Problem 1

The eigenstates for a SINGLE neutron are

\[\psi_n(x) = A_n \sin\left(\frac{n_1 \pi x_1}{L_1}\right), \quad n = 1, 2, \ldots \] with \(E_n = \frac{\hbar^2 n^2}{2mL^2} \)

where \(\psi^+ = \psi(x) \otimes \uparrow \), and \(\psi^- = \psi(x) \otimes \downarrow \).

Since the spin doesn't influence the energy eigenvalues, we can factorize the 2-neutron wave function into a spatial and a spin part: \(\psi(x_1, x_2) | S, M_S > \)

where either \(S = 0, M_S = 0 \) (antisymmetric) or \(S = 1, M_S = -1, 0, \) or \(+1 \) (symmetric). Therefore, \(\psi \) must be symmetric in \(x_1, x_2 \) if \(S = 0 \) and antisymmetric otherwise.

Finally, we can factorize \(\psi(x_1, x_2) \) as

\[\frac{1}{\sqrt{2}} \left[\psi_m(x_1) \psi_n(x_2) + \psi_n(x_1) \psi_m(x_2) \right] \text{ (symmetric)} \]

or \[\frac{1}{\sqrt{2}} \left[\psi_m(x_1) \psi_n(x_2) - \psi_n(x_1) \psi_m(x_2) \right] \text{ (antisymmetric)} \]

If \(m = n \); otherwise \(\rightarrow \) \(\psi_n(x_1) \psi_n(x_2) \) (symmetric only).

The eigenvalues of the 2-neutron Hamiltonian \(H = H_1 + H_2 \) are the same for the first 2 cases:

- For \(n = m \): \(E_{n,m} = \frac{\hbar^2}{2mL^2} (n^2 + m^2) \)
- For \(n \neq m \): \(E_{n,m} = \frac{2\hbar^2}{2mL^2} n^2 \) otherwise (const case).

Obviously, the lowest possible energy corresponds to \(n = m = 1 \)

\[\Rightarrow \] 1 non-degenerate ground state: \(\psi_1(x_1) \psi_1(x_2) | S=0, M_S=0 > \)

with eigenvalue (energy) \(\frac{2\hbar^2}{2mL^2} \) \(E_{1,1} \).

The next higher energy is \(E_{1,2} = \frac{\hbar^2}{2mL^2} \) \(\rightarrow \).
1) cont'd

with 4 eigenstates (4x degenerate):

\[\frac{1}{\sqrt{2}} \left[\Psi_1(x_1) \Psi_2(x_2) + \Psi_2(x_1) \Psi_1(x_2) \right] \text{LS}=0, m_s=0 > \text{ and } \]

\[\frac{1}{\sqrt{2}} \left[\Psi_1(x_1) \Psi_2(x_2) - \Psi_2(x_1) \Psi_1(x_2) \right] \text{LS}=1, m_s=+1 > \]

For the next higher energy, we have

\[E_{2,2} = \frac{\hbar^2}{2mL^2} (4+4) \]

which is lower than

\[E_{1,3} = \frac{\hbar^2}{2mL^2} (1+3) \].

There is a single (non-degenerate) state

\[\Psi_2(x_1) \Psi_2(x_2) \text{LS}=0, m_s=0 > \]

for \(E_{2,2} \) and 4 states for \(E_{1,3} \) (one \(S=0 \), spherically

symmetric, \(J=3 \), \(S=1 \), spherically and axial symmetric) and so on.

(The next eigenvalues in ascending order are \(E_{2,3}, E_{1,4}, E_{3,3}, E_{2,4}, \ldots \))

Problem 2

1) Since the Hamiltonian in region II \((x<0)\) contains the

term \(-\gamma \hat{B} \cdot \hat{S} = -\gamma B S_z\), we must find simultaneous

eigenfunctions of \(H \) and \(S_z \). So for \(m_s=+\frac{1}{2} \),

the Schrödinger equation reads

\[(x) - \frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \Psi_I^+(x) = E \Psi_I^+(x), \quad x<0 \]

\[(x) - \frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \Psi_I^-(x) + \gamma B \frac{\hbar}{2} \Psi_I^+(x) = E \Psi_I^-(x), \quad x\geq0 \]

Let \(k_0 = \frac{p}{\hbar} = \frac{\sqrt{2mE}}{\hbar} \) and \(k_1 = \frac{\sqrt{2m(E+\gamma B^2/2)}}{\hbar} \)

\[\Rightarrow \Psi_I^+ (x) = e^{ik_0 x} + A_+ e^{-ik_0 x} \quad \text{and} \quad \Psi_I^- (x) = B_+ e^{ik_1 x} \]
2.1 \text{with} \\
\begin{align*}
x &= 0; \quad 1 + A_+ = B_+; \quad k_0(1 - A_+) = k_1 B_+ = k_1 (1 + A_+) \\
\Rightarrow k_0 - k_1 &= (k_0 + k_1) A_+ \quad \text{or} \quad A_+ = -\frac{k_1 - k_0}{k_1 + k_0} \\
B_+ &= \frac{2k_0}{k_1 + k_0}
\end{align*}

2.2: \quad T_+ = \frac{k_1}{k_0} |B_+|^2 = \frac{j \chi(x > 0)}{\omega} = \frac{4k_0k_1}{(k_1 + k_0)^2}

\quad R_+ = |A_+|^2 = \frac{(k_1 - k_0)^2}{(k_1 + k_0)^2} \quad ; \quad R_+ + T_+ = 1

\text{Problem 3}

\begin{align*}
&\text{1} \Rightarrow n (\tau) &= |d_n (\tau)|^2 \quad \text{with} \quad d_n (\tau) = \frac{1}{i \hbar} \int_0^\tau e^{i \omega_0 t'} <n|e^{-i \omega \tau'}|0> \text{d}t' \\
\text{with} \quad \omega_0 &= \frac{E_n - E_0}{\hbar} = n \omega_0 \Rightarrow d_n (\tau) = \frac{e^{i E_0 \tau}}{i \hbar} \int_0^\tau e^{i(n \omega_0 - \omega_0) t'} \text{d}t' <n|1x10> \\
\text{Since} \quad x &= \sqrt{\frac{\tau}{2m \omega_0}} \quad (a^+ a) <n|1x10> = 0 \quad \text{for} \quad n > 1 \\
\text{and} \quad &= \sqrt{\frac{\tau}{2m \omega_0}} \quad \text{for} \quad n = 1. \quad (\text{we also know that} \quad d_n (\tau) \\
\text{becomes large only if} \quad \omega_0 > \omega_p) \Rightarrow n = 1 \quad \text{again.}
\end{align*}

\Rightarrow P_0 \rightarrow n = \frac{e^2 E_0^2}{\hbar^2 2m \omega_0} \left| \int_0^\tau e^{-i(\omega_0 - \omega_p) t'} \text{d}t' \right|^2 = \frac{e^2 E_0^2}{2 \hbar^2 m \omega_0} \left| \frac{e^{i(\omega_0 - \omega_p) \tau} - 1}{i(\omega_0 - \omega_p)} \right|^2 = \frac{e^2 E_0^2 \tau^2}{2 \hbar^2 m} \left(\frac{\sin[(\omega_0 - \omega_p) \tau/2]}{(\omega_0 - \omega_p) \tau/2} \right)^2
Problem 3 cont'd

For small T, $P_0 \sim \frac{\sin[(\omega - \omega_p)T]}{(\omega - \omega_p)^{3/2}} \ll 1$

$\Rightarrow P_{01} \ll \frac{2e^2 \varepsilon_0^2 T^2}{2\hbar m \omega_0}$

("short" means that $T(\omega - \omega_p) \ll 1$

For large T and $\omega_0 - \omega_p \neq 0$, $P_{01} \approx \frac{2e^2 \varepsilon_0^2}{\hbar m \omega_0 (\omega - \omega_p)^2} \sin^2(\omega_0 \omega_p T)$

which oscillates between 0 and a maximum of

$\frac{2e^2 \varepsilon_0^2}{\hbar m \omega_0 (\omega - \omega_p)^2}$

as T increases. Of course, if $\omega_0 = \omega_p$, T will never be "long" and the first result obtains for all T (or, rather, until P is no longer $\ll 1$ and 1st order PT breaks down).

Problem 4

a) For $B = 0$, $H_0 = \frac{\hbar^2}{2M} - \frac{e^2}{r}$ with the hydrogen atom

eigenfunctions $|n, \ell, m\rangle$, $0 \leq n \leq \ell$, $-\ell \leq m \leq \ell$.

Ignoring $\frac{e^2}{2mc^2} A^2$, the addition due to $B \neq 0$ is

$H = \frac{e}{2mc} (\hat{P} \cdot \hat{A} + \hat{A} \cdot \hat{P}) = \frac{e}{2mc} \frac{1}{i} \left(\frac{\partial}{\partial \theta} \cos \theta \frac{\partial}{\partial \phi} \right)$

Clearly \hat{P} commutes with H and we get

$H = \frac{e}{2mc} \frac{1}{i} \left(B \frac{\partial}{\partial \phi} \right) = \frac{e}{2mc} B \hat{L}_z$.
Problem 4 continued

b) i) \[\langle 2, 0, 0 | L_z | 2, 0 \rangle = \langle 2, 1, 0 | L_z | 2, 1 \rangle = 0 \]

\[\implies \text{there is no first-order shift due to } H_p \text{ for these EFs.} \]

ii) \[\Delta E_{1\text{st order}} = \frac{eB}{2mc} \langle 2, 0, \pm 1 | L_z | 2, 1 \pm 1 \rangle = \pm \frac{eB \hbar}{2mc} \]

iii) The four \(n = 2 \) EFs above are all degenerate in energy (they form a degenerate subspace). To avoid problems, we need a basis of that subspace which diagonalizes \(H_p \).

Fortunately, since the standard hydrogen atom \(\psi \)'s are already eigenstates to \(L_z \) (and thus \(H_p \)), \(H_p \) is already diagonal \(\implies \) nothing to do.

iv) \[|\psi_{1}\rangle = \sum_{\ell, \mu \nu} \frac{\langle \ell \mu \nu | H_p | 2, \ell, \ell \rangle}{E_{\ell \mu \nu} - E_2} |\ell \mu \nu \rangle \]

However, because all \(|\ell \mu \nu \rangle \) are EF's to \(H_p \) \((\text{by } 2) \),

this is always zero \(\implies \) there is no \(1\)st order change in the EFs.

v) For exactly the same reason, there is no \(2\)nd order change in \(E \) - in fact,

\[E = -\frac{\mu B}{4} + \frac{eB \hbar}{2mc} \quad \text{to all orders for all } |\ell \mu \nu \rangle \]
Problem 5

a) For the numerical values given, \(\omega_c = \frac{1}{6.58 \times 10^{-16}} \text{ Hz} = 1.52 \times 10^{15} \text{ Hz} \)

This is different from \(\omega_p = 10^{-15} \text{ Hz} \). Because of the \(\delta \)-function in \(\mathcal{F} \mathcal{G} \), \(\frac{dP(i \rightarrow f)}{dt} = 0 \)

b) E.g., a state for two spin \(-\frac{1}{2}\) particles coupled to total spin \(S = 0 \):
\[
\frac{1}{\sqrt{2}} \left(|\frac{1}{2}, \frac{1}{2}\rangle \otimes |\frac{1}{2}, -\frac{1}{2}\rangle - |\frac{1}{2}, -\frac{1}{2}\rangle \otimes |\frac{1}{2}, \frac{1}{2}\rangle \right)
\]

cannot be written as \((a) \otimes (c) \) = \(\frac{1}{\sqrt{2}} \left[(0|0\rangle + 0\langle 1|1\rangle \right] \)

for any two \(1 \)-particle states \((a), (c)\)

c) Since the dipole moment operator \(\mathbf{e} \cdot \mathbf{r} \) is a rank-1 spherical tensor, the Wigner-Eckardt theorem says

\(j \) must be able to couple with \(j \) to yield \(j \) again \(\Rightarrow |j-1| \leq j \leq j+1 \). This is impossible for \(j = 0 \) \((1 \neq 0)\)

but possible for \(j = \frac{1}{2} \) \((\frac{1}{2} = \frac{1}{2}) \Rightarrow j = \frac{1}{2} \) \(\leq \) the maximum.

d) According to the WKB method, \(\psi(x) = \frac{A}{\sqrt{p(x)}} \cdot e^{i\phi(x)} \)

Where \(\phi(x) = \frac{1}{h} \int_{x_0}^{x} (p(x')) dx' \) is some phase.

\(dp(x_1 \ldots) = \frac{|A|^2}{p(x_1)} dx_1 \) and \(dp(x_2 \ldots) = \frac{|A|^2}{p(x_2)} dx_2 \)

\(\Rightarrow \) Ratio = \(\frac{dp(x_2)}{dp(x_1)} = \frac{\sqrt{2m \left(E - V(x_2) \right)}}{\sqrt{2m \left(E - V(x_1) \right)}} \). This also makes sense classically, since \(dp \propto \frac{dx}{\sqrt{V}} \) (time spent near \(x_1 \)).

e) According to the variational method, \(E_0 \leq \min \langle i | H | i \rangle \)

and the basic state \(|ij\rangle \) with the lowest \(\langle i | H | i \rangle \) has the best chance to be "close to" the ground state.
5f: \[\vec{P} = \frac{1}{4} \hat{x} + \frac{1}{4} \hat{y} + \frac{1}{4} \hat{z} \]

\[\vec{Q} = \frac{1}{2} \left(\vec{\sigma} \cdot \vec{P} \right) + \frac{1}{2} \sigma_0 = \begin{pmatrix} \frac{5}{8} \\ \frac{1}{8} \end{pmatrix} \begin{pmatrix} \frac{1}{2} \left(1+i \right) \\ 3/8 \end{pmatrix} \]

5g: \[\frac{d\sigma}{d\Omega} = \frac{\sin^2 \theta_0}{K^2} = \frac{0.00937}{(1 \text{ nm}^{-1})^2} = 10^{-2} \text{ nm}^2 \]

\[= 10^{-16} \text{ cm}^2 \text{ per sr} \]