Chemistry 342 Spring, 2005

The Hydrogen Atom.

The @ equation.

The first equation we want to solve is

= —-m’®

This equation is of familiar form; recall that for the free particle, we had

d?y

2

- —k2
dx v

for which the solution is
y(x) = a,coskx + a,/ksinkx
Since
e*™ = cosx = isinx
a more general solution to equations of this type is
® = Ae™ + Be™

In order that

D(p) = D(¢+2n) The value of ® at some value of ¢
must be the same at ¢ + 2m, since ©
is periodic.

it is necessary that

A eimq) + B e—imq) = A eim(<p+21t) + B e—im((p+2n)
= A eimq) eim211 + B e—imq) e—imZn

Since ¢"™" = cos (m 27) + i sin (m 27) = 1 only when m = 0, +1, +2..., the ® equation

has solutions

d = Ae™, m=0, =1, £2,...
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We can determine A by requiring that the wavefunctions be normalized,
T * — 2 —-ime , Lime — 2 J‘Z T —
jj ONOX0) |A|j(;2 e e™ do |A| \ do 1
1

A 2r-0) = 1=A = —, A

SO

b = Leim"’ m=0, =1, =2,...

" o

are the final solutions to the ® equation.
A postscript.

These wavefunctions are complex. Sometimes it is more useful to have real
wavefunctions. These can be constructed by first defining

O = g _ 1 (cosme + isin me)
v V21 V2m
L im 1 i si
Od = —e'™M = —(cosme - 1isin mg)

NG Von

and then adding and subtracting ®_and ®_ ...we say, “forming linear combinations”:

1 1
(LT = —(@, + ®) = ——=cos |m|q) These functions are
’ V2 Jn also solutions to the

1 ® equation. Try it!
() = - @) = —sin|m|q)

1
. — (D =
antisymm [ 2 ( + - /—n

each of which is a real function. We cannot associate with these functions a particular m
value, but only with |m| . The first three of these functions are

1
O = —
" on
1
D, = ﬁ CoS @
o, = ﬁ sin @ etc.
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The © equation.

The ® equation is

2
L d(Gned®) _ m© BO = 0.
sin® do do sin? 0
Rearranging,
2 2
d®+c?s9d_®+ _.rn ® = 0.
do? sin® do sin’ 0
Now, make the substitutions
X = cos0 , sin?0 = 1-x?
2 2
4 _ ddx 1n9i , 4 sin? 0 - cos —
do dx do dx = do? X

After some algebra, we get

2 2
1-x) L9 _ 590 (B— o )@ - 0.

dx? dx

This equation is identical to the associated equation of Legendre

2 2
a-x) 32 o ey p
dx? dx (1-x?)

if we identify P with ® and f with £ (¢ + 1).

The solutions P of the associated Legendre equation are called the associated Legendre
functions; these may be expressed in closed form as (since x = cos 0)

(=1)¥ (20 - 2k)!(cos §)Im-2k

m
P (cos®) = (1-cos2@)2
i+ (cosb) ( ) 2/(0 - Kk)!k! (£ - |m| - 2k)!
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Here, le‘ is a polynomial of degree ¢ and order |m , where £ and m are integers. k is an

(integer) index, and the sum (X) runs from k = 0 to an upper limit of

k

(¢=|m[)/2 if (¢-|m|)iseven

k (¢ =|m|-1)/2 if (¢£-|ml)isodd

Since m is an integer, and since the solutions to the associated Legendre equation are
acceptable only if (/- |m|) is an integer, it is necessary that

¢ = integer ,  with (=|m|
The solutions P (®) must of course be normalized; the requirement that
1 = ]: ©,0,,d0 = L A" P! (cos 0) PI™! (cos 0) d (cos6)

leads to

1

A {(2“1) (ﬁ—lml!}2
2 ) (L+|m]

which gives

C[f2e+1y =mhn)> L
0,,.0)= {( 5 )(€+|m|)!} P,"™ (cos0).

These wavefunctions, though they appear to be complicated, are not, at least for small ¢.
For example,

V2

/=0, m=0. 0,,0) = Y (s)
/=1, m=0. 0,,0) = @ cos (p)

(=1, m==l. 0,0 = ?sine (p)
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J10

(=2, m=0. 0,,0) = e (3cos?B-1) (d)
(=2, m==l. 0,.,0) = g sin 6 cos6 (d)
(=2, m==2 0,.,0) = @ sin” 0 (d)

You have already met these functions before, though possibly not in this form. These are
the angular functions describing the probability amplitudes in s, p, d orbitals!

Some postscripts.

* The associated Legendre functions are derivatives of the Legendre polynomials P,
(cos 0)

PP = (1-x7): = P,(x)
The L. polynomials
VK (7 — AL ¢ -2k upper limit on X: €/2 if £
P,(x) = (=D)L= 2k)1x even. (£-1)/2if £ odd.

= 2'(/-Kk)'k!' (£ -2Kk)!
are, in turn, solutions of the Legendre equation

2
a-x) 42 ¥ L sienz = 0 (z = P).
dx? dx

* The functions \/E P,(cos0) and Pé‘m‘ (cos0) form an orthonormal set in the
interval -1 <cos 0 <1.
* The L. functions are symmetric or antisymmetric as ¢ is even or odd
P,(-cos®) = (-1)" P,(cos0)
P (-cos0) = (~1)*™ P" (cos0)

¢ The functions do not exceed 1 in absolute value
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P,(cosB)|<1 ; eg P,(1) =1, P(-1) = (-1)".

* Since the P;(x) are polynomials, there exist £ roots, or ¢ values of cos 0, for which P,
(x) changes sign. The sign of P,(x) is often indicated by a circular diagram,

-1

T
2
= (; at the south pole, x =cos = -1. We then use lines on the circle to indicate the
values of 0 at which the polynomial is zero:

@ @ ‘A-' -

Po=1 P, = cosb P,=% (3 cos’0-1)

At the north pole in this diagram, 6 = 0 and x = cos 6 = +1; at the equator, X = cos

* Recurrence relations exist for both the le‘ and Py, e.g.

(20 +1) (cos®) P> = Pm' - PpoH

* The product functions Y ;" (0, 0)

Yr@®,0) = 0,,0)2,(0)

are called spherical harmonies. These are given by the formula

(2¢+1) (£ —|m])!
47 (£ +|ml)!

1
2
Yr(0,0) = { } Pim‘ (cos0) elm,
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The R equation.
The radial equation for the electron “in orbit” about the nucleus of the hydrogen atom is

2 2
dR + gﬁ + 2_m E+Zi _ £(£+1) R — O
dr? r dr h? r r?

If we consider bound states (E < 0) only, and introduce the new variables n and p, where

E = - -

2n*h? 2n%a,
1R _ l(na,

2\mzer )P 27z )P

the radial equation becomes

m Z?* ¢* 72 ¢? h?
a, = .

2
dR + z% + _l+£_w R = 0. (A)
dp? p dp 4 p p’
We seek solutions of the form
(B)

-p/2

R = cup)p'e
If (B) is substituted into (A), we find that u (p) must satisfy the differential equation

2
du -, (2£+2-p)3—“ + (n=f-Du = 0 ©
p

pd_p2

Eq. (C) is of the same form as the associated equation of Laguerre,

d*L + ([3+1—x)?§L + (a-p)L = 0. (D)

dx?

(D) has solutions, known as the associated Laguerre polynomials, which are of the form

X

(aty .

o-B
Lo = _; ) oI

where o and [ are integers, k is an index running from 0 to (a - ), and (a - B) is an
integer greater than zero. Thus, the solutions u(p) of Eq. (C) are of the form L? (x),

providing one makes the identifications
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X = p, B+h = 20+2) , (0-P) = (-L-])
Combining these relations, one finds

B = 2041 , o = n+/.
and

2 (p) = < (= 1)+t [(n"'é)!]z K

n+/ p p
; (n-/-1-K)!'(20+1+k)!k!

Eigenvalues.

Since the condition for solution is

(a-P)

(h-(-1)>0

and since £ =0, 1, 2, ..., n may take the values

n=1,23,...
with the restriction that

n>¢+1

This gives the allowed (negative) values of the energy

mZ? e*

! T 2n2 2

E

This result is identical with the
values obtained by means of the
Bohr theory. The resulting energy
level diagram is shown on the right.

, n=12,3,... (independent of /, m).
+
0

30— 31 32

20 - 21 o me*
8n?

me*
10 — - T (Z=1)
nL
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Eigenfunctions.

The radial wavefunctions for the hydrogen atom are of the form
R(p) = cp'e™? L (p)

To determine the normalizing constant ¢, we require that

L2 ) rkdr = 1

00 2 00 _
j(') |R(r)| r’dr = czj(') p* e
Substituting r = (nag/2Z)p, this becomes
na
1 ( 0 ) f p2(+2

Cz(nao )3 20(n + ) (EWK, p. 66).
27 (n-r-1)!

2
"2 o) dp

so that

-z s

We choose ¢ < 0 to make the (total) wavefunction positive, so

1
3 2 ‘
.
R, (1) = - 27 (n-¢-1)! 27r ozom, 201 (228 2Zr
na; ) 2n [(n +/ )':F na, na,

The first few R,.(r) are, expressed in terms of p = 2Zr/nay,

3 3
R, = 2 2e‘P/2 R, = 1 (z 2(6—6p+6p2)e‘p/2
a, 9V3 | a,
3 3
2 (Z 1 (Z)?
R, = —|—| 2-p)e?®?* R, = —f|—| (4- e’
20 22 a, (2-p) 31 9\/6(30) (4-p)p

N | w

2 o-p/2

1 Z
R = —|— er/? R = — | —
21 76 a, P 32 /—( ) p
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Note the very important “structure” of these wavefunctions. Each function consists of a
constant, times a polynomial in p, times an exponential factor in -p/2. The last factor
looks, of course, like

e-p/2
Rio

p=2

so Ry is a simple exponential. But Ry, which contains, in addition, the factor (2-p), has
a node at p = 2, as shown above. And R,;, which contains the factor p, goes to zero at
the origin, also as shown above.

Also note that, as n increases, the number of nodes increases as (n - 1)...this structure
being dictated by the highest power of p appearing in the polynomial!
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Tanre 21-4.—HYDROGENLIEE Wave FONCTIONS
) K Shell
nwl l=0m=0;

1 [Z\¥
*la“ﬁ(a_.) e

L Shell
n=21=0m=0:

v 1 Z ”2
u 4\/2:(0.) (2 — o)e

n=21l=1m=0Q:
1 [fz\% 3%
Py, = — ) we s ¢
" /2 ) 0

n=2l=1Lm= %I

1 Z\¥ _«
Vip, = — 1} ce 28invcosg

<
2

44/ 2x \C
¢ 1 Z\¥ _e | .
1;.—;;/—2:(;; e '251.!11’8)1)10
M Shell

n=31=0m=0:

v L (2Ver - 15 -3
a = — —— 252

) 81\/?:'(“')( + 20%)¢
a=31=1m=0:

P L J (A P
= - ~ o)oe Y cos
) 81‘\/; G

n=31l=1m=41:

V2 fz\M% . -2
¥ip, = m(;;) (8 —o)ve 3sindcose

2 /Z\M .
Va5, = SAI%(;:) (6 ~o)oe %sindsing

an=31l=2,m=0
1 Z\¥ _r
(—) ole 3(3(;03’0—-1)
6x \ O

Vg, =
34 81\/_

n-=3,1=2,m= +1:
V2 [Z\¥%¥ -2
Vi, = —— { — ) o% 3sin o cos o cos
“ 8]'\/; (00) r
2 Z\¥ _z
Vie,, = V2 =) o% 3sindcosdsine
: 81/x \ @

n=31=2m= £2:

2 1 Z\* 2 —'3! 2
ey = ———={ — } o% °>sin?¢ cos
" 81v/2« \ a0 2

' 1 A 2 —; in?
My = = f 9 8l
81‘\/2: (a.) o*¢ “sin? J&in 2

. Z
with ¢ = —r,
ay



