Vector Space
consists of two parts: actual space of vectors, and the corresponding
field of scalars (numbers)
— Scalars = real numbers R.
Spatial Vectors in 2D, 3D, ... nD space
4D Minkowski space
Complex numbers as pairs of real numbers: a + ib;a,b € R
— Scalars = complex numbers C

Ex. 1: column vectors (¢; € C)

C1

Cn

Ex. 2: All functions of type f(z) : 2z €[0,L] — C

ket: |v > is an abstract way to write any vector. Don’t confuse with
representation of a given vector through a column of numbers (see
below)
all vector spaces contain |0 >; if a vector space contains |v >, it must
also contain | —v >; |v > +| —v >=1{0 >

Linearly independent:
A set of vectors v; is linearly independent if 37 ;a;|v; >7# 0 unless
a; = 0Vi € [1,n]
If this holds for a set of n vectors, but doesn’t hold for any set of
n + 1 vectors = the space has n dimensions
basis set: set of vectors |v; > ...]v, > in n-dimensional vector space
that are linearly independent
Given arbitrary vector |u >, there must be numbers a;, ¢ such that
St lailvi > +efu >] =0
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= |u>= ¥ % %, written as

v; >. We can use the numbers —
a column, as a representation of the vector |u > with respect to this

particular basis.



Example: Complex vector space of 2x2 Matrices

4 dimensions

€11 C12
C21 C22
basis:
1 0 0 1 0 0 0 0
0 0 0 0 1 0 0 1
another basis:
1 0 01 0 —1 1 0
0 1 1 0 i 0 0 -1

Inner Product
Three definitions
1. Definition based on “external” information. E.g., for ordinary
3-dimensional vectors in space, @ - ¥ = |ul||v|cosf. Requires
external knowledge of lengths |ul,|v| and enclosed angle 6. In
complex vector spaces, ordering matters, so we introduce an ad-
joint vector |u >T=:< u| to express the ordered inner product as
<u|-|v>=:<u|v>. Rules: If < vjw >= c then
require: < wlv >=c*
< v|v > = real (because ¢ = c*)
require: < v|v >> 0; call \/< v[v > = |v| “norm” of vector
require: < v|v >= 0 only if [v >=0
require: < w|(ajv > +plv >) = a < wlv > +6 < wlv >
(linear in the ket)
2. We can use any representation (a;), (b;) of the vectors with re-

spect to basis |7 >:
<ulp>=Y"Y arb; <ilj >
iJ

This becomes most useful if the basis is orthonormal: < i|j >=
0i; . In this case, we can represent the adjoint vector < a| with a

row ( al ab a} ) and the inner product just becomes the or-



by
dinary matrix multiplication: (a>1k ak a§) : b =

b3
3. Dual Vector Space

set of bras
bra: linear operator; a function that turns a vector into a
scalar linearly
<fl:V=R,C
if we know < f|i >= ¢;Vi € [1,n] then we can apply < f| to
any vector in the vector space
lu >= %" ;i >
< flu>=X" 04 < fli >= 27 q,¢
Bra’s form a vector space of their own (one can add them and
multiply them with scalars); they have the same dimension as
the vector space they act on, so one can define a basis for the
dual space, as well. In that case, there is a 1-to-1 translation
from kets (in the vector space) to bras (in the dual space)
simply by using the same coefficients representing them for
their respective basis.

Some important relationships

Schwarz Inequality

| <vhw > | < fol-ul

|z >=|v > —jﬁ‘i}‘l’f |w >: component of [v > Lto|w >

Triangle Inequality:
o> +|w >| < [v] + |w]
Orthonormal basis
Orthogonal: inner product of vectors is 0, despite no vector being
0
Normal: length of each vector is 1

= orthonormal basis

a’{bl + a§b2 + a§b3



li > Vi€ [1,n]

< jli >= diy

v >=3X" ;i >

< jlv >=<j|IZP 4]t >= ¢y
<wu| =X 8 <Jl

<ulv >= ffoy

Operators
General case: From one vector space V to another one, W:
Q:V->WwW
Specific example: Adjoint < v| in dual space of V is a linear operator
from V to the field ( R or C ).
Other important case: “square” matrix = operator from V to V :
Q:V-V
< 7|92 > is all you need to know (for basis states)
Q: square matrix of n dimensions

Opmpn =< m|Qn >

Adjoint Operators

Qu>= P >
<] =< v|Qf

Hermitian operator: Q = Qf

Unitary operator: QQf =1

Sum and Product of vector spaces
Given two vector spaces V and W, we can define the sum

Vew

as the space that contains all vectors from V and all vectors from W

as well as all possible sums of such vectors. Its basis is simply the



joint set of all basis vectors {v1, va, ..., U, W1, Wa, ..., Wy, } from V and
from W. Its dimension n + m is the sum of the dimensions of V and
W. A vector in V& W is defined by its components (“projection”)
in both V and W and can be represented by a single column that
contains its coefficients for the first vector space followed by the ones
for the second one.

Given two vector spaces V and W, we can also define the product
Veow

as the space that contains all possible combinations |v > ®|w > of
any vector from V with any vector from W, as well as all possible sums
of such combinations. Its basis is the set of all possible “products”

of basis vectors
{v1 @ W1,01 @ Wa, .oy V] @ Wiy, V2 @ W, weey V2 @ Wiy vey Uy @ W1y ey Uy, @ Wiy }

from V and W. Its dimension n - m is the product of the dimensions
of V.and W. A vector in V® W is defined by its n - m coefficients
with respect to this product basis. If it can be written as product of
two vectors from V and W it can be represented by a single column
that contains m times its first coefficient for V, each time multiplied
with one of the coefficients from W, followed by the m times the
second coefficient from V multiplied with the same ones from W and
so on (see example below). However, it is very important to realize
that not all vectors in V® W can be written as simple products
of vectors from V with W. Example: Let V = C? with typical
(column!) vector |[v >= (a,b) and W = C3 with typical column
vector |[w >= (x,y,2). Then |[v > ®w >= (az,ay,az,bx,by, bz)
(again, all written as column - I'm just saving space here). On the
other hand, the vector (0,0,1,1,0,0) is a perfectly valid vector in
V®W but cannot be written as product of just two vectors, one each

from V and from W.



