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Elasticity and Rupture of a Multi-Domain Neural Cell Adhesion Molecule
Complex
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ABSTRACT The neural cell adhesion molecule (NCAM) plays an important role in nervous system development. NCAM forms
a complex between its terminal domains Ig1 and Ig2. When NCAM of cell A and of cell B connect to each other through
complexes Ig12(A)/Ig12(B), the relative mobility of cells A and B and membrane tension exerts a force on the Ig12(A)/Ig12(B)
complex. In this study, we investigated the response of the complex to force, using steered molecular dynamics. Starting
from the structure of the complex from the Ig1-Ig2-Ig3 fragment, we first demonstrated that the complex, which differs in dimen-
sions from a previous structure from the Ig1-Ig2 fragment in the crystal environment, assumes the same extension when equil-
ibrated in solvent. We then showed that, when the Ig12(A)/Ig12(B) complex is pulled apart with forces 30–70 pN, it exhibits elastic
behavior (with a spring constant of ~0.03 N/m) because of the relative reorientation of domains Ig1 and Ig2. At higher forces, the
complex ruptures; i.e., Ig12(A) and Ig12(B) separate. The interfacial interactions between Ig12(A) and Ig12(B), monitored
throughout elastic extension and rupture, identify E16, F19, K98, and L175 as key side chains stabilizing the complex.
INTRODUCTION

Adhesion proteins, which bind cells to other cells or to

the extracellular matrix, experience tension because of the

mechanical coupling of the cell to its environment. The

response of adhesion molecules (1), and of biomolecules in

general (2), to force can affect not only the rates but also the

mechanisms of cellular processes. To understand the effect

of mechanical force on biomolecular function, it is important

to identify the force transmitting elements in the structure (3).

Interestingly, several proteins involved in force transmission

between cells or between cells and the extracellular matrix

have multimodular architectures (4). Whereas some proteins

respond to force by unfolding (5,6), in many cases, so-called

tertiary structure elasticity results from changes in the relative

arrangement of different domains (7). Given the number of

such modular adhesion proteins, the latter elasticity might

be expected to be more pervasive.

Although simulations demonstrated the elastic behavior

of individual multimodular proteins (8–11), the response

of adhesive protein complexes to force is more relevant to

their biological function. Several studies explored the rela-

tionship between the dimensions of adhesion proteins and

the intercellular separation (12–14), but adhesion molecules

are often under tension that could perturb the protein and/or

complex dimensions. Under a range of physiologically rele-

vant forces, the extracellular region of transmembrane adhe-

sion proteins could therefore span greater intermembrane

separations than those suggested by their crystallographic

dimensions.

The wide range of physiologically relevant forces and

loading depends on the type of adhesion molecule, its phys-
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iological location within the organism, and the cell motility

or contractility (prestress). The forces may also vary with

time during dynamic cell rearrangements. Evans and Calder-

wood (15) suggested that cell-adhesion complexes in tissues

apparently under static stress can experience transient

loading at rates as low as ~1 pN/s. Under these conditions,

individual bonds can rupture under forces of a few pN. In

contrast, much higher loading rates of ~104 pN/s are

involved in the initial attachment of immunological cells in

the vasculature. For example, during neutrophil rolling,

a single complex between P-selectin and its glycoprotein

ligand can experience forces of well over 100 pN (16),

with only a modest increase in the corresponding off-rate.

At intermediate loading rates of 100–500 pN/s (comparable

to the contractile forces in the filopodia of those cells),

Benoit et al. measured single-adhesion receptor unbinding

forces centered around 23 pN (17). Even in stationary human

fibroblasts, focal adhesions experienced forces of ~5 nN/mm2

(18). This corresponds to a lower limit of pN forces/bond if

the integrins are assumed to be close-packed in the focal

adhesion complex. In motile fibroblasts, tensile forces on

focal adhesions can exceed the rupture forces of the

receptor-ligand bond.

Of the thousands of adhesion proteins identified, the

neural cell adhesion molecule (NCAM) was one of the first

cell adhesion molecules to be isolated, and it is a paradig-

matic member of the Ig superfamily of cell adhesion mole-

cules (IgSF cell adhesion molecules) (19). Involved in both

cell-cell adhesion and signaling (20), it plays an important

role in the development, maintenance, and regeneration of

the nervous system (21–24). It has three major isoforms,

which differ in their mode of attachment to the cell

membrane. However, all isoforms share a common extracel-

lular region. This consists of five Ig domains (Ig1–Ig5),

doi: 10.1016/j.bpj.2008.12.3936

mailto:leckband@uiuc.edu


3006 Maruthamuthu et al.
followed by two fibronectin type III (Fn III) domains

(Fig. 1 A). Several biochemical and biophysical studies

have shown that homophilic NCAM adhesion (NCAM/

NCAM) involves multiple Ig domains (25–33). Surface plas-

mon resonance measurements (28), bead binding assays, as

well as surface force (29) and single-molecule atomic force

microscope (AFM) measurements (30) demonstrated that

both Ig12/Ig12 and Ig3/Ig3 bonds could form. Bead aggrega-

tion assays (31) and force measurements (29,30) with both

full-length and domain deletion fragments have further

shown that both domain interactions can bridge apposing

surfaces to form an adhesive or trans-complex. Although it

was also suggested (32) that Ig12 could form cis (lateral)

binding, there is also the possibility that Ig12 domains could

form both cis and trans bonds, although presumably not

simultaneously.

Whereas it is well established that NCAM forms homo-

philic complexes that bridge cells, how these complexes phys-

ically respond to tension or to variations in intermembrane

spacing is currently unknown. Addressing this knowledge

gap is important to understanding NCAM function, because

NCAM and its posttranslationally modified form regulate

tissue architecture and physiological function by modulating

intercellular spacing (21). The posttranslationally modified

form of NCAM abrogates cell adhesion (21), because of the

steric and electrostatic effects of the attached polysialic acid

(34). Expression of NCAM-polysialic acid disrupts cell
adhesion complexes by ‘‘prying apart’’ cell membranes by

virtue of increased repulsion. This repulsion is sufficient to

overwhelm adhesion between apposed NCAM proteins.

NCAM complexes also are likely to experience dynamic

loading during morphogenesis, neurite extension, and axon

pruning (35), all of which are dynamic processes. For

example, filopodial retraction speeds measured at the leading

edge of neuronal growth cones in vivo (where NCAM is local-

ized (36,37)) were ~0.02 mm/s (38). Depending on the elastic

modulus (spring constant) of the complex, this could generate

effective loading rates of several hundred pN/s. When single

NCAM bonds were ruptured using the AFM (30) at compa-

rable loading rates, the bonds sustained forces of tens of

pN before rupture. The response of NCAM complexes to

physiologically relevant forces and loading rates is important

to understand how the protein structure defines its mechanical

role in cell biology.

The force response of a protein complex depends on its

structure. Crystal structures of both the Ig12 and the Ig123

fragments of NCAM were solved (28,32). In both crystals,

the Ig12 region of one NCAM fragment bound to Ig12 of

another (Fig. 1 B). The two Ig12 structures had essentially

the same binding interface; however, the Ig12/Ig12 complex

in the crystal of the Ig12 fragment had an end-to-end length

of 49 Å, whereas the complex in the Ig123 crystal had an

end-to-end length of 57 Å. Previous mutation studies (33)

also showed that charged residues E11, E16, K98, and
A

B

FIGURE 1 (A) Schematic of the

extracellular part of NCAM showing

the arrangement of its different

domains. (B) Structure of the complex

formed between Ig12 of molecule A

(dark gray) and Ig12 of molecule B

(light gray) in cartoon representation

(bottom right). The view on the left

shows the two main aromatic residues

of Ig1(A) that bind to their pockets in

Ig2(B) (surface representation). The

view on the top right shows the interdo-

main, intramolecule bonds in the linker

region between E16 (of Ig1) and K98

(of Ig2).
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R177 were important for Ig12 dimerization. In the crystal

structures, E11 and E16 formed salt bridges with R177 and

K98, and all four residues were located close to the interdo-

main linker region. Whereas the E16-K98 pair formed

intermolecule bonds in the Ig12 crystal structure, the same

residues in the Ig123 crystal structure formed intramolecule

bonds between adjacent domains (Fig. 1 B, top right). Addi-

tionally, although F19 is critical for the Ig1-to-Ig2 interaction

(26), the crystal structures show that another aromatic

residue, Y65, also forms multiple bonds connecting Ig1

and Ig2. The relative importance of these different interac-

tions in a solvated complex and their contribution to complex

stabilization under force has not been demonstrated.

Molecular dynamics (MD) simulations are increasingly

important and powerful means of investigating biomolecular

dynamics (39). In particular, steered molecular dynamics

(SMD) simulations are complementary to, if not the sole

means of, gaining molecular-level insight into the dynamics

of biomolecules under force (7). Although the timescales of

MD simulations are still faster than are those of experimental

and in vivo dynamics, several predictions based on SMD simu-

lations (8,40–42) were experimentally validated (9,43–45). In

the case of complexes between adhesion molecules, MD simu-

lations can be used to address at least three questions. First,

do the crystal structures reflect the equilibrated structures in

a fully solvated environment? Second, does the complex

respond to physiologically relevant forces? Discounting un-

folding studies, the complete stretching response of only an-

kyrin to weak constant forces of tens of pN has been simulated

(8) and was later confirmed experimentally (9). Third, can one

determine the molecular details of the side chain interactions

during unbinding? As demonstrated by Bayas et al. (46), using

force measurements, SMD simulations (47) identified the key

load-bearing amino acids stabilizing an Ig-family adhesive

complex under force. The response of protein complexes to

a directionally biased loading force, as in the SMD simula-

tions, is especially relevant for cell adhesion molecules, which

evolved to resist force. Consequently, the results of such simu-

lations can provide critical insight into functionally important

interactions.

The study presented here used MD simulations to investi-

gate several aspects of the Ig12/Ig12 complex of NCAM.

The simulations showed that the complex undergoes signif-

icant relaxation when solvated. We showed how the complex

responds to low constant forces (tens of pN), and we further

determined how the complex fails under dynamic loading.

First, our equilibration simulations (without external force)

reconciled some of the apparent differences in overall

topology and binding interactions between the structure of

the Ig12/Ig12 complex in crystals of the Ig12 and Ig123 frag-

ments. Second, we demonstrated that the NCAM Ig12/Ig12

complex responds elastically to low constant forces because

of the reorientation of protein domains. This is referred to as

‘‘tertiary structure elasticity’’ (8,10,11). Third, at a loading

rate low enough to unbind the complex without unfolding,
we identified key residues stabilizing the complex under

force.

METHODS

MD simulations were performed using the program NAMD (48) and the

CHARMM22 force field (49,50). The VMD (51) program was used for the

system setup, data analysis, and molecular graphics. The structure of

the Ig12/Ig12 complex was computationally isolated from the structure of

the Ig123 NCAM fragment (PDB ID 1QZ1, residues 1–190 in each Ig12

fragment) and then solvated in a box (86 � 94 � 219 Å3) of explicit water

(TIP3) that was large enough to keep the protein solvated even after complex

dissociation. 108 Naþ and 100 Cl� ions were added. This corresponds to

100 mM NaCl, which is similar to the salt concentration in the extracellular

environment. The ion numbers maintain system electroneutrality. Simula-

tions of the resulting system comprising 168,000 atoms were performed with

an integration time step of 1 fs. Electrostatics calculations were done using the

particle mesh Ewald method, and other nonbonded interactions were cut off at

12 Å, with a switching distance of 10 Å. Simulations were carried out with

periodic boundary conditions, with both temperature (298 K) and pressure

(1 atm) controlled during equilibration. We used Langevin dynamics and

Langevin piston pressure control as described in Phillips et al. (48).

The system was equilibrated as follows: The protein complex was fixed

under a harmonic restraint, and the energy was minimized for 10,000 steps,

followed by 100 ps of equilibration. Then, keeping the Ca atom of residue

190 in the Ig12(A) fixed and the corresponding atom in Ig12(B) harmoni-

cally restrained, 10,000 steps of minimization was followed by 3 ns of equil-

ibration. At this time, the complex root mean-square deviation (RMSD)

stabilized to 1.6 � 0.1 Å relative to the initial crystal structure (Fig. 2).

Finally, the restraint on the Ca atom of residue 190 in Ig12(B) was released,

and the complex was allowed to equilibrate until both the end-to-end

distance of the complex and its RMSD stabilized.

Steered MD simulations were performed with the Ca of residue 190 of

Ig12(A) held fixed (fixed atom) while that of molecule B (SMD atom)

was subjected to a force (F). The force had one of two functional forms:

either (i), F ¼ constant when the SMD atom was subjected to a constant

force of either 30, 50, 60, or 70 pN; or (ii), F ¼ k(vt � Dd) for constant

velocity pulling, in which the SMD atom was attached to a virtual spring

with force constant k, whose other end was pulled at a constant velocity v.

Here Dd was the position of the SMD atom relative to its initial position

along the pulling direction. The spring force constant was 70 pN/Å

(1 kcal/mol Å2) and the pulling velocity was either 0.1 or 0.01 Å/ps.

FIGURE 2 Time evolution of the RMSD of the complex during the

minimization and equilibration steps before releasing the restraints on the

SMD atom.

Biophysical Journal 96(8) 3005–3014
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RESULTS

The following describes the results of simulations in which

we (i), equilibrated the fully solvated Ig12/Ig12 complex,

(ii), determined its response to constant forces in the tens

of pN range, and (iii), followed the rupture of the protein-

protein complex when pulled at constant velocity.

Equilibration of the fully solvated Ig12/Ig12
complex

The initial equilibration steps were carried out with the

C-terminal Ca atom of Ig12(A) fixed and the corresponding

atom in Ig12(B) (SMD atom) harmonically restrained, but

free to move in a direction along the length of the complex.

During these steps, all intermolecular interactions, as well as

intramolecule, interdomain linker interactions, were main-

tained.

When the restraints on the SMD atom were released, the

end-to-end distance of the complex (defined as the distance

FIGURE 3 Variation of the end-to-end length and the RMSD of the

complex (relative to that at time t¼ 0) with time, after releasing the restraints

on the SMD atom. Inset: The conformations of the complex before (black)

and after (gray) this final equilibration step, shown superimposed.
between the last Ca atoms of the C-termini of molecules A

and B) increased to 57Å within 3 ns, with a concomitant

increase in and stabilization of the complex RMSD (Fig. 3,

inset). Of the intramolecule interdomain linker interactions

(Fig. 4 A) in both molecules A and B, E11-R177 remained

stable, whereas E16-K98 broke within 1 ns, in both mole-

cules. Moreover, E16(A) formed a brief intermolecule

H-bond with K98(B). In the equilibrated structure, E16

and K98 were positioned such that they could form either

inter- or intramolecule bonds. Among the intermolecule A/B

interactions, the H-bond between the backbone –NH of F19

and the carbonyl of G178, as well as the ionic bond between

K18 and R177, and the nonpolar interactions with F19 were

maintained. The H-bonds between Y65 and K133, E171 and

R173 (Fig. 4 B), and T63 (with R173) either stayed bound

(A/B) or broke intermittently but reformed. An H-bond

also formed between the backbone carbonyl of S17 (A)

and backbone HN� of I180 (B). This interaction was present

in the Ig12 crystal structure, but not in the structure of Ig123.

Outside the main binding interface, salt bridges formed inter-

mittently between N46 and R137, an interaction that was not

observed in the crystal structures. When equilibrated over

13 ns, the end-to-end distance varied from 55 to 64 Å,

whereas the RMSD remained constant throughout.

Complex response to low constant forces

The significant increase in the complex end-to-end length

during constant velocity pulling (see below) motivated us

to explore the response of the complex to low, constant,

physiologically relevant forces. The protein complex re-

sponded to tensile forces of tens of pN, with a substantial

change in its end-to-end length. The extension arose from

a change in the relative orientation of the domains. When

subjected to a low force of 50 pN, the end-to-end distance

increased and stabilized within nanoseconds to 77 Å

(Fig. 5). Subjecting the complex to external forces of 60

and 70 pN led to proportionally greater extensions of the

end-to-end length. The linear dependence of the end-to-end
A B

FIGURE 4 (A) Initial state of the intramolecule interdo-

main bonds in molecule A (similar in molecule B) before

equilibration. (B) Hydrogen bonding partners of the

aromatic residues Y65 (K133, E171, and R173) and F19

(G178) in the Ig1(A)/Ig2(B) interface.
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A B C

FIGURE 5 (A) Evolution of the end-to-end length of the complex with time, when subjected to constant forces of 50 and 70 pN. (B) The resting confor-

mation (surface representation), shown in gray, and the conformation of the complex when subjected to 50 pN force shown in black (cartoon representation).

(C) Plot showing the dependence of the increase in end-to-end length of the complex (relative to the unstrained complex) on the applied force.
extension (or length) of the complex to this range of low

forces (50–70 pN) corresponds to a spring constant of

0.02 N/m for the protein complex. This is within a factor

4–8 of the softest protein spring known, which is that of

ankyrin (7). To determine the elasticity between 0 and 50 pN,

we simulated the response of the complex to a 30 pN external

force. The complex extended to an end-to-end length of 72 Å

to 30 pN, which, together with the 0 and 50 pN data, yielded

a spring constant of ~0.04 N/m. Thus, the overall spring

constant of the complex was ~0.03 N/m when subjected to

forces of tens of pN (<70 pN).

In addition to domain-level rearrangements, the low forces

also led to the rupture and formation of several bonds. Under

a 50 pN external force, the intramolecule, interdomain E16-

K98 H-bonds in the crystal (Fig. 1 B) that broke during the

equilibration never reformed. Instead, E16 (of A or B) inter-

mittently bonded with K98 of the other molecule (B or A).

Also, all three H-bonds formed by Y65 broke within 1.3 ns.

The H-bond formed by T63 also broke, but then reformed.

Interestingly, alteration of the last H-bond between the

G and C0 strands of domain 1 (V14-F96, –NH–O) in both

molecules led to alternate breakage and reformation. This

bond broke within 5 ns and did not reform when the

complex was subjected to a force of 70 pN. Otherwise, the

bonds were similarly affected in response to 30, 60, and

70 pN forces.

Identification of a loading rate for unbinding

At constant velocity pulling (Fig. 6), the initial force

response of the complex was a stretching motion (similar

to that demonstrated with low constant forces above), in

which the end-to-end length of the complex increased.

This was only because of a change in the orientation of the

domains relative to each other and to the direction of the

external force. The fully stretched end-to-end length was

>95 Å. After this extension, the complex begins to unbind.

A pulling speed of 0.1 Å/ps (at a loading rate of 7 pN/ps)

was not low enough to preserve the secondary structure

integrity of the complex. Here, the rupture of the Ig1(A)/

Ig2(B) interface before that of Ig1(B)/Ig2(A) initiated the
unfolding of the G strand of Ig1B. This involved sequential

breakage of the five H-bonds between the G and C0 strands

and the ten H-bonds between the G and A0 strands.

In contrast, at a 10-fold lower pulling speed of 0.01 Å/ps

(loading rate of 0.7 pN/ps), the complex ruptured without

unfolding. There were no Ig1(A)/Ig1(B) interactions as the

Ig12 molecules separated during the pull. The unbinding

trajectory of the intact molecules is discussed below.

Unbinding trajectory

When subjected to constant velocity pulling with a 0.7 pN/ps

loading rate, the complex ruptured within 5.5 ns, as shown in

Fig. 7. The atomistic details of the unbinding trajectory, in

combination with the time dependence of the force experi-

enced by the molecule, give useful information about the

different interactions stabilizing the complex under tension.

Most of the rupture events in the Ig1(A)/Ig2(B) interface

occurred almost simultaneously with those in the Ig2(A)/

Ig1(B) interface, except where indicated. Hence, Fig. 7

focuses mainly on the Ig1(A)/Ig2(B) binding interface.

The three H-bonds involving Y65 (A) broke within 1.8 ns,

and the S17-I180 and T63-R173 H-bonds broke within 2 and

2.45 ns, respectively (Fig. 7 A). Whereas the V14-H96

H-bond between b strands G and C0 of domain 1 in both

molecules broke (as expected from the constant low-force

simulation results) at 3.4 ns, the adjacent I12-F96 (O–HN)

H-bond between the same strands of both molecules also

broke, albeit only at much higher forces, at 4.48 ns. This

latter bond also reformed in molecule B after unbinding.

Both of the intermolecule E16-K98 bonds formed within

4.35 ns. The rupture of the F19-G178 (A/B) H-bond at

4.78 ns caused the next force peak (marked ‘‘2’’ in Fig. 7 F),

whereas the corresponding B/A bond broke at 4.85 ns. The

A/B E16-K98 bond also broke at this time. The nearby

K18-R177 bonded tightly only at 3.9 ns and ruptured at

4.9 ns. The B/A E16-K98 bond ruptured at 5.17 ns, and

the largest force peak at 5.19 ns (‘‘3’’ in Fig. 7 F) arose

from the rupture of the nonpolar interaction of L175 of one

molecule with V6, F19, and L21 of the other (Fig. 7 E).

Thus, even as F19 slid out of its pocket, it is the transient

Biophysical Journal 96(8) 3005–3014
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FIGURE 6 Identification of a loading rate for unbinding: response of the Ig12/Ig12 complex to pulling at two computationally realizable loading rates. At the

two loading rates, the complex initially stretches to almost twice its end-to-end length, after which its response depends on the loading rate. The complex

unfolds as it unbinds at a loading rate of 7 pN/ps (v ¼ 0.1 Å/ps), but unbinds without unfolding at 0.7 pN/ps (v ¼ 0.01 Å/ps).
interaction of L175 in Ig2 with a hydrophobic pocket in Ig1

of the other molecule that concluded the rupture.

DISCUSSION

This study used molecular dynamics simulations to address

three distinct aspects of NCAM Ig12/Ig12 homophilic

binding. First, the equilibration simulations resolved several

apparent differences between two related crystal structures of

the Ig12/Ig12 complex. Second, constant low-force simula-

tions showed that the complex responds to physiologically

relevant forces within the multi-ns timescale. Third, the

complex unbinding trajectory revealed key interactions that

stabilize the complex.

The relative domain orientations and end-to-end lengths of

cell-cell adhesion complexes are important parameters that

help determine their place in the cellular context (e.g., cis
versus trans binding). We considered the NCAM Ig12/Ig12

complex from the crystal structure of the Ig123 fragment,

because it exhibits a slightly tighter binding compared to

that from the Ig12 crystal, which exhibits a longer end-to-

Biophysical Journal 96(8) 3005–3014
end length in the structure. However, the equilibration of

the former complex structure led to a final end-to-end length

that was comparable to that of the latter Ig12/Ig12 complex.

This suggests that the Ig123 structure is under strain in the

crystal. Also, one of the primary differences between these

crystal structures was that, although E16-K98 was an intermo-

lecule bond in the Ig12 NCAM crystal, it was an intramole-

cule bond in the Ig123 crystal. Our equilibration simulations

showed that the intramolecule E16-K98 bonds break and

the residues are poised to form intermolecule bonds in the

relaxed and more extended complex. Thus, MD simulations

of solvated molecules complement crystallographic data by

testing and validating the interactions observed in the crystal

structures.

The mechanical response of single proteins with long,

multiple-repeat architectures has been explored previously

both computationally (8,52–54) and experimentally

(44,55). Here, we have shown that the Ig12/Ig12 complex

responds to forces as low as tens of pN within several nano-

seconds. As indicated in the introduction, combining in vivo

filopodial retraction speeds of ~0.02 mm/s with the spring
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A B C D

EF

FIGURE 7 Unbinding trajectory of the complex during 0.01 Å/ps constant velocity pulling. All images show the binding interface between Ig1(A) and

Ig2(B). (A) By 1.75 ns, Y65’s H-bond with K133 is already broken, whereas its H-bonds with E171 and R173 are about to break. (B) Even at 4 ns, F19 remains

bound to its complementary pocket in Ig2, as shown. The H-bond between the backbone –NH of F19 and G178 is also shown. (C) By 4.45 ns, E16 and K98,

which are interdomain intramolecule H-bonds initially, have ruptured and formed intermolecule bonds instead. (D) By 5 ns, F19 is only loosely bound to its

now half-open pocket in Ig2. (E) As F19 slips away from its initial binding pocket, L175 binds to a nonpolar pocket (white-colored region) of Ig1 (colored

according to residue type in surface representation) formed by V6, P7, F19, and L21 as pictured at 5.18 ns. Its rupture 0.1 ns later forms the final rupture event

(marked ‘‘3’’ in F). (F) Time evolution of the force experienced by the complex and the bond distance of the Y65(A)-R173(B), I12(A)-F96(A), and F19(A)-

G178(B) H-bonds. The major force peaks are marked 1, 2, and 3. Ig1A is shown in blue and Ig2B in red in A–D. Residue structures in A–E are shown in licorice

representation with the atom-based color-codes N-blue, C-cyan, O-red, and H-white.
constant of the complex estimated in this work of ~0.04 N/m

(in the 0–50 pN range) yields a loading rate of 800 pN/s.

Of direct relevance to this work, AFM measurements

showed that, at a loading rate of ~700 pN/s, the rupture

forces were centered around 40 pN. Thus, the NCAM

complex can experience tens of pN forces in physiological

circumstances. In our low constant-force simulations, we

probed this range and showed that the force versus extension

relationship is piecewise linear in the ranges 0–50 pN and

50–70 pN. Although this yields a useful estimate of the local

spring constant of the protein complex, depending on the

force, stretching can only occur up to ~90 pN (when the

complex stretches fully). Even thermal fluctuations can

increase the end-to-end length of the equilibrated structure

up to 64 Å. Accordingly, the overall response from a few

pN to 90 pN is nonlinear and plateaus above 90 pN.

In AFM experiments, the forces inducing NCAM

unbinding were tens of pN, and increased to well over 100

pN at the higher end of the loading rates used in the AFM

study (30). But the protein immobilization chemistry in
AFM measurements makes it hard to detect such small

changes in end-to-end length of protein complexes: the

linker attaching the protein to the AFM tip is itself elastic,

and the complex’s stretching response may get buried in

the response of the linker. Although experiments have

been useful in elucidating the elastic behavior of single,

long proteins such as titin or even ankyrin, SMD simulations

can provide a complementary means to address the mechan-

ical properties of shorter protein complexes, as demonstrated

here. It is instructive to note that the spring constant of

0.03 N/m that we computed here for the low-force extension

of the NCAM Ig12/Ig12 complex is about one half the

computed value for the extracellular region of a single cad-

herin with calcium. However, it is comparable to that of cad-

herin without calcium (11) and an order of magnitude less

than that computed for a spectrin repeat unit (56). Thus,

the NCAM Ig12/Ig12 complex acts as a relatively soft

spring, whose stretching behavior is facilitated by flexible

linker regions connecting the Ig domains. This behavior is

schematically shown in Fig. 8. This elasticity should be
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taken into consideration in determining whether adhesion

complexes can bridge a given intercellular spacing.

Constant velocity pulling explored the response of the

Ig12/Ig12 complex to a range of forces during a single pull,

with the aim of characterizing the unbinding trajectory.

Whereas the high forces attained can unbind the protein

complex, the high velocities (and, therefore, high loading

rates) employed in SMD simulations can also lead to unfold-

ing of the complex. This can be explained on the basis of an

effect of the time-varying force on the energy landscape of

the complex (57). Although the pulling spring constant and

pulling speed of 0.1 Å/ps were less than or similar to that of

other recent SMD studies (58–60), we found that the Ig12/

Ig12 complex unfolded as it unbound at this pulling rate.

Even though this unfolding is an artifact of the high pulling

speed, it is interesting to note that, at the same loading rate,

the CD2-CD58 complex—another cell adhesion complex

involving Ig domains—does not unfold. Instead, it requires

an order of magnitude higher loading to unfold (47). Qualita-

tively, the different responses of the two complexes may be

explained as follows: In the NCAM Ig12/Ig12 complex, Ig1

reorients to align perpendicular to the direction of force

(Fig. 6). Thus, the G b strand unzips (sequential breakage of

H-bonds) more readily. The CD2-CD58 complex investi-

gated by Bayas et al. (47) had only a single domain in each

molecule in the simulation, and hence the domains oriented

more parallel to the force direction requiring larger shear

forces to unfold their b strands.

Unbinding without unfolding at the lower loading rate of

0.01 Å/ps suggests that the domains unbind without unfolding

both in vitro and in vivo where the loading rates are still lower.

This agrees with force measurements of forced NCAM

binding (29,30), in which there was no evidence of unfolding.

Although the simulated loading rate is several orders of

magnitude higher than the rate in experiments, the primary

results extracted from the unbinding trajectory are likely valid

for the following reasons: First, the breakage of interdomain

intramolecule (E16-K98) bonds was observed even during

FIGURE 8 Schematic illustration of the nanomechanical spring-like

behavior of NCAM when bound as an Ig12/Ig12 trans complex. Note that

Ig domains 3–5, the putative hinge, and the two Fn III domains are lumped

together in this schematic and that they also contribute to the effective spring

constant.
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equilibration. Their reformation as intermolecule bonds was

also observed in the low-constant-force simulations, which

involved forces similar to those in AFM. Second, Y65, one

of the two primary aromatic residues inserted in hydrophobic

pockets, ruptured even in the low-force simulations. Third,

the hydrophobic contact involving F19 was essentially the

only contact that sustained the load in the low force and in

high loading rate simulations. Fourth, the final rupture event

was the unbinding of L175 from a hydrophobic pocket

involving F19, rather than vice versa. However, F19 and

L175 have essentially the same position coordinate along

the direction of pulling, and, hence, the effect of increased

loading rate is expected to be minimal. Apart from the binding

interactions of the complex, the V14-F96 backbone H-bond at

the end of the G and A0 strands is inherently weak because of

the unfavorable NH–O angle, and it broke in all low-force

simulations. However, at 0.01Å/ps, the adjacent I12-F96

bond only breaks at high forces (Fig. 7 F). This I12-F96

bond rupture could be due to the high loading rates used,

such that it could remain intact at lower loading rates (corre-

sponding simulations would be computationally prohibitive).

We also compared the simulations with mutagenesis

studies. Mutating either E11, E16, and K18 or R173, R177,

and E179 to alanines entirely abolished the Ig12/Ig12 interac-

tion as shown by gel filtration (33). Based on the most recent

crystal structure of the Ig12 complex (32), this was attributed

to the disruption of the E11-R177 and E16-K98 salt bridges,

which helped orient Ig1 with respect to Ig2 of the same

molecule. Also, the disruption of the K18-R177 H-bond

was postulated to affect the interactions of nearby F19.

Similarly, mutating F19 (27) abrogated Ig12 dimerization as

shown by sedimentation equilibrium. In our simulations, the

equilibrated structure and the molecular picture of unbinding

helps us better understand these experimental results. First,

the E16-K98 linkage does not remain an intramolecule inter-

domain bond, but it forms an intermolecule bond that resists

substantial force. Thus, the loss of this salt bridge directly

affects the intermolecular complex stability. Second, the

E11-R177 salt bridge forms a stable interdomain bond that

does not rupture in any of the simulations. This linkage is

therefore likely to limit the range of relative orientations of

Ig1 and Ig2 and hence stabilize reciprocal Ig1/Ig2 interac-

tions. Third, Y65 interactions rupture early, even during

low-force stretching. Conversely, it appears that F19 pri-

marily stabilizes the complex. This observation accounts for

the critical nature of this residue. Furthermore, in addition

to providing insight into the structural basis of the mutagen-

esis results, simulations predict that mutating L175 would

adversely affect the complex stability under force. In view

of the aforementioned importance of the E16-K98 bond, the

dynamic mechanism by which it is maintained is particularly

interesting: As shown in Fig. 9, during the 0.01 Å/ps constant

velocity pulling, the E16-K98 (A/B) bond forms at 1.2 ns and

lasts until 4.85 ns. During this time, because of thermal fluc-

tuations, either of the three hydrogens of lysine bond to either
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FIGURE 9 Complementary H-bond formation between

E16(A) and K98(B) (inset). The distance between each of

the 3 hydrogens of lysine’s –NH3
þ and the 2 oxygens of

glutamate’s –COO- show that when any one H-bond

breaks, another one forms and that they do so in a mutually

exclusive, but complementary, way between 1.2 and 4.85 ns.
of the two oxygens of glutamate in a complementary fashion,

leading to bond maintenance under varied conformational

substates of either of the residues.

In conclusion, these simulations demonstrated that (i), the

equilibration of the solvated complex reconciles differences

between the crystal structures of the complexes from the

Ig12 and Ig123 fragments: namely, the end-to-end length

and the role of the linker region bonds; (ii), NCAM Ig12/

Ig12 reorientations under forces of tens of pN correspond

to a tertiary structure elasticity of ~0.03 N/m; and (iii),

the unbinding trajectory demonstrates the importance of the

salt bridges in the intermolecule linker region and the

nonpolar residues L175 and F19 in resisting force. Our study

also underscores the importance of dynamic interactions

between interacting residues in adhesion complexes and the

ability of steered molecular dynamics to elucidate their impor-

tance in adhesion.
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