

Reminder: Need to understand vectors and operators

$$
\begin{aligned}
\text { Vector } & \text { Coordinates }=\text { Basis } \\
+ & \text { Components } \\
& \text { Corthonormal) } \\
& (x, y, z)(n=3)
\end{aligned}
$$

n dimensional
(even ∞ dimensions: countable $n=\infty$,
can be added Entinuous $n=x$ Exif (x) can multiply with scalar
Vector Space: Vectors (basis) + Scalar field
$n=2$ (coin), … ∞ (continuoros: paticle a $x-$ acis
$n=$

$n=2$: (heads); itrails stite" $n=\infty:|x\rangle \quad x \in \mathbb{R}$
Scalar field $=\mathbb{C}$ for any $c \in \mathbb{C}|\psi\rangle$ and
Scalar Product: $\langle\psi \mid \varphi\rangle \quad c|\psi\rangle$ describe SARE

$$
=\psi_{1}^{*} \varphi_{1}+\psi_{2}^{*} \varphi_{2}+\cdots
$$

Example: infinite-dimensional vectors $=$ functions $f(x)$. Superposition, normalization,...
Operator
Hilbert space
σ

$$
\begin{aligned}
& :|\psi\rangle \rightarrow|\varphi\rangle \\
& c_{1}|\psi\rangle \rightarrow c_{1}|\psi\rangle \\
& \left|\psi_{1}\right\rangle+\left|\varphi_{2}\right\rangle \rightarrow\left|\varphi_{1}\right\rangle+\left|\varphi_{2}\right\rangle
\end{aligned}
$$

linear transformation (Matrix) θ : Eigenvector $\quad\left|\varphi_{\theta}\right\rangle$

Example

$$
K\left|x_{0}\right\rangle=x_{0}\left|x_{0}\right\rangle
$$

