 \sqrt{30}}\left(\frac{Z}{a_{0}}\right)^{\frac{3}{2}} \rho^{2} \mathrm{e}^{-\rho / 2}
\end{array}
$$

Note the very important "structure" of these wavefunctions. Each function consists of a constant, times a polynomial in ρ, times an exponential factor in $-\rho / 2$. The last factor looks, of course, like

so R_{10} is a simple exponential. But R_{20}, which contains, in addition, the factor (2- ρ), has a node at $\rho=2$, as shown above. And R_{21}, which contains the factor ρ, goes to zero at the origin, also as shown above.

Also note that, as n increases, the number of nodes increases as ($n-1$)...this structure being dictated by the highest power of ρ appearing in the polynomial!

Table 21-4.-Hydrogenlite Wave Functiona K Shell
$n=1, l=0, m=0:$

$$
\psi_{1}=\frac{1}{\sqrt{\pi}}\left(\frac{Z}{c_{0}}\right)^{34}
$$

L Shell
$n=2, l=0, m=0:$

$$
\psi_{t}=\frac{1}{4 \sqrt{2 x}}\left(\frac{Z}{a_{4}}\right)^{34}(2-\sigma) e^{-\frac{\sigma}{2}}
$$

$n=2, l=1, m=0:$

$$
\psi_{i p_{1}}=\frac{1}{4 \sqrt{2 \pi}}\left(\frac{Z}{a_{0}}\right)^{* / 2} \cdot e^{-\frac{\pi}{2}} \cos \theta
$$

$n=2, l=1, m= \pm 1$:

$$
\begin{gathered}
\psi_{i_{1},}=\frac{1}{4 \sqrt{2 \pi}}\left(\frac{Z}{a_{\theta}}\right)_{\sigma e^{-\frac{\pi}{2}} \sin v \cos \varphi}^{4 \sqrt{2 \pi}}\left(\frac{Z}{a_{\theta}}\right)^{36} \sigma e^{-\frac{\sigma}{2}} \sin v \sin \varphi \\
\psi_{2 p_{y}}=\frac{1}{4 / \text { Shell }}
\end{gathered}
$$

$n=3, l=0, m=0:$

$$
\psi_{3_{1}}=\frac{1}{81 \sqrt{3_{x}}}\left(\frac{Z}{a_{0}}\right)^{34}\left(27-18 \sigma+2 \sigma^{2}\right) e^{-\frac{\pi}{8}}
$$

$n=3,1=1, m=0:$

$$
\psi_{2_{i},}=\frac{\sqrt{2}}{81 \sqrt{7}}\left(\frac{Z}{a_{4}}\right)^{2 /}(6-\sigma) \sigma e^{-\frac{6}{3}} \cos s
$$

$n=3, l=1, m= \pm 1:$

$$
\begin{aligned}
& \psi_{i, y}=\frac{\sqrt{2}}{81 \sqrt{x}}\left(\frac{Z}{a_{4}}\right)^{34}(6-\sigma) \sigma e^{-\frac{\sigma}{3}} \sin \theta \cos \psi \\
& \psi_{i_{y}}=\frac{\sqrt{2}}{81 \sqrt{2}}\left(\frac{Z}{a_{0}}\right)^{34}(6-\sigma) \sigma e^{-\frac{\sigma}{3}} \sin v \sin \varphi
\end{aligned}
$$

$n=3, l=2, m=0:$

$$
\psi_{2 \alpha_{1}}=\frac{1}{81 \sqrt{6 \pi}}\left(\frac{Z}{a_{0}}\right)^{34} \sigma^{2} e^{-\frac{\pi}{3}}\left(3 \cos ^{2} v-1\right)
$$

$n=3, l=2, m= \pm 1:$

$$
\begin{aligned}
& \psi_{3 s_{x+0}}=\frac{\sqrt{2}}{81 \sqrt{2}}\left(\frac{Z}{a_{0}}\right)^{34} \sigma^{2} e^{-\frac{\pi}{3}} \sin v \cos v \cos \eta \\
& \psi_{1 \alpha_{x+0}}=\frac{\sqrt{2}}{81 \sqrt{2}}\left(\frac{Z}{a_{0}}\right)^{35} \sigma^{2} e^{-\frac{\pi}{3}} \sin v \cos v \sin
\end{aligned}
$$

$$
n=3, l=2, m= \pm 2
$$

$$
\begin{aligned}
& \psi_{2 \alpha_{x y}}=\frac{1}{81 \sqrt{2 \pi}}\left(\frac{Z}{a_{\theta}}\right)^{34} \sigma^{2} e^{-\frac{\theta}{3}} \sin ^{2} v \cos 2 \varphi \\
& \psi_{2 \alpha_{x+y}}=\frac{1}{81 \sqrt{2 \pi}}\left(\frac{Z}{a_{4}}\right)^{34} \sigma^{2} e^{-8} \sin ^{2} v \sin 2 \varphi \\
& \text { with } \sigma=\frac{Z}{a_{4}}
\end{aligned}
$$

