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Terminology

Map: a single valued “function” f (x) : F→ F on some set F.
Iteration: repeated application of a map i.e. f (3)(x) = f (f (f (x))).
Orbit: A sequence S(x) = {x , x1, x2, · · · } = {x , f (x), f (f (x), · · · }.
Fixed point: a value x0 such that f (x0) = x0.
Periodic orbit: an orbit with f (n)(xp) = xp for any integer n ≥ 0.



Definition

A map is deemed “chaotic” if it has the following properties:

• Sensitive dependence on initial conditions,

• Topological transitivity,

• Dense periodic orbits.

Similarly, a chaotic orbit is not periodic, stationary, or divergent.
Chaos is a property of orbits typical of systems with nonlinear
dynamics.



Sensitive Dependence
Definition

For any orbit of any map (eg S(x) for f (x) : C→ C where C is
the set of all complex numbers), sensitive dependence on initial
conditions means that for |x1 − x2| < ε for ε as small as we like,
|f (n)(x1)− f (n)(x2)| > δ for any δ > 0 we choose.

In the words of Edward Lorenz, “Chaos: When the present
determines the future, but the approximate present does not
approximately determine the future.”



Sensitive Dependence
Example

A very simple example of a map with sensitive dependence on
initial conditions is a doubling map: f (x) = 2x . Under a single
iteration of this map, the value x doubles.
Notice that if we choose x1 and x2 such that x1 − x2 < ε for any
ε > 0 then f (x1)− f (x2) < 2ε for the same ε. Thus, as we
continue to iterate, we see that f (n)(θ1)− f (n)(θ2) < 2nε and thus
our results may be arbitrarily far apart.

All this to say the only to predict similar results over an unknown
number of iterations of the doubling map is to use an identical
initial value.



Sensitive Dependence
Doubling Map Figure

Figure 1: Double Steps

These figures show what happens when we repeatedly double
similar values. The red line is y = 2x and the green line is y = x .
The steps indicate what happens when we iterate the map.
We observe that though we begin with |x1 − x2| = 0.05, we have
|f (20)(x1)− f (20)(x2)| ≈ 50.



Topological Transitivity
Definition

A map f (z) : C→ C is said to be topologically transitive if for
any two nonempty sets A and B, there is some integer n such that
for the nth iterate of f , f (n)(A) ∩ B 6= 0.
In other words, any value plugged into a topologically transitive
map may produce any other value (at all) if the map is iterated
enough times.



Topological Transitivity
Example

The logistic map xn+1 = rxn(1− xn) is a well known example of a
map which may exhibit chaos. Note that r is a parameter which
largely determines the behavior of the recurrence. Notice that the
function f (x) = rx(1− x) = rx − rx2, x ∈ [0, 1] is a concave down
parabola that intersects the x axis at x = 0 and x = 1 for any
value of r . Therefore the maximum value of the function is taken
at x = 1/2 =⇒ max(f (x) : x ∈ [0, 1]) = r/2− r/4. If we set
r = 4 then, max(f (x)) = 1 and f (x) may take any value in its
domain. This means there is at least one point x ∈ [0, 1] which
may take any desired value between 0 and 1 after some number of
iterations of f (x).



Topological Transitivity
Logistic Map Bifurcations

Figure 2: Logistic Map

The above plot shows where the periodic points for the map
xn+1 = rxn(1− xn) are. 0 < r < 4 is on the horizontal axis, and
0 < x < 1 is on the vertical axis. For 0 < r <∼ 3 there is only a

fixed point, but for ∼ 3 < r <∼ 3.5 there is a period 2 orbit.



Dense Periodic Orbits
Definition

A periodic orbit with period n is defined by the property

xR = f (n)(xR).

Density of periodic orbits in a chaotic system is a bit hard to
understand, although it is really the most essential piece of the
definition. Essentially, no matter what starting value is chosen (x ,
for f (n)(x)), the distance between x and a point on some periodic
orbit is arbitrarily small: that is for any ε > 0, |x − xR | < ε for
some xR .
Intuitively, this is weird. It means that no matter what the
eventual behavior of the trajectory you choose is, there is a point
infinitessimally far away from you starting point that is on a
repeating trajectory.



Dense Periodic Orbits
Explanation

First, we’ll parse the word ’dense.’ Here we mean dense in the
same way rational numbers are dense in the real numbers; there
are always at least two (one above and one below) rational
numbers within any radius of any other number.
What this means in the context of periodic orbits is that no matter
what trajectory you’re interested in with respect to a chaotic
system, it’s always at least almost a periodic trajectory. The close
periodic trajectories may have huge periods like n = 238974602 (in
the same way a nearby rational number could be
23679065432/124764 for example).



Classification
Equilibria

Note that Equilibria in this sense are orbits, not points.
Chaotic maps have a few classes of equilibria; much like planetary
orbits they may be stable or unstable, or metastable. We
categorize them the following way:

• Attractor: a stable orbit which nearby unstable orbits tend to
approach,

• Source: an unstable orbit from which small deviations result
in wildly different trajectories (like a ball balanced atop a
cone)

Note that both attractors and sources may be chaotic in nature. In
fact there is a class of attractors called “Strange Attractors” (eg
Lorenz attractor, Hénon map) which have fractal (self repeating)
structure and are often chaotic.



Classification
Equilibria: Stability

Much like optimization of functions, the stability of any orbit
S of a map f is determined by the first derivative of the map over
the orbit. That is to say

• if (f (n))′(x1) < 1 then S(x1) = f (n)(x1) is an attractive orbit:

• if (f (n))′(x1) > 1 then S(x1) = f (n)(x1) is a source.



Classification
Lorenz Attractor

Figure 3: Lorenz Attractor

The Lorenz attractor is a chaotic orbit with (f (n))′(x) < 1.



Classification
Lyapunov Numbers and Exponents

Lyapunov numbers and exponents are a measure of the stability of
an orbit. Following convention, the Lyapunov exponent λ = ln L
where L is the Lyapunov number.

By definition, for any point on any orbit {x1, x2, x3, · · · }, the
Lyapunov number is given by:

L(x1) = lim
n→∞

(|f ′(x1)| · · · |f ′(xn)|)1/n.

So the Lyapunov Exponent is:

λ(x1) = lim
n→∞

1

n
ln(|f ′(x1)| · · · |f ′(xn)|)



Classification
Interpretation of Lyapunov Ls and λs

Lyapunov numbers give us the simplest method of determining
whether an orbit is chaotic (aperiodic) or not:

any orbit S with L(x) > 1 for any x ∈ S is chaotic.

We use the qualifier “aperiodic” here because for n <∞ (the
feasible case for computing Lyapunov numbers) we miss the
possible limit behavior limn→∞ f (n)(x0) = x0.



Chaos Theory in Everyday Life

Since almost every dynamical system has chaos in some regime,
the mathematical study of chaos is applied to increase our
understanding. Some examples include:

• weather patterns,

• traffic patterns,

• reproduction in biological systems,

and many others. Being able to classify and “predict” behavior (eg
by finding attractive orbits close to the current behavior) there is
much to gain.



Chaos theory in Physics

Per slide 4, chaos is typical of nonlinear systems. Thus knowledge
of the behavior of chaotic orbits is useful in many classical and
quantum systems.

In classical mechanics, some examples are

Damped Driven
Harmonic Osicllator

Celestial
Mechanics

Coupled
Oscillators

In quantum mechanics, any system with more than one particle
has associated chaos. A ’simple’ quantum system with well studied
chaotic effects is two particle spin coupling.
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