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Fundamental Problem of Nuclear
and Hadronic Physics

Nearly all well-known (“visible”) mass in the universe is due to
hadronic matter (protons, neutrons, Deltas, pions, hyperons,...)

Fundamental theory of hadronic matter exists since the 1960’s:
Quantum Chromo Dynamics |

— “Colored” quarks (u,d,c,s,t,b) and gluons; Lagrangian
BUT: knowing the ingredients doesn’t mean we
know how to build hadrons and nuclei from them!

— akin to the question:
“Given bricks and mortar, how do you build a house?”

Four related puzzles:

— What is the “quark-gluon wave function” of known hadrons?

— What are their excited states, and can we understand their structure?

— How are hadrons (nucleons) bound into nuclei?
Does their quark-gluon wave function change inside a nucleus?

— How do fast quarks and gluons propagate inside hadronic matter?
How do fast quarks and gluons turn back into observable hadrons?



Hadron Structure

Simple-most (constituent

quark) model of nucleons
(protons and neutrons) P N

... becomes much more
complicated once we consider
the full relativistic quantum field
theory called QCD mesén cloud

quark spin and motion

Effective theories:
Quark model, xPT,
sum rules, ...
duarks, gluons

and Lattice QCD! valence
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Nucleon Structure Functions -
momentum and spin distribution of quarks
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3-D Picture of parton flavor, spin

3D Partonic Structure andmomenum (TMDs)
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Nuclear Structure

Even more complicated!
(not simply a bag of nucleons)

Effective degrees of freedom:
nucleons, mesons, nucleon
resonances... augmented by
phenomenological NN

potentials

Effective theories: ®
low-energy EFT, ¥PT, G

relativistic and non- K

relativistic potential models, %

shell model,... . O
and Lattice QCD??? 7" ‘
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How do we do our experiments?

Electrons are accelerated by ...and directed into one of the 4
CEBAF up to 12 GeV... Experimental Halls

Note: Synergy with CAS at ODU



Scattered electrons and debris are detected...

CLASI12 in Hall B (CEBAF Large
Acceptance Spectrometer)

GLUEX in Hall D




... and the data analyzed.

(Presently, we analyze the abundant wealth of existing data from CLAS)
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Average momentum of correlated protons and
neutrons in nuclei — a Science publication

...as well as meson decays, exotic
hadrons, medium modification of
nucleons, ...
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Building detectors for Jetferson Lab
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RTPC for BONuS

Plus scintillators for Hall A (and cosmic ray
telescope), refurbished scintillators for Hall C,
drift chambers for COMPASS experiment, etc...




The future:
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The future landscape of Nuclear Physics

Study how nucleons are made up from quarks (“flavor”, p, L., S -> 3D tomography)
Study how hadronic quark structure is influenced by the nuclear environment
Understand nuclear structure and dynamics in terms of quark degrees of freedom

S

Study extreme forms of nuclear matter: high energy (Quark-Gluon plasma, “color glass
condensates”), high density (short range correlations,|n stars,...), non-zero strangeness
(hypernuclei, strangelets, ...), limits of stability (radioactive beams)...
Study fundamental symmetries and|Physics beyond the standard model
Develop new applications in medicine, energy, materials, seg E a Q \

Electron- -
lon- + Belle
Collider ( Japan) ,

(2020s?)




Project for New Students

If we want to know what all the quarks inside the
nucleon are doing, we must compare protons to
neutrons

The neutron 1s not exactly the same as the proton.

We have lots of data on the proton, but very little on
the neutron

Why? Because there 1s no free neutron target.

To study the neutron we have to use deuterium or
sometimes *He

BUT — deuterium gives a smeared picture of the
neutron because the neutron 1s not at rest in the
deuteron



Project for New Students

One Solution...

Detect the spectator proton so that you know
how fast the neutron was moving before it

interacted with the electron

scattered electron
/

spectator proton

neutron

You need to detect
low energy protons,
especially at
backward angles
compared to the
momentum transfer.



Project for New Students

Electron beam energies: 2.1, 4.2, 5.3 GeV

Spectator protons were detected by the newly built Radial Time
Projection Chamber (RTPC)

Scattered electrons and other final state particles were detected by
CEBAF Large Acceptance Spectrometer (CLAS)

Target: 7 atm D, gas, 20 cm long

Data were taken from Sep. to Dec. in 2005

Primary Goal: to understand the
momentum distribution of u and
d quarks in the neutron

Secondary Goal: to use as a
neutron target for studying
neutron resonances




Project for New Students

6 GeV
BoNuS
Result

We need 12
GeV data to
extend these
measurements
to higher x.

Beam time
approved!
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Project for New Students

D(e,e'np )X or D(e,e’Kp,)X

Detecting the scattered electron, the recoil proton, and an
energetic meson will enable us to isolate contributions from
the u and d quarks in the neutron.

Low momentum “spectator” proton



Project for New Students
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Project for New Students

Research Project — we have funding for 1 or 2 students,
depending on the result of a pending proposal.

e Starting in Summer 2015, work on R&D for the new
BoNusS recoil detector

— Construct prototype low pressure wire chamber
— Might make some tests related to the RTPC

e Do simulations to help design BoNuS @11 GeV and
become familiar with how to analyze data

e Fall 2015 or Spring 2016: start analyzing existing deuteron
data to look at pion production, etc. Prepare for BoNuS
experiment.

e Help ODU team to test and install drift chambers in Hall B

e Take shifts in CLAS12; become an expert on one subsystem
(probably drift chambers)

 Thesis: BoNuS @ 11 GeV or existing data, depending on
the timing of the BoNuS run.



Project for New Students

Contact Sebastian and/or Gail for more
Information

e Sebastian Kuhn
PSB2 2100J
683-5804
skuhn@odu.edu

e Gail Dodge
OCNPS 221
683-5854
gdodge@odu.edu



And where do you go from here?

 Former Ph.D. Students 1in our group have
attained permanent positions as faculty, at
National Labs and in Industry

* Recent graduates have jobs in Medical
Physics, at INTEL, and as postdocs at
national labs and prestigious Universities

world-wide (Jetferson Lab, UVa, PSU,
University of Taiwan, Jiilich,...)



Project for New Students

BoNuS Data

Detecting the
spectator proton
allows us to correct
for the 1nitial
momentum of the
neutron in the
deuteron. The
resonances are much
clearer.

N. Baillie et al., PRL
108 199902 (2012)
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Project for New Students

Nucleon Structure Functions
(in the quark-parton model)

FL ()= xS e (q(x) + () ~ x(%u(x) +éd<x>)
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Project for New Students
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Project for New Students
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