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State Vectors
As we learned last semester, the state of a particle in a system is rep-

resented by a state vector |ψ〉 in some Hilbert space. For each observable
associated with the system there is a hermitian operator O in that same
Hilbert space. If this observable is measured it will yield, as a result, one
(and only one) of the eigenvalues of O, oi. In general, even if we know ev-
erything there is to know about |ψ〉, we can only know the probability of a
measurement yielding a specific eigenvalue, oi, of O. The exception is, of
course, when |ψ〉 happens to be an eigenstate of O.

Probability
To find the probability, P (oi), of measuring a certain result, oi , we will

need the projection operator

Poi = |oi〉 〈oi| (1)

that gives the projection of the state vector onto the eigenstate |oi〉. In
general, there may be some other quantum number αj that is needed to
completely define the eigenstate (i.e. the state is degenerate). In this case
the projection operator will be

Poi =
∑
j

|oi, αj〉 〈oi, αj| (2)

Operating on the state vector with the projection operator will give the
overlap, or projection, of |ψ〉 onto the eigenstate, |oi〉 (assuming the eigenstate
is non-degenerate for simplicity). Operating on this new state vector with
the original state vector tells us the probability of |ψ〉 being in the eigenstate
|oi〉.

Poi |ψ〉 → The overlap of |ψ〉 and |oi〉
〈ψ|Poi |ψ〉 → The probability, P (oi), of finding |ψ〉 in the state |oi〉
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Average Value

One question we can ask ourselves is what would the average be after mea-
suring an operator over and over again? To find the average value (also called
the expectation value) of an operator for a given state vector we simply take
the sum of each eigenvalue of the operator multiplied with the probability of
being in the eigenstate associated with that eigenvalue.

〈O〉ψ =
∑
i

P (oi) · oi (3)

It just so happens that the expectation value of an operator is equivalent
to operating on the state vector with the operator and then operating on the
resultant state vector with the original state vector.
Proof:

〈O〉ψ =
∑
i

P (oi) · oi

=
∑
i

〈ψ|oi〉 〈oi|ψ〉 · oi

=
〈
ψ
∣∣∑

i

oi · |oi >< oi|
∣∣ψ〉

=
〈
ψ
∣∣∑

i

O |oi >< oi|
∣∣ψ〉

=
〈
ψ
∣∣O∣∣ψ〉 (4)

The next obvious question would be how far off this average will usually
be from an actual result? This difference (called the standard deviation), can
be found by taking the square root of the expectation value of the square of
the operator minus the square of the expectation value of the operator.

∆Oψ =
√
〈O2〉ψ − 〈O〉

2
ψ (5)

For the square of an operator, or, more generally, to the nth power, the
definition of the expectation value is only slightly modified:

〈On〉ψ =
∑
i

P (oi) · oni =
〈
ψ
∣∣On∣∣ψ〉 (6)
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Multi-particle System

Assume that we have Npart particles, all in the same system |ψ〉 with no
interaction between particles.1 Now, instead of finding the expectation value
of a certain operator, we want to know the expectation value of the number
of times a certain eigenvalue is measured2, denoted N(oi).

〈N(oi)〉 = Npart · P (oi) (7)

Since N(oi) is a random variable we can calculate its probability:

P (n) =
Npart!

n!(Npart − n)!
P (oi)

n(1− P (oi))
Npart−n (8)

where N(oi) has been replaced with n to slightly simplify the equation. This
will give a distribution of probabilities, the mean of which is given by Eq. 7
(often called µ), and the standard deviation is given by

σ = ∆n =
√
< n2 > − < n >2 =

√
Npart · P (oi) · (1− P (oi)) (9)

Poisson Distribution
There is an approximation to the exact distribution, called the Poisson Dis-
tribution, that only requires that µ is known:

P (n) =
µn

n!
e−µ (10)

There is a catch, however: the distribution is only accurate when the sample
size (Npart) is very large, P (oi) is small, and µ is finite.

Gaussian Distribution
Another distribution is known as the Gaussian, which depends on both µ
and σ:

P (n) =
1√
2πσ

e−(x−µ)2/2σ2

(11)

You’ll notice that this distribution also depends on x, which is a continuous
variable. This means that, in order to be accurate, there will need to be a
very large number of ”bins”, or possible outcomes.

1This can be achieved by either having a ”bag” of identical particles that can’t see each
other, or running the same experiment Npart times.

2For example, how often would we expect tails to turn up exactly 7 times out of 10 fair
coin tosses?
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