Lorentz transformation for coordinates and for the separation between two events

Lorentz Transformation S: (VIIX) Event ct, x', y' S: ct = x (ct + \(\) X = 8 (ct+x) Newton: x=vt+x) Morning clocks go slow" y = y', z = znoving Conflus are contacted.

measure Bottlands in Sat ct = 0 => ct' = - Xx' $\Rightarrow x = y(-\frac{1}{2}x' + x') = y(1-\frac{1}{2})x' = \frac{1}{2}x'$ Reverse? ct = y(st - = x) $x' = \gamma(-zct + x)$

Date Ax

 $\Delta c \neq = 8 \left(\Delta c + \frac{1}{2} \Delta x'' \right)$ $\Delta x = 8 \left(\Delta x' + \frac{1}{2} \Delta c +$

Adding velocifies

1) Object woring with velocity v_x' in s' $\Rightarrow \Delta x' = \frac{v_x'}{c}$ Act' $\Delta x = y'$ $\Delta x' = y'$ $\Delta x' = \frac{v_x'}{c}$ Act $= \frac{v_x'}{c}$ Act $= \frac{v_x'}{c}$ $= \frac{v_x'}{c}$ Act $= \frac{v_x'}{c}$ $= \frac{v_x'}{c}$ $= \frac{v_x'}{c}$ Act $= \frac{v_x'}{c}$ $= \frac{v_x'}{c}$

In variant: C = -2) Object moving in y-like $=(\Delta x)^2 + \Delta y^2 + \Delta z^2 + (\Delta ct')^2 + (\Delta s)^2 +$