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1 Two Particle State

Bose-Einstein statistics: completely symmetric under the exchange of two particles
Fermi-Dirac statistics: (−) minus sign under exchange of any two particles

Subset of possible two-particle states: Assume each particle is in a well-defined 1 particle state:

|Ψ1〉 ∈ V
|Ψ2〉 ∈ V

|Ψ〉 = |Ψ1〉 ⊗ |Ψ2〉

The ordering tells us which particle in which state (1st is 1st, 2nd in 2nd). For two boson-states, we need
to use the symmetric superposition with the (+), and for two-Fermion states, we need the anti-symmetric
superposition with the (-) as below:

1√
2

(|Ψ1〉|Ψ2〉 ± |Ψ2〉|Ψ1〉)

If the one-particle states are properly normalized and orthogonal, these two-particle states are in general
“automatically” normalized, as well. For the symmetric case, this only works if |Ψ1〉 6= |Ψ2〉; otherwise
simply use the simple product |Ψ1〉|Ψ1〉.

2 Two non-interacting Particles

As an example, let’s study again the harmonic oscillator. Each particle is independently moving in the (one-
dimensional) quadratic potential well. We will treat both symmetric and anti-symmetric wave functions
simultaneously. Symmetric wave function could mean 2 fermions with anti-aligned spin states (total spin
S = 0) and symmetric spatial wave function, or two spin-0 bosons. Anti-symmetric wave functions would
be needed for two fermions coupling to total spin S = 1~.

Single-particle states in this case fulfill

H|Ψn〉 = E|Ψn〉

where E = (n+
1

2
)~ω.

Possible two-particle states:

1√
2

(|Ψn〉|Ψm〉 ± |Ψm〉|Ψn〉)
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To find the probability of one particle at one place (at x1) and the other at x2, we use the projection operator:

1√
2

(〈x1x2| ± 〈x2x1|)

1√
2

(〈x1x2| ± 〈x2x1|)
1√
2

(|Ψn〉|Ψm〉 ± |Ψm〉|Ψn〉) =
2

2
(Ψn(x1)Ψm(x2)±Ψn(x2)Ψm(x1))

What is the probability, dProb(x1, x2, dx1, dx2)? Can’t ask which particle is which. If particles don’t see
each other/don’t interact:

=
[
|Ψn(x1)|2|Ψm(x2)|2 + |Ψn(x2)|2|Ψm(x1)|2 ± 2<(Ψ∗

n(x1)Ψ
∗
m(x2)Ψn(x2)Ψm(x1))

]
dx1dx2.

The first two terms is what one expects from “classical” physics: since we don’t know which particle is
in which state, the probabilities have to add. However, the last term generates interference effects that
would not exist classically. For instance, for the symmetric (+) case, the probability to find both particles
at the same spot increases to nearly double the classical value (simple addition of probabilities) - this is
equivalent to bright interference fringes in light going through a double slit. Vice versa, the probability to
find two particles governed by the asymmetric wave function in the same spot is zero! This is the basis of
the statement that “bosons like to congregate” and “fermions like to stay apart”.

BTW, this equation also explains why, in practical terms, we do not have to worry about every fermion
in the Universe being entangled (via antisymmetrization) with every other fermion of the same type (e.g.,
an electron on Earth with an electron on Mars): If the two wave functions have non-overlapping “support”
(i.e., the x-range over which |Ψn(x) is non-zero does not – or nearly not – overlap with the corresponding
range over which |Ψm(x) 6= 0), then only the first or second term can be non-zero for any pair x1, x2 and
neither the other square term nor the interference term matter.

3 Identical particles that do interact with each other

Again we consider the Harmonic Oscillator, but this time the two particles are connected to each other by a
spring, instead of moving independently in the same “fixed” potential.

P 2

2M
+
p2

2µ
+

1

2
ω2µx

Change of basis: |x1x2〉 → |xX〉. For m1 = m2:

X =
x1 + x2

2
x = x1 − x2

What functions of x and X fulfill the requirement to be anti-symmetric or symmetric? By definition of X ,
Ψcm(X) is always symmetric under exchange 1 ↔ 2. So the determination is left to Ψrel(x). Since under
1 ↔ 2, x → −x, we have for symmetric wave functions that Ψrel must be ”even”, Ψrel(−x) = Ψrel(x),
and for anti-symmetric functions Ψrel must be ”odd”: Ψrel(−x) = −Ψrel(x).

The even and odd properties relate to the behavior under the parity operation of the corresponding one-
particle wave functions (reversal of all signs of all components of position and momentum vectors). For
rotationally symmetric Hamiltonian,

Ψrel(~r) = Rnl(r)Y
m
l (θ, φ)
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Under parity:

r → r, θ → π − θ, φ→ φ+ π ⇒ Ψrel → Ψrel(−~r) = Rnl(r)Y
m
l (π − θ, φ+ π)

As an example, we study the case l = m:

Y l
l = sin θleilφ → sin(π − θ)leilφeilπ

where eilπ = (−1)l is even if l is even and odd if l is odd. This is also true for all other values of m and
therefore l determines if the wave function is symmetric or anti-symmetric in space.

For example, 2 spin
1

2
fermions: if S=0, spin anti-symmetry, spatially symmetric→ l = 0, 2, 4, .... If S=1,

spin symmetry, spatially anti-symmetric→ l = 1, 3, 5, ....

4 Generalize to N Particles

States with N particles, assume N different single-particle wave functions: |Ψa〉, |Ψb〉, . . . |ΨlN 〉. Then the
symmetric wave function for bosons would be

1√
N !

∑
allpossiblepermutations

|Ψa〉 ⊗ |Ψb〉 ⊗ |ΨlN 〉

For Fermions, each permutation must be multiplied by its “sign” (plus for an even number of “swaps”, minus
for an odd number):

1√
N !

∑
permutations

(sign)| . . .〉 . . . | . . .〉

No ambiguity to write down as the Slater determinant of N ×N matrix:

1√
N !

 Ψa Ψb . . . ΨlN

Ψa Ψb . . . ΨlN

Ψa Ψb . . . ΨlN


This is the short way to get the wave function for n-fermion state, although the normalization may have

to be determined by hand unless all single-particle wave functions are orthonormal to each other.
Example 1: 4He atom has 2 e−. We know ground state is Ψ100 and the two possibilities are ↑ or ↓. We take
the determinant of the matrix below:

1√
2!

[
Ψ100 ↑ Ψ100 ↓
Ψ100 ↑ Ψ100 ↓

]
This matrix yields the determinant as:

1√
2
|Ψ100〉|Ψ100〉(↑↓ − ↓↑)

In this case, we have an anti-symmetric spin state and a symmetric spatial state.
Example 2: Particles in 1D box:
For nth state, wave number k1 = nπ/L, momentum p1 = n~π/L. Total volume in phase space for each
state is Vx×Vp = ~. Since each state can be “filled” with two fermions (1 spin up, one spin down), the total

volume in phase space occupied by N fermions is
N~π

2
. Packing more fermions into the space requires

more kinetic energy (higher and higher momenta)→ Fermi gas.
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