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The Hydrogen Atom. 

 
 
The Φ  equation. 
 
The first equation we want to solve is  
 

  Φm
φd
Φd 2
2

2

−=  

 
This equation is of familiar form; recall that for the free particle, we had 
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for which the solution is 
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Since 
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a more general solution to equations of this type is 
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Since e±im2π = cos (m 2π)  ± i sin (m 2π) = 1 only when m = 0, ±1, ±2…, the Φ equation 
has solutions 

 
 …,2,1,0m,eAΦ φim ±±==  
 

The value of Φ at some value of φ 
must be the same at φ + 2π, since Φ 
is periodic. 
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We can determine A by requiring that the wavefunctions be normalized,  
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so 
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are the final solutions to the Φ equation. 

 
A postscript. 

 
These wavefunctions are complex.  Sometimes it is more useful to have real 
wavefunctions.  These can be constructed by first defining 
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and then adding and subtracting +Φ and −Φ  …we say, “forming linear combinations”: 
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each of which is a real function.  We cannot associate with these functions a particular m 
value, but only with m .  The first three of these functions are 
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These functions are 
also solutions to the 
Φ equation.  Try it! 
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The Θ equation. 
 
The Θ  equation is 
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Rearranging, 
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Now, make the substitutions 
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After some algebra, we get 
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This equation is identical to the associated equation of Legendre 
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if we identify P with Θ  and β with ℓ (ℓ + 1). 
 
 

The solutions P of the associated Legendre equation are called the associated Legendre 
functions; these may be expressed in closed form as (since x = cos θ) 
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Here, mPℓ  is a polynomial of degree ℓ and order m , where ℓ and m are integers.  k is an 
(integer) index, and the sum (Σ) runs from k = 0 to an upper limit of  
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Since m is an integer, and since the solutions to the associated Legendre equation are 
acceptable only if )m( −ℓ  is an integer, it is necessary that 
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The solutions P )Θ(  must of course be normalized; the requirement that  
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which gives 
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These wavefunctions, though they appear to be complicated, are not, at least for small ℓ.  
For example, 
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You have already met these functions before, though possibly not in this form.  These are 
the angular functions describing the probability amplitudes in s, p, d orbitals! 

 
 

Some postscripts. 
 

• The associated Legendre functions are derivatives of the Legendre polynomials Pℓ 
(cos θ) 
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The L. polynomials 
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are, in turn, solutions of the Legendre equation 
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• The functions )θ(cosP2

1
ℓℓ +  and )θ(cosP m

ℓ  form an orthonormal set in the 
interval  -1 ≤ cos θ ≤ 1. 

 
• The L. functions are symmetric or antisymmetric as ℓ is even or odd 
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• The functions do not exceed 1 in absolute value 

 
 

upper limit on Σ:  ℓ/2 if ℓ 
even.  (ℓ-1)/2 if ℓ odd. 
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.)1()1(P,1)1(P;1)θ(cosP ℓ
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• Since the Pℓ (x) are polynomials, there exist ℓ roots, or ℓ values of cos θ, for which Pℓ 

(x) changes sign.  The sign of Pℓ (x) is often indicated by a circular diagram, 
 
 

 
 
 
 

At the north pole in this diagram, θ = 0 and x = cos θ = +1; at the equator, x = cos 2
π  

= 0; at the south pole, x = cos π =  -1.  We then use lines on the circle to indicate the 
values of θ at which the polynomial is zero: 
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• Recurrence relations exist for both the mPℓ  and Pℓ, e.g. 
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are called spherical harmonies.  These are given by the formula 
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“nodes” 

P0 = 1 P1 = cosθ P2 = ½ (3 cos2 θ - 1) 
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The R equation. 
 
The radial equation for the electron “in orbit” about the nucleus of the hydrogen atom is 
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If we consider bound states (E < 0) only, and introduce the new variables n and ρ, where 
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the radial equation becomes 
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We seek solutions of the form 
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If (B) is substituted into (A), we find that u (ρ) must satisfy the differential equation 
 

 0u)1n(
ρd
du)ρ22(

ρd
udρ
2

2

=−−+−++ ℓℓ   (C) 

 
Eq. (C) is of the same form as the associated equation of Laguerre, 
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(D) has solutions, known as the associated Laguerre polynomials, which are of the form 
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where α and β are integers, k is an index running from 0 to (α - β), and (α - β) is an 
integer greater than zero.  Thus, the solutions u(ρ) of Eq. (C) are of the form )x(Lβα , 
providing one makes the identifications 
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Combining these relations, one finds 
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Eigenvalues. 
 
Since the condition for solution is 
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and since ℓ = 0, 1, 2, …, n may take the values 

 
 n = 1, 2, 3, … 
 

with the restriction that 
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This gives the allowed (negative) values of the energy 
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This result is identical with the 
values obtained by means of the 
Bohr theory.  The resulting energy 
level diagram is shown on the right. 
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Eigenfunctions. 
 

The radial wavefunctions for the hydrogen atom are of the form 
 
 )ρ(Leρc)ρ(R 12

n
2/ρ +

+
−= ℓ

ℓ
ℓ  

 
To determine the normalizing constant c, we require that 

 
 1drr)ρ(Leρcdrr)r(R 2212

n
ρ2

0
222

0
== +

+
−

∞∞

∫∫ ℓ
ℓ

ℓ  

 
Substituting r = (na0/2Z)ρ, this becomes 
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so that 
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We choose c < 0 to make the (total) wavefunction positive, so 
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The first few RnL(r) are, expressed in terms of ρ = 2Zr/na0, 
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Note the very important “structure” of these wavefunctions.  Each function consists of a 
constant, times a polynomial in ρ, times an exponential factor in -ρ/2.  The last factor 
looks, of course, like 
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so R10 is a simple exponential.  But R20, which contains, in addition, the factor (2-ρ), has 
a node at ρ = 2, as shown above.  And R21, which contains the factor ρ, goes to zero at 
the origin, also as shown above. 

 
Also note that, as n increases, the number of nodes increases as (n - 1)…this structure 
being dictated by the highest power of ρ appearing in the polynomial! 
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